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Abstract - This paper examines the application of a parameterised Ordered Weighted Average (OWA), to 
evaluate the risk of flood hazard. OWA generates linguistic fuzzy operations that develop a series of 
multi-criteria combination rules enabling a realistic strategic planning and decision making. Additionally, 
this research aimed to initiate appropriate planning strategies towards a resilient city. As such, the OWA 
method is operated in a Geographic Information Systems (GIS) environment to evaluate the spatial risk 
of floods in Iskandar Malaysia. The combination of current physical and social characteristics as well as 
future development plans (2025), have been evaluated by the means of different pessimistic and optimistic 
scenarios through adopting OWA. The results indicate that future developments are likely to increase the 
vulnerability of region. In particular, the cities and provisioned population growth areas have a higher 
risk level. Finally, the suggested methodology proved to be a reliable approach for strategic planning of 
resilient cities. 

Keywords - Environmental planning, Order Weighted Average (OWA), multi-criteria evaluation, GIS, Iskandar 
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I. Introduction 

Cities worldwide are becoming more and more complex from physical, social, and economic aspects which are 
highly interdependent. This makes them more vulnerable to disasters, and in particular, natural disasters 
(Desouza & Flanery, 2013; Dorasamy, Raman, & Kaliannan, 2013; Godschalk, 2003). According to the United 
Nation’s annual report flood is considered as one of the most devastating hazards worldwide. This figure is 
predicted to reach as high as US$415 billion by 2030 (UNSIDR, 2015). This is more critical in regions with 
rapidly growing cities with the lack of appropriate planning and proactive initiatives. In 2014, over 6,000 deaths 
occurred because of natural disasters. More than half of these disasters took place in Asia and the pacific region 
(UNISDR, 2014). Simultaneously, during the last decades, flood phenomenon and it’s socio-economic 
consequences increases globally in terms of intensity and frequency. Nearly half of the all victims of natural 
hazards suffer from flood and it is projected that the flood loses is reached to US$ 60 billion by 2050 (Hartnett 
& Nash, 2017; Mendoza-tinoco, Guan, Zeng, Xia, & Serrano, 2017; Röthlisberger, Zischg, & Keiler, 2017; 
Yeganeh & Sabri, 2014). 

As such, cities are always looking for initiatives that can improve its resiliency to natural hazards, effectively 
resist, accommodate, and recover from the effects of hazards (Röthlisberger et al. 2017).  

Several tools and methodologies have been developed to evaluate the vulnerability aspects of communities and 
foster future planning to measure the resilience of developments (Desouza & Flanery, 2013; Chen et al., 2019). 
For example, studies include urban flood and earthquake hazard zoning (Röthlisberger et al. 2017; Fernández & 
Lutz 2010), modelling and risk assessment (Lawal et al. 2014; Paquette & Lowry 2012), and vulnerability 
assessment (Jeffers, 2013; Yeganeh & Sabri, 2014; Chen et al., 2019). Most of these studies leveraged spatial 
analysis enabled tools (i.e. ESRI’s ArcGIS, TerrSet, QGIS) integrated with uncertainty modelling methods 
(Fuzzy logic, Neural Network, Multi-Criteria Decision Analysis (MCDA)) (Yeganeh & Sabri 2014; Fernández 
& Lutz 2010). One of more common methods, Weighted Linear Combination (WLC) is a technique that 
integrates MCDA and Geographic Information Systems (GIS) to scientifically evaluate risks and vulnerabilities 
(Lawal et al. 2014; Yeganeh & Sabri 2014; Chowdhury & Al-Zahrani 2014). Since modelling and assessments 
are complicated, decision makers need more accurate models and scenarios to develop the appropriate 
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strategies. To date, not many studies have been conducted on incorporating the fuzzy methods such as ordered 
weighted average (OWA) with spatial analysis and models for risk assessment and vulnerability evaluation. 
Many scholars hold this view that OWA is a holistic approach and is able to facilitate optimistic, pessimistic and 
trade-off scenarios. OWA generates an extensive variation of decision alternatives to address uncertainty 
affiliated with the interplay between various criteria in complex phenomenon (Drobne & Lisec, 2009; Ferretti & 
Pomarico, 2013; Gorsevski, Donevska, Mitrovski, & Frizado, 2012; Malczewski, 2006; Malczewski et al., 
2003). As such, this study aims to develop a flood vulnerability assessment methodology using OWA integrated 
with GIS in order to aid accurate decision making for urban resilience measures. 

The study is conducted in Iskandar Malaysia as a rapidly urbanising region. In order to indicate the effectiveness 
of the new methodological framework, the results of this study are compared with the WLC-GIS method which 
was previously conducted in the same region (Yeganeh & Sabri, 2014). 

The next section defines the risk, hazard, and vulnerability in the urban resilience context and summarises the 
literature on urban resilience, natural hazards, vulnerability assessment and the methods that have been used so 
far to conceptualise the methodology of this study. The third section, “methodology”, describes the methods that 
were used to develop the model. This is followed by the section “results and discussion” which explains the 
outcomes and compares them with similar studies. Ultimately, the paper is concluded by summarising the 
findings and their implications in urban resilience and vulnerability. The conclusion section also suggests future 
research recommendation in urban resilience and other supportive methodologies. 

