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Abstract— Currently, massive data has been compiled and examined at explosive volumes. The vast 
volume of data stream structured by current technological sources in up-to-the-minute society has 
amplified at an incredible pace, stimulating processing capacity and data curation. The traditional event-
driven simulation models to investigate huge data can be no longer used but the paradigm to decision-
making is now taken into all activities in the society, business applications, and scientific accounts. The 
overhead of data collection, redundant storage and processing improvement cost are on the rise for big 
data applications. In addition, there are technical aspects such as data inconsistency, redundancy, 
privacy, scalability, time-series and unusefulness [1]. Parallel processing is an essential method 
particularly for quantifying scale and time-series experiments. Simulation results for several datasets fit 
prediction results. Speedup and cost effective analysis will be considered as performance metrics as well. 
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I. INTRODUCTION 

The enormous volumes of data created by up-to-date high technologies in recent society introducing 
complications in processing cost and data classifications. On the other hand, analytical tools for cleansing and 
normalizing data streams are incapable to execute on real-time basis such explosive data size [5]. In addition, 
big data manipulation may exhibit volatile memory-paging, spatial locality and data flow control. On the other 
hand, the advent of parallel processing has disclosed the extraordinary processing power of PUs (processing 
units) to speed up data-explosive calculation much more as period elapses by. This research provides the 
evaluation of parallel processing for big data curation by using MOA (Massive Online Analysis) [6]. Another 
simulation tool, QuickSort, to evaluate genetic applications with parallelism has been proposed in [11]. Before 
executing experiments that implicate big data with parallelism, it is critical to split data sources into n subtasks. 
A previous research [5] exposes pros and cons of applying the graphic processors for computation. However, it 
is not resourceful unless the experiments are taking both partitioning and re-assembling time into consideration. 
Thus, in this research, analytical performance evaluation and prediction model are proposed by aiming the 
parallel processing architecture of MOA simulation as well as accounting both partitioning and re-assembling 
time. This paper is structured as follows. Firstly, section two outlines parallel big data description. Section three 
explains prediction method then section four describes simulation results and analysis. Lastly, section five draws 
conclusion and remarks the future work. 

II. OVERVIEW OF PARALLEL BIG DATA 

A deep learning is constructed up of machine learning’s processors. A parallel processing [2] is made up for 
supporting several independent processing units accordingly. Clustering and distributed processing which 
covered the field of parallel processing are still on-the-fly to be scalable, cost-effective, uncomplicated to code 
and can be of off-the-shelf processing systems. High-speed processing system indulges elevated performance 
computing by splitting the heavy data into pieces then being processed among the parallel elements in the 
cluster.  These elements (nodes) are scalable but cost sensitive and well interconnected. They are precisely 
designed to handle massive applications on parallel fashion [7],[8]. Traditional supercomputers are found on 
mentioned architecture as well. 

The big data-parallel model is preventive structure per se. It is high level coding in which the processing 
intercommunication needs to be specified explicitly. It is preventive due to the specification of data-parallelism 
exhibition. For this situation, big data parallelism is a universal critical not only in programming paradigm but 
also in cost-effective performance analysis. Despite the difference between the programming paradigm and 
performance analytical model, the data-parallel design cited in previously is practical. Only that big data must 
be decomposed in order to convenient the processing capacity, intercommunication among nodes, load 
balancing, and reassembly. Data-parallel model will address the decomposition phase straightforwardly, by 
yielding explicit partitions which are relevant to a parallel computing grain, in which subtask will take on 
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service at individual processing unit. At this point it is to identify a partition which pinpoints situated 
concurrency. To route subtask to any processors indicates how they are to be transferred over parallel processing 
units based upon queuing discipline and thus checks load balancing in each directions. The latter can be inferred 
by the compiler. 

III. PREDICTION METHOD 

A queuing network involves several servers which offer services of some mechanism to incoming customers. 
Customers who experience all servers busy will have to wait for their turn at queue lines attached to servers. 
Therefore, these waiting lines are called queuing systems. There are numerous examples which can be defined 
as queuing systems, such as communication networks, banking service, computer systems, production systems 
and etc. A queuing model can be characterized by six components. Firstly, the customer’s arrival rate will be 
described by interarrival time and the distribution function. In general practice customer will land regarding to a 
Poisson fashion (exponential interarrival time). Customer may arrive individually or substantially. An example 
of bulky arrivals is the immigration office at the border where tourist’s passports must individually be controlled. 
Secondly, the behavior of customers may be patiently waiting in line or impatiently leaving after a certain while. 
Especially, call centers may face the hang-up customers when they cannot wait until next operator avails, 
whether or not they will try calling again. Thirdly, it is the service time which is independent of, in general, 
exponential distribution. Service time may depend on queue size. For example, the processing hours of an 
individual customer at the bank can be amplified if the number of waiting customers is too outsized. Fourthly, 
the service discipline explains how each customer will receive a service, one on one or bulk.  Many patterns are 
assumed based upon the order in which customers come in, such as first come first serve, last come first serve, 
random sequence, priorities, or time-sharing. Fifthly, the service capacity can be either a single server or several 
servers handling the customers. Lastly, the waiting place can be limited to number of waiting customers in 
queue. For example, in computer network, only limited packets can be buffered at a router. The proper buffer 
space is an essential in the network design.  