II. Risk, hazard, and vulnerability in the context of urban resilience 

The literature on risk describes it as the probability of an undesirable occurrence among vulnerable subjects 
(Isunju et al. 2016; Brooks 2003).Therefore, risk is described as a function of disaster, vulnerability factors and 
adaptive capacity. The interplay between the factors are complex but is been simplistically demonstrated in the 
following equation: Risk = Hazard ∗ Vulnerability/Capacity																																																																																									 (1) 

In fact, “hazard” indicates a threatening occurrence or potentially damaging phenomenon. Vulnerability is 
defined as the situations determined by physical, environmental and socio-economic features or processes that 
expand the susceptibility of a society to the effects of disasters (Isunju et al. 2016). Vulnerability is not only 
indexed by hazards exposure, it also interconnects with the resilience of the system under threat of hazard 
(Berkes, 2007). Resilience and vulnerability are two related concepts that have gained currency in various types 
of disaster-related discourses (Usamah, Handmer, Mitchell, & Ahmed, 2014).  

a. What is a resilient city? 
Urban entities can be broken down into physical and social components. During disasters physical system must 
be capable of remaining functional or regaining. As such, the physical features of the city should be well-
organised to mitigate the impact of hazards. Aside from physical system, human communities are recognised as 
a city’s social and institutional components. Community networks must be capable of tolerating extraordinary 
situations. The physical and social components of the city must be considered as the major drives in identifying 
the city indicators for adopting risk and vulnerability evaluation methodology (Malalgoda et al. 2014; Desouza 
& Flanery 2013; Godschalk 2003). 

City resilience expresses the capability of all aspects of an urban system, temporally and spatially to endure, 
adapt to and recover from the influences of a disaster in a well-timed and effective ways (Harrison & Williams 
2016; Isunju et al. 2016; UNISDR 2016).   
Generally, increased population density causes pressure on land, resources, and ecosystems. Thus inter-
relationships between involved factors have to be investigated (Gangrade et al., 2019; Chelleri, Waters, 
Olazabal, & Minucci, 2015; Malalgoda, Amaratunga, & Haigh, 2014). The key challenge therefore is to identify 
reliable indicators and analysis methods that will give planners and decision makers a greater understanding.  

b. Hazard mitigation 
Hazard mitigation is recognised as actions that reduce or omit the risk and long term effects of hazards and 
consists of a wide range of measures. Urban disaster reduction is considered as a complex process of disaster 
reduction process and its main aim is to establish resilient cities (Desouza & Flanery, 2013; Godschalk, 2003; 
Kulawiak & Lubniewski, 2013).  

c. Hazard risk evaluation and vulnerability assessment methods 
Several studies have adopted the integration of multi-criteria analysis (MCA) such as Analytic Hierarchy 
Process (AHP) and Analytic Network Process (ANP) with GIS to incorporate uncertain factors in flood risk 
management (Lawal et al. 2014; Levy & Hall 2005). In fact, MCA presents techniques and procedures for 
analysing complicated decision issues which often include incommensurable data or indicators (Fernández & 
Lutz 2010). Most of these studies (Fernández & Lutz 2010; Lawal et al. 2014) utilised WLC for developing the 
models. In WLC methods, risk neutrality is considered to be the best solution for the problem; it is assumed that 
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the best result can be obtained only with assigned criterion weight. However, there are fundamental limitations 
in this method when it comes to the decision making process. These limitations are explained by  (Jiang, 
Eastman, & Eastman, 2000) as follows: 

• The first issue in utilising WLC is that the various aggregation techniques utilised in developing 
decision.  

• The second issue is related to the standardisation of factors. Rescaling the range according to an 
ordinary numerical ground by simple linear transformation is considered to be the most typical 
approach to the problem.  

• The third issue related to risk related decision making is the likelihood that the decision would be 
inappropriate. Continuous criteria of WLC would emerge in order to indicate a further uncertainty 
which is not smoothly calculated by stochastic methods.  

Each of the WLC standardised factors indicate suitability; the higher the value, the more appropriate the location 
for development. In complex and multi-criteria issues, excluding some locations and considering them as areas 
with no vulnerability may put a group of people in jeopardy. Thus, it is crucial to utilise methods that address 
these issues. 