Analytical model used for prediction in this research will be brought up. First, the big data can be 
decomposed by n autonomous data sets in which are called tasks. The parallel processing system comprises of 
n+2 servers, which are a server for partitioning (PS), a server for merging (MS) and n parallel processing 
devices. Big data arrives at PS with an exponential service time. At PS, big data will spawn n tasks evenly. 
Spitted tasks are referred to sibling. All siblings will proceed directly at zero delay time to parallel processing 
facility as shown in Fig 1. 

 
Figure 1. Big Data Splitter 

Siblings are autonomously processed. Tasks with priority can help lower the processing time on parallel 
system as presented in [10] but subsequently it will reflect longer reassembly time. As sibling’s processing is 
finished from parallel network, it leads to MS at once. The sibling must wait in the buffer for all siblings’ 
completion before merging is active. Once all sibling completion is achieved, they are reassembled into big data. 
At this point, the execution process may keep iterating. The period of time from big data entering PS to big data 
leaving MS is referred to residual time (RT) as listed in Eq 1. Prediction method introduced in [4] is applied for 
collecting the performance measurements such as processing time and residual. These results will be used for 
comparing in subsequent section of the paper 

The M/M/n system depicted in Fig 2. is applicable for the employment of MOA. Big data arrives with an 
exponential interarrival time (λ) and the service time distribution follows exponential function (mean = μ). Big 
data splitter based on [3] will be measured and assumed to be an average B and merger based on the same is 
assumed to be an average M. Results from MOA simulation will be compared to those from prediction. 
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Where B is average time for partitioning, Sn is time spent at the nth server of the nth task and M is average time 
for reassembly after the accomplishment of all tasks. 

       
Figure 2. Parallel Processing Units 

IV. SIMULATION RESULTS AND ANALYSIS 

Configuration setting in MOA simulation follows experimental parameters such as, Task Evaluator: 
EvaluatePrequentialRegression, Learner: VarianceReductionSplitCriterion, Stream: ArffDataStream,  
Performance Evaluator: WindowRegressionEvaluator, GracePeriod: 200, AlternateTreeTime: 1,500 and 
AlternateTreeFading: 0.995. The investigation of five synthetic datasets with size of (406, 432, 436,  438 and 
505 MBytes) is taken into the experiment account. The M/M/n network system (n is ranging between 1 to 20) 
depicted in Fig 3 was configured and used by MOA simulation. Five datasets will be simulated on n parallel 
servers. Each dataset will be divided initially into n tasks regarding to targeted parallel processors. The residual 
time calculation will take splitting time and reassembly time into the account of both simulation and prediction. 
Splitting is computed based upon GSplitter developed by [3]. As reference, residual time can be presented by Eq 
1. The comparison between simulation and prediction results executing on single up to twenty processing units 
(PUs) is shown in table 1. The same table lists residual time (RT) from simulation against those RT results from 
the prediction method. Prediction results are neighboring to those simulation results. Prediction may help 
simulate here-and-now results; nonetheless, involve less energy, time-consumption and budget than former 
methods. 

 
Figure 3. Experimental Model 
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TABLE I.  Residual time from simulation versus results from the prediction method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Speedup efficiency is analyzed using metrics from simulation. The speedup improvement is achieved by pre-
configuration set for the experiment. Simulations are performed on a parallel system which has n processors. Let 
RTn  represent the residual time which expires from the beginning of the partitioning to the reassembly. Speedup 
analysis of the calculation's residual time emphasizes on these folds. The experiment run by n processors is the 
total number of processing devices. The intercommunication    overhead    from synchronization is identical to 
the run-time for the calculation on a single processor, symbolized by RT1. Speedup is the speed achievement 
done by parallel processing comparable to single processor: Speedupn = RT1 ⁄ RTn. If the speedup is speedup(n) 
for input n parallelism, the speedup metric follows a regression. Simulation results conclude head-to-head line to 
prediction ones accordingly. The speedup efficiency is remarkable for parallel processing benefits. Cost-
effectiveness figure is next step of calculation to further analyze for price-performance, which is a cost of 
processing units over achieved benefits. Comparison results between simulation versus prediction are 
summarized in table 2. Both simulation and prediction results are close. 

Speedup metrics have been visualized for the sake of healthier comprehension as shown in Fig 4. Speedup 
increases linearly regarding to the higher number of parallel processing units using MOA simulation. Further 
analysis on optimization can be achieved by employing these fundamental collective data. Optimization for 
instance an image using microwave technique had been obtainable in [9]. 