One of the methods that can be used to overcome these computation issues is the ordered weighted averaging 
(OWA) approach that was developed by (Yager, 1988). This is a generalisation of the Boolean overlay and the 
WLC method. This method provides an entire range of decision making strategy spaced along the primary 
dimensions of the trade-off degree among the criteria included the degree of risk in the solution. Figure 1 
indicates the decision-making strategy space where x-axis demonstrates a continuum from maximum risk to no 
risk, and the y-axis demonstrates a continuum from no trade-off to maximum trade-off. In general, the OWA 
approach is utilised to generate an extensive range of decision options to address uncertainty linked with multi-
criteria interactions (Liao et al., 2017; Ferretti & Pomarico, 2013; Malczewski et al., 2003). Following the 
definition of risk presented earlier, by using OWA, it is possible to generate several decision scenarios that 
considers the mitigation of different risks. In decision-making pertinent to urban and regional planning, OWA is 
being utilised for watershed management strategies (Malczewski et al., 2003), landfill site selection, and land 
suitability analysis (Gorsevski et al., 2012; Malczewski, 2006). However, there is a lack of OWA method 
application in developing and evaluating flood risk scenarios using indicators directly related to vulnerability 
while the flood hazard influence people’s life. Iskandar Malaysia as the study area, has been affected by flood 
several times. Therefore, using OWA as a decision making strategies can be utilised to offer a continuous range 
of decision strategies to help planner and decision maker for supporting the inhabitants with an appropriate 
planning towards resilience city.  

 
Figure 1. Decision strategy space in OWA. Adopted from (Ferretti & Pomarico, 2013). 
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III. Methodology 

a. Ordered Weighted Average approach 
OWA is regarded as a method for criteria ranking and inscribing the uncertainty from their interaction 
(Gorsevski et al., 2012; Liao et al., 2017). (Yager, 1988) presented an aggregation method according to the 
OWA operation that is the generalisation of three fundamental groups of aggregation roles including (a) fuzzy 
sets intersection, (b) union, and (c) averaging functions. OWA is considered as a weighted sum with ordered 
evaluation criteria; therefore, in addition to the criterion weights, this factor is utilised to facilitate the generation 
of several scenarios. The order weight provides a basis for managing the level of trade-off between criteria 
explicitly. The trade-off degree is defined as the degree to that criterion/trade-off weights are employed in the 
aggregation process (Malczewski 1999). In general, the OWA approach provides an aggregation between two 
extreme values which are known as ANDness (pessimistic approach) and ORness (optimistic approach)(Yager, 
1988). 

OWA includes two types of weights associated with criteria and orders. The criterion weight indicates the level 
of importance for each criterion.; The weight that is assigned to a criterion map indicates that the particular 
criterion is assigned the same weight in all locations (Ferretti & Pomarico, 2013; Malczewski et al., 2003). The 
ordered weights are indicated the significant of criterion in a location as compared with other location. In fact, 
ordered weights are allocated to a given location’s attribute value in descending sequence regardless the 
attribute map from which the value comes (Malczewski, 2006). The re-ordering process includes affiliating an 
order weight using a specific ordered location of the weighted attribute values. The coefficients which are 
utilised for weighting process are not explicitly connected with a specific criterion value but rather, are allocated 
to an ordered location for a nominated position. 

The highest order weight is allocated to the criterion with the most significant weighted values for each position, 
the next one is assigned to the next significant values, and this trend will be continued. Ordered weights control 
the weighted criteria aggregation sequence. For instance, nominated a group of attribute values at the ith 
position on the jth criterion, Cij = (0.7, 0.2, 0.9), and a group of associated order weights, Oj = (0.3, 0.2, 0.1), the 
OWA process includes: (1) reordering the attribute values as follows: r1j = 0.9, r2j = 0.7, and r3j = 0.2, and (2) 
combining the weighted ordered attribute values; which is defined as OWA = (0.3 × 0.9) + (0.2 × 0.7) + (0.1 × 
0.2) = 0.43 (Drobne & Lisec 2009; Yager 1988; Malczewski 1999). While the criterion weight indicates the 
level of importance of each criterion, the order weight indicates to what extent the importance of each criterion. 

Clarifying OWA in the context of multi-criteria analysis indicates that OWA provides a basis to alter the 
attribute maps contribution from a minimum-type (logical AND) through all intermediate sets to a maximum-
type (logical OR) combination (Malczewski et al., 2003). To adjust in a spatial environment, for a nominated 
group of n criterion layers, OWA is determined as a combination of layers operates with an i-th position 
(objects) and a group of ordered weights, 

O = O1, O2,. . ., On such that; 

Oj ∈ [0 1]  

where j= 1,2,…n also  ∑ O = 1୨ୀଵ                                                                                                                                         (2) 

As well as a group of criterion weight C = c1, c2,. . ., cn,  cj ∈[0 1] and   ∑ c = 1୨ୀଵ                                                                                                                                          (3) 

Given the class of attribute values αi1, αi2,. . ., αin at the i-th location (raster cell): OWA݅ = ∑ ୬୨ୀଵݎݑ ݑ            = ೕೕ(∗)∑ ೕೕ(∗)ౠసభ                                                                                          (4) 

According to the equation ri1 ≥ri2 ≥…≥rin is considered as the pattern attained by reordering the attribute values 
ai1, ai2, …, ain; in addition, Cj(*) is the rearranged jth criterion weight, cj. The criterion weights are arranged 
based on ri1 ≥ri2 ≥…≥rin and it is important to indicate the variation among the criterion weights and the order 
weights. The criterion weights are allocated based on each criterion significance in order to demonstrate the 
trade-offs between criteria. The similar weight of cj is allocated to the all positions on the jth criterion map. The 
order weights are connected with the values of criterion on a location-by-location. They are allocated to the ith 
location’s attribute value in descending sequence regardless of from which layer the value comes. In fact, this 
method is considered a proper method due to the broad range of combination operators which are provided by 
assigning the proper ordered weights (Malczewski, 2006). The actual class of the OWA function is defined 
based on the form of the order weights. Various techniques have been used to determine the weights. In this 
research the focus is on the maximum entropy approach. The approach that uses the measure of ORness as well 
as the dispersion measure. According to (Yager, 1988) ORness measure is described as: ORness = α = ∑ ୬ିିଵ୬ୀଵ 	 ܱ                                                                                                              (5) 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Nasim Yeganeh et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i6/191106100 Vol 11 No 6 Dec 2019-Jan 2020 121



The α value fluctuates between 0 to 1 and determines the level to that an OWA function, according to 
combination function, is same with the logical OR (MAX function). This measure is defined in the circumstance 
of decision-making well-established behavioural theory. Accordingly, ORness is used to measure the degree of 
the experts’ optimism (Yager, 1988). An ORness value between 0.5 to 1 indicates optimistic decision policies, 
while a range less than 0.5 represents pessimistic policies. For ORness equal to 0.5, the decision strategy is risk 
neutral. In fact, OWA is described by the means of the dispersion measure. Utilising Shannon’s entropy 
measure, the normalised dispersion is explained as: ω = −∑ ைೕ	୪୬ைೕ୪୬୬ୀଵ 	                                                                                                                            (6) 

The value of ω ranges between 0 to 1; while the higher the equitability between the weights, the dispersion 
measure is higher as well. The dispersion is explained as the grade to that the OWA functions utilised the data 
comprised in the n layers. The further dispersed the order weights, the further data is being utilised in layers 
combination (Malczewski, 2006). According to (O’Hagan, 1990), the application for recognising the order 
weight is developed employing the ORness degree and dispersion (entropy). Thus, a group of order weights is 
achieved using the nonlinear mathematical programming as follow: 

Maximise ω, 

Where α = ∑ ୬ିିଵ୬ୀଵ 	 ܱ, ∑ ܱ		୬ୀଵ = 1, 0 ≤ ܱ ≤ 1, for j=1,2,….,n.                                              (7) 

A measure to the issues (6) establishes the maximum dispersion degree (and trade-off) for a defined level of 
ORness or α (Malczewski, 2006). 

b. Study area 
Johor Bahru (JB) is the capital of Johor state situated at the southern part of Malaysia. This area is the greatest 
metropolitan area in Malaysia, second only to Kuala Lumpur. Johor Bahru has remarkable industrial and 
commercial areas, which makes the area significant in terms of economic development. Johor Bahru 
metropolitan area includes 220,000 hectares, 15% of which is urbanised with around 60% of land that is used 
for agriculture, while the rest covered by river basins and forests. Iskandar Malaysia has being developed on the 
basis of the Comprehensive Development Plan (CDP) in order to enhance the development of Johor Bahru 
(Rizzo & Glasson, 2012). Iskandar Malaysia’s population was 1.8 million in 2013 and it is estimated to 
accommodate 3 million inhabitants by 2025 (Http://www.irda.com.my/2015). 

 
Figure 2. Iskandar Malaysia Region. Source: IRDA. 
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While Malaysia, particularly Iskandar Malaysia, has not suffered natural hazards involving earthquakes, 
typhoons and volcano, floods have severely affected most of the residential areas (Kia et al. 2012). However, the 
vulnerability of facilities and infrastructure in this region has not been evaluated for current and future situations 
(Malalgoda et al. 2014; Khalid & Shazwani 2015). In addition, due to the increasing frequency of high impact 
natural disasters, the concept of risk mitigation and resilient development needs spatial consideration. Hence, 
urban resilience measures in Iskandar Malaysia are crucial to address the challenges caused by flood hazard. 
Figure 3 indicates the methodological framework to model the flood risk assessment in Iskandar Malaysia 
region. 

 
Figure 3. Structure of GIS-OWA model. 
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c. Criteria, indicators, and associated weights 
Conducting this research requires the criterion maps to be identified in standardised layer. According to 
(Malczewski 1999), three methods namely ranking, rating, and pairwise comparison, are used to assign weight 
to each criterion, the assigned weight must present the degree to which an expert is consenting to trade-off one 
criterion for another. As illustrated in Figure 3, based on the cj, which is known as criterion weight, the OWA 
incorporates the weights as well as the layers. The outcomes of standardised weighted layers are considered as 
the layer that is used in the OWA combination process. In the OWA process MAXness (ORness) indicator, α 
needs to be specified; the parameter is used as the material to the Solver – LINDO. The mathematical 
programming problem (Equation 6) is solved by using LINDO, it makes an OWA rule using a group of optimal 
order weights that correspond to the designated α parameter. 

OWA combines oj, cj, and aij, that are defined as order weights, criterion weights as well as the standardised 
criterion maps respectively, into a general value allocated to the location on the generated layer based on the 
OWA procedure (Figure 3). The developed layer presents values that have policy implications form 
environmental, economic, and social perspectives (Malczewski, 2006).  