 

 

 

 

 

 

 

 

 

Residual 
Time (sec) 

 Data Set 

1 2 3 4 5 

Single SIM 246 107 163 110 306 

APP 245 106.19 163 109.89 306.07 

2 PUs SIM 138 57.39 90 57 163.26 

APP 136 56.83 90.81 56.9 162.84 

4 PUs SIM 64.7 27.35 50.08 29.31 87.14 

APP 64.6 27.06 50.05 29.26 87 

6 PUs SIM 43.4 18.34 28.72 20.19 55 

APP 43.3 18.04 28.64 20 54.8 

8 PUs SIM 32.95 14.18 21.45 16.87 47 

APP 32.9 14.04 21.41 16.84 47 

10 PUs SIM 27.24 11 17.4 11.5 34.86 

APP 27.2 10.89 17.6 11.42 34.47 

12 PUs SIM 21.68 9.24 13.6 9.3 28.27 

APP 21.65 9.15 13.5 9.2 28.24 

14 PUs SIM 19.42 8.67 11.8 8.6 24.07 

APP 19.39 8.46 11.7 8.5 24 

16 PUs SIM 16.83 7.93 10.67 7.41 20.62 

APP 16.8 7.82 10.63 7.4 20.63 

18 PUs SIM 13.8 6.2 9 6.16 18.14 

APP 13.8 6.1 9 6.1 18.12 

20 PUs SIM 12.72 5.58 8.25 5.5 16.3 

APP 12.7 5.5 8.1 5.4 16.2 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Chanintorn Jittawiriyanukoon et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i2/170902200 Vol 9 No 2 Apr-May 2017 868



TABLE III.  Speedup from simulation versus results from the prediction method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Speedup comparison results 

Cost-effectiveness experiment is an analysis of economic point of view which associates the cost of 
investment with obtainable performance from different sequences of experiment. It is used in engineering field 
for the purpose of which experiment will worth the investment most. Normally it is equated in terms of a ratio of 
performance achievement done by parallel processing comparable to number of processing units: Cost-
effectivenessn = performance of n processors ⁄ n. The  cost-effectiveness  can   be   realistic  to  the development 
and strategic planning of various organizations. It is also applied in several practices. In the purchase of 
computer networks, for instance, network architecture is associated not only for computer costs, but also for 
factors such as their speedups, transaction processing rate, and bandwidth. If a network performance of a 
supplier is inferior to the competitor, but considerably cheaper and friendlier to use, top management may 

Speedup 

 

            Data Set 

1  2  3  4  5 

Single  SIM  1.0  1.0  1.0  1.0  1.0 

APP  1.0  1.0  1.0  1.0  1.0 

2 PUs  SIM  1.8  1.9  1.8  1.9  1.9 

APP  1.8  1.9  1.8  1.9  1.9 

4 PUs  SIM  3.8  3.9  3.3  3.8  3.5 

APP  3.8  4.0  3.3  3.8  3.5 

6 PUs  SIM  5.7  5.8  5.7  5.4  5.6 

APP  5.7  5.9  5.7  5.5  5.6 

8 PUs  SIM  7.5  7.5  7.6  6.5  6.5 

APP  7.5  7.6  7.6  6.5  6.5 

10 PUs  SIM  9.0  9.7  9.4  9.6  8.8 

APP  9.0  9.8  9.3  9.6  8.9 

12 PUs  SIM  11.3  11.6  12.0  11.8  10.8 

APP  11.4  11.7  12.1  12.0  10.8 

14 PUs  SIM  12.7  12.3  13.8  12.8  12.7 

APP  12.7  12.6  13.9  12.9  12.8 

16 PUs  SIM  14.6  13.5  15.3  14.8  14.8 

APP  14.6  13.7  15.3  14.9  14.8 

18 PUs  SIM  17.8  17.3  18.1  17.9  16.9 

APP  17.8  17.5  18.1  18.0  16.9 

20 PUs  SIM  19.3  19.2  19.8  20.0  18.8 

APP  19.4  19.5  20.1  20.4  18.9 
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choose the inferior one due to cost effective analysis. On the other hand, if the difference of price scale is next to 
zero, but the higher bandwidth, more processing power and better speedup top management may select the other 
company as an alternative due to similar cost effectiveness concept. Cost effective visualization is presented in 
Fig 5. 

 
Figure 5. Cost-effectiveness results 

As results, the higher number of processors will be more cost effective accordingly. However, in the 
environment of both four and eight processing units, it is found that cost-effectiveness drops to approximately 
80%. The tendency of decreasing follows both simulation and prediction results. The impact may be caused by 
particular dataset characteristics which will not approve the partition of both four and eight tasks accordingly. 

V. CONCLUSIONS 

In this research, to conquer the computing load in big data curation is focused.  In data curation for a big file, 
smaller tasks are recommended regarding to the parallel processing power as a huge dataset contains most 
statistical data. Thus the big data is firstly partitioned into independent tasks while the division time will be 
taken into account. The experiments succeed with increases from 1 up to 20 processing power with huge data 
volume.  Next, parallel processing is applied accordingly before the reassembly of these parallel results. 
Similarly, merging time is considered. To obtain the performance of parallel processing system, simulation is 
used for five different datasets. Besides, in order to avoid computing burden, prediction method is proposed. 
Comparison results conclude prediction method contributes evenly for simulation. Lastly, prediction and 
simulation results are in our head-to-head comparison. Future works include optimization based on cost-
effective metrics and simulation with different configuration settings for machine learning as well as deep 
learning. 
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