Physical and social indicators constitute the main criteria in this study. For physical criterion, indicators 
associated with natural and built environment are extracted from literature (Gangrade et al. 2019; Fernández & 
Lutz 2010; Richert et al. 2011; Paquette & Lowry 2012; Jianfen et al. 2013). For social criterion, due to the lack 
of information only two indicators, population density and property value, were considered. Table 1 shows the 
indicators, their description and the attributes that explain the vulnerability. For assigning the priority to 
indicator, the fuzzy membership function in a GIS environment was adopted. The fuzzy set theory (L. a. Zadeh, 
1988; L. A. Zadeh, 1965) was utilised to standardization the indicators. Standardization is considered as a 
procedure which transfigures and rearranges the indicators and provides a basis for comparison (Gorsevski et 
al., 2012). Ten indicators are identified as significant factors that contribute to vulnerability. Based on the 
indicator’s level of contribution to vulnerability, they are divided into sub-indicators. For reclassifying the 
indicator and demonstrating the level of importance, a rank has to be allocated to each sub-indicator according 
to literature and expert idea. 

Table 1. Indicators for flood vulnerability assessment and their description 

Indicator  Description 

Distance from 
major stream 

Areas that are located adjacent to streams have a high risk of water overflow and water 
velocity. Based on the records, areas which are located near to these features are most 
affected by the consequences of flooding.  
The distance from major stream intervals that are used in this study is identified as: a) 
<1000 m, b) between 1000 and 2000 m, c) between 2000 and 5000 m, and d) >5000 m. 

Elevation 

Elevation and topography influence the flow direction, size, and severity of floods 
(Hartnett & Nash 2017; Fernández & Lutz 2010; Kia et al. 2012; Azmeri et al. 2016). 
During the flood in 2006 and 2007 within the study area, the recorded level of water 
was around 5 meters. Thus, areas with elevation below 5 meters are considered to have 
the highest flood vulnerability (Jianfen et al. 2013b; Paquette & Lowry 2012; Azmeri 
et al. 2016; Mohamed & El-raey, 2019).  
Three classes of elevation intervals generated from the Digital Elevation Model 
(DEM) using a digital contour map: a) 1 to 5 meters, b) 5 to 10 meters, and c) > 10 
meters. 

Slope (in terms 
of water 
velocity) 

Amount and velocity of flooding are affected by slope. Improper use of slope will have 
adverse effects and increases losses (Fernández & Lutz 2010; Kia et al. 2012; 
Azmeriet al. 2016; Mohamed & El-raey, 2019).  
). The slope map is generated using the DEM, and it is classified into eight classes of 
degree, with steeper slopes causing quicker and more hazardous flow (Fernández & 
Lutz 2010; Kia et al. 2012):  
0-3, 3-5, 5-10, 10-15, 15-20, 20-30, 30-40, 40-50 and > 50. 

Land use 
Types of land use influence the vulnerability. Impervious surfaces change the natural 
flow that can affect the risk and peak discharge (Fernández & Lutz 2010; Paquette & 
Lowry 2012; Jianfen et al. 2013; Kia et al. 2012; Gangrade et al., 2019).  

Geology 

Flood occurrence relates to geological subsoil both in terms of erodability and 
permeability. Geology has a noticeable influence on drainage capacity (Paquette & 
Lowry 2012; Jianfen et al. 2013; Kia et al. 2012; Richert et al. 2011; Mohamed & El-
raey, 2019) 
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Distance from 
river 

The distance from rivers is recognised as factor that influences vulnerability (Paquette 
& Lowry, 2012a; Wardekker, de Jong, Knoop, & van der Sluijs, 2010). Distance 
intervals from rivers are identified as: a) <100 m, b) between 100 and 500 m, c) 
between 500 and 1500 m, and d) >1500 m. 

Slope (in terms 
of lag time) 

Water remains in flat areas for longer time thereby causing more damage (Fernández 
& Lutz 2010; Kia et al. 2012; Mohamed & El-raey, 2019).  

Distance from 
discharge 
channel 

Areas that are located around discharge channels can be affected during disasters time 
(Fernández & Lutz 2010; Kia et al. 2012). 
The values that are adjusted to distances from discharge channels for this study are 
<100, between 100 and 500, between 500 and 1000, and >1000 meters (Fernández & 
Lutz 2010; Jianfen et al. 2013).  

Population 
density 

Population density indicates the areas with people and asset concentration. Areas with 
higher density  are more vulnerable to flooding (Brenkert, 2010; Chang, Chang, & 
Chang, 2008; Paquette & Lowry, 2012a; Röthlisberger et al., 2017; Gangrade et al., 
2019). 

Property value 
Flood occurrence influence different parts of the society such as infrastructure and 
properties (Kubal, Haase, Meyer, & Scheuer, 2009; Mendoza-tinoco et al., 2017). As 
such, the higher the property value, the higher the vulnerability to floods. 

A fuzzy membership type for each criterion has to be established to allocate the level of vulnerability and 
standardise each criterion map. Fuzzy membership type has to be chosen according to data characteristics and 
the ways that the data contributes to flood vulnerability. Three classes involving Fuzzy Mean-Standard-
Deviation Small (MS Small), Fuzzy Small, and Fuzzy Large, are utilised for assigning weightage to each 
criterion layer. When very small values in a criterion layer have a greater possibility of occurrence, Fuzzy MS 
Small is utilised. Fuzzy Large is used when larger values present a greater probability of becoming part of the 
data set while Fuzzy Small is used for smaller values. The operation of the fuzzy technique presents a principal 
for classifying the criteria along a scale of 0 to 1. The values allocated to 0 pose no probability, while locations 
assigned a value of 1 present the highest probability of flood vulnerability.  

Table 2 lists the indicators, fuzzy membership types and the linked weights that are utilised to generate the flood 
vulnerability scenarios in an Arc GIS 10.0 environment. 

Table 2. Priorities of the indicators, assigned weights, and fuzzy functions. 

Criteria  Criterion Weight  Fuzzy Function 

Distance from main stream 16 Small 

Elevation 14 MS small 

Land use 13 Small 

Slope (in terms of water velocity) 12 Small 

Geology 11 Small 

Land value 10 Large 

Population density 8 Large 

Distance from river 7 Small 

Slope (in terms of lag time) 5 Large 

Distance from discharge channel 4 Small 

The total weight assigned to the indicators is equal to 100. Distance from a major stream is recognised as the 
most significant indicator (DREF Bulletin 2007; Kia et al. 2012; Fernández & Lutz 2010; Yeganeh & Sabri 
2014; Khalid & Shazwani 2015; Ahmadisharaf et al. 2016).  

The function of fuzzy is determined based on the description of each indicator in Table 1. A ranking method 
according to the previous studies and expert knowledge to identify the weightage of each indicator is also used 
(Yeganeh & Sabri 2014; Kia et al. 2012; Fernández & Lutz 2010; Lawal et al. 2014; Musungu et al. 2012; Levy 
et al. 2007; Ahmadisharaf et al. 2016). Table 2 shows the weights and fuzzy functions assigned to each 
indicator. 

The order weights were assigned to generate the model according to the parameter α (ORness). Table 3 indicates 
the ordered weights (On) that are generated in this study. 
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Table 3. The order weights for selected values of the ORness (α). 

            α 
 
Ordered Weight 

 
0 

 
0.1 

 
0.3 

 
0.5 

 
0.7 

 
0.9 

 
1 

O1 0.000 0.001 0.027 0.100 0.234 0.525 1.000 

O2 0.000 0.001 0.035 0.100 0.184 0.250 0.000 

O3 0.000 0.003 0.044 0.100 0.145 0.119 0.000 

O4 0.000 0.006 0.056 0.100 0.114 0.056 0.000 

O5 0.000 0.013 0.071 0.100 0.090 0.027 0.000 

O6 0.000 0.027 0.090 0.100 0.071 0.013 0.000 

O7 0.000 0.056 0.114 0.100 0.056 0.006 0.000 

O8 0.000 0.119 0.145 0.100 0.044 0.003 0.000 

O9 0.000 0.250 0.184 0.100 0.035 0.001 0.000 

O10 1.000 0.525 0.234 0.100 0.027 0.001 0.000 

Dispersion 0.000 0.571 0.911 1.000 0.911 0.571 0.000 

IV. Results and discussion 

The purpose of conducting OWA approach is to recognise and prioritise areas with higher flood risk and 
vulnerability within Iskandar Malaysia. The analysis aims to generate several decision alternatives based on the 
experts’ judgements with different levels of optimism. The goal is obtained utilising different ORness or α value 
that leads the users to generate pessimistic to optimistic strategies. Each generated policy is linked with α value 
and the dispersion measure (trade-off) among evaluation criteria. In fact, the α value offers continues range of 
pessimistic to optimistic policies to the experts (Malczewski, 2006). 

Figures 4, 5, and 6 indicate seven decision alternatives; each created based on an α value (ORness or degree of 
optimism) and the dispersion (or trade-off) among evaluation criteria. The generated alternative, based on α=0, 
develops a risk averse solution and demonstrates a highly pessimistic strategy. In this strategy, degree of trade-
off (dispersion) is equal to 0. This insinuates that there is no trade-off between the criteria so it is associated with 
AND Boolean operators. When a probabilistic perspective is used, it means the worst scenario is defined by 
assigning 1 as the relevant possibility. The generated map demonstrating  α value of 0 is allocated to each 
location in the region, meaning that at minimum, one criterion with 0 value exists at each location. This strategy 
indicates in the greatest pessimistic situation, all the locations within the region are vulnerable so no action 
should be taken. For instance, when the α value is equal to 0, due to the criterion with 0 value at each location 
all the locations within the Iskandar region have high level of vulnerability. Increasing α value from 0 to 0.1, 
0.3, and 0.5 is in-line with increasing the degree of optimism and trade-off between evaluation criteria. By 
increasing the α value, areas with higher vulnerability can be determined easily and the larger areas can be 
considered for development. Most of the districts within the region have high level of vulnerability while α 
value denotes pessimistic strategies. By increasing the level of optimism southern districts Tebrau, Plenton, JB, 
and Pulai still have high level of vulnerability (Figure 4, α = 0.1, 0.3, and 0.5). 
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Figure 4. Decision strategies for Iskandar Malaysia (α values show the Pessimistic to Neutral Alternative). 

The strategy map that evaluates vulnerability with an α = 0.5 indicates neutral approach. As such, it is expected 
that the outcome map where α = 0.5 being similar to the result of WLC that was generated in other studies for 
the same region (Yeganeh & Sabri, 2014) (Figure 5). 

 
Figure 5. Comparison of WLC and OWA (α=0.5). 

Increasing the α value from 0.5 to 1 enhances the level of optimism and decreases the trade-off level between 
criteria. This set of ordered weight generates larger areas with less vulnerability as can be seen in Figure 6.  
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Figure 6. Decision strategies for Iskandar Malaysia (Neutral to Optimistic alternatives). 

Figure 7 illustrates the locations in the region that were influenced by the recent floods. The comparison of 
results from optimistic and pessimistic strategies that were obtained from OWA model, and real flood situations 
indicates that pessimistic strategies (α= 0.1 and 0.3) highlight the areas that are influenced by previous floods 
with higher probability values (>69%). However, in optimistic strategies (α= 0.7, 0.9, and 1), areas that were 
previously affected by floods considered as moderate to low risk with probability values of 11% to 55%. This 
proves the validity of the range of pessimistic strategies generated in this study. In the most pessimistic strategy, 
the entire region is considered to be vulnerable with the highest level of vulnerability. However, the possibility 
of flood occurrence in areas such as Sedenak, Sungai Tiram and Plentong is low according to real flood 
occurrence records. On the other hand, based on optimistic strategy (α =1), in most of the areas in the region 
except the areas that are located near to the river, are considered to have low level of flood risk some areas have 
been affected by flood (Figure 7). In optimistic views, areas in close proximity to the river are still considered to 
be vulnerable (the map in figure 6 indicates a possibility of 40% of risk). Thus, these areas need attention in 
terms of development plans, land use regulation, and human activities, specifically when it comes to further 
development. Surprisingly, the flooded area around Ramsar Site annotated in Figure 7 is not highlighted as 
significantly vulnerable in the OWA maps generated. A possible reason for that is the impact of other criteria 
such as population density, property value, and land use. In fact, in the absence of above mentioned criteria in 
Ramsar Site due to the environmental conservation, flood vulnerability in this site has been less affected as 
compared to others. 
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Figure 7. Flooded area within the Iskandar Malaysia in 2012. Source: (Yeganeh & Sabri, 2014). 

In conclusion, from the results illustrated in Figures 4, 5, and 6, the maps with α values between 0.3 and 0.7 
were selected for further discussion. These maps are able to better explain the vulnerability of the area in the 
range of optimistic and pessimistic strategies. 

Evaluating the risk of flood disaster based on current developments within the region according to pessimistic 
strategy (α=0.3) indicates that almost all built up areas with high population density are considered as high 
vulnerability. These areas are more vulnerable because the value of property is higher than the northern parts 
(Kubal et al. 2009). This is the reason for the intensity of probability values, which are above 76% in areas 
around Johor Bahru (JB), where is the urban centre with higher population density and more built up areas. In 
the northern parts, where the land use is mostly forest or used for agriculture (Figure 2), there is comparatively 
less vulnerability; the probability of vulnerability between 50% and 70%, except where the mainstreams and 
rivers exist, thus confirming the argument of Paquette and Lowry (2012) that these types of land use will reduce 
the risk of flood hazard. Tebrau River, that is situated at the Eastern parts of the Iskanda Malaysia, has an 
obvious impact on the level of vulnerability, which is higher, as can be seen in this map (Figure 4). 

The impact of built up areas can be observed in the map generated with an α value of 0.5. The probability values 
are higher than 70% around road networks and urbanised areas. These built up areas will decrease permeability, 
resulting in higher flood risk (Kia et al. 2012; Richert et al. 2011). Although less pessimistic, this map highlights 
the most vulnerable areas around places with high population density and rivers in the region such as JB CBD, 
Kulai, Ulu Tiram, Skudai River, and Tebrau River (Figure 4). 

The results obtained from an optimistic map (α=0.7) also indicate the flood vulnerability in urbanised areas as 
well as settlements in close proximity to the rivers and water bodies, although with moderate level of 
significance (Paquette & Lowry 2012; Jianfen et al. 2013; Kia et al. 2012) (Figure 7). As expected, comparing 
the land uses in Figure 2 and the results of OWA generated maps (Figures 4, 5, and 6) indicate that the 
combination of settlement and infrastructure developments near to rivers such as Tebrau and Skudai, increases 
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the level of risk and the vulnerability. The generated maps also indicate that, the impact of other physical criteria 
such as elevation, slope (water velocity and time), distance to discharge channel and geology will be more 
significant when combined with population density and built up areas around the main stream and rivers. Hence, 
it is imperative that a reasonable distance from water bodies and main streams to the areas with higher 
population densities and built up areas will reduce the vulnerability and needs to be considered in future 
developments.  

Iskandar Malaysia is one of the vulnerable areas due to flood hazards associated with its location, population 
density and development. In this study we evaluated the proposed development plan of Iskandar Malaysia for 
2025 (Figure 8) using the optimistic and pessimistic strategies to highlight the most vulnerable and resilient 
areas of Iskandar Malaysia for the next 8 years. Apparently, assessing flood hazard according to WLC ignores 
the uncertainty of future risks. Thus, generating several scenarios that may affect the region should be noted as 
crucial matter for developing a resilient region. In general, the comprehensive plan suggested that during 2011 
and 2025 the proportion of built up areas including road networks, residential, commercial, and industrial land 
uses will increase from 45% up to 78%. Accordingly, the proportion of non-built up areas will decrease from 
55% to 23%. One of the major land use changes is agricultural that will be replaced by residential, commercial 
and industrial land uses. This land use change will cause changes in hydrological cycle as a result of more 
impervious surfaces (Paquette & Lowry 2012; Jianfen et al. 2013; Kia et al. 2012; Richert et al. 2011).  

 
Figure 8. Proposed development plan of Iskandar Malaysia 2025. 
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To be specific, based on the proposed plan, in Pulai and Tebrau districts, most of the agricultural lands are 
considered to be converted to residential and commercial land uses, where distance to rivers and main streams is 
still a remaining as a remarkable issue. According to the pessimistic strategy α=0.3 (Figure 9), these districts 
will have higher levels of vulnerability. It means that by replacing agriculture land with residential and 
commercial land uses, particularly in areas close to Tebrau and Skudai rivers, there will be more infrastructure 
development, higher population density, with a rise in property values. All things considered, the future plan 
with suggested changes will increase vulnerability to flood in these districts.  

The result of the pessimistic strategy is confirmed with the optimistic map as well. The evaluation of the 
proposed plan for 2025 according to the optimistic strategy (α=0.7) demonstrated that Pulai and Tebrau districts 
are among the higher vulnerable areas, with an increased probability for developments or built up areas (55%-
72%) adjacent to main streams and rivers (Figure 10). It is evident that less vulnerability can be assumed in the 
northern part of Tebrau which is dominated by agricultural land uses. The impact of changing agriculture land to 
residential and commercial is very significant because it reduces the resilience of future developments in 
Iskandar Malaysia. 

 
Figure 9. Pessimistic strategy. 

Figure 10. Optimistic strategy. 

V. Conclusion 

This research set to explore the adoption of a linguistically aggregated method, called parameterised-OWA 
approach as a basis for incorporating GIS and multi-criteria decision analysis to assess current and future 
development. The research evaluated the flood risk and vulnerability of Iskandar Malayisa. This study has also 
determined the criteria that influenced the vulnerability for flood in same area. 

The research found that environmental, social, and economic criteria influenced the level of flood risk, 
vulnerability, and the resilience within the region. The combination of settlements and infrastructure 
developments near to rivers increased the level of vulnerability and the impact of other physical criteria. Despite 
the evidence of severe flooding around the mangrove areas in the Iskandar Malaysia, the urbanised regions are 
more vulnerable to flooding due to increasing infrastructure, higher population density and higher property 
value. The validity of findings in the study was confirmed by evaluating several criteria, including social and 
physical constructs in a range of pessimistic and optimistic strategies. As such, this research ascertained the 
effectiveness of coupling the multi-criteria evaluation and OWA in a GIS environment to assess the various 
criteria associated with flood risk, vulnerability and urban resilience. The parameterised-OWA method provided 
a basis to generate various decision strategies to be assessed in order to help urban planners and decision makers 
understand the impact of their decisions based on risk and trade-off scenarios. The obtained results indicate that 
the adopted methodological approach is useful in demonstrating a range of strategies that can generate 
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differences of geographical locations for a better decision making process. This contrasts conventional methods 
that came up with a single optimal result.  

In terms of policy implications, information obtained from Iskandar Regional Development Authority (IRDA) 
indicates that by 2025 the population will increase from 1.8 to 3 million. This in turn will lead to a higher 
population density as well as intensification of assets, properties and infrastructure within the region. The results 
of this study indicated that changes in vegetated land uses, increasing impervious surfaces as well as higher 
population density, especially in close proximity to rivers and water streams not only increases the flood risk 
and vulnerability of residents in this area, but also influences the level of resilience within the region. Thus, 
revisiting the development types, locations and critical measures to increase the level of resilience in Iskandar 
Malaysia are likely to be crucial strategies for future development. 

Ultimately, the results of this study could have been improved if more data with detailed information and in 
higher resolution was accessible. Availability of information such as building type (e.g. single story, double 
story, and apartment), building footprint, age, and materials, and also socio-economic conditions (e.g. family 
size, and age cohorts) could further enhance our understanding on the level of flood vulnerability in the study 
area. Further research needs to be conducted to incorporate the results of each scenario in a simulation model to 
indicate the temporal and spatial impact of pessimistic and optimistic strategies. 
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