
Increasing Cryptography Security using
Hash-based Message Authentication Code

Seyyed Mehdi Mousavi*1, Dr.Mohammad Hossein Shakour 2

1-Department of Computer Engineering, Shiraz Branch, Islamic AzadUniversity, Shiraz, Iran .
Email : lord456@gmail.com

2-Assistant Professor, Department of Computer Engineering, Shiraz Branch, Islamic Azad
University , Shiraz , Iran

Abstract

Nowadays, with the fast growth of information and communication technologies (ICTs) and the vulnerabilities
threatening human societies, protecting and maintaining information is critical, and much attention should be
paid to it. In the cryptography using hash-based message authentication code (HMAC), one can ensure the
authenticity of a message.

Using a cryptography key and a hash function, HMAC creates the message authentication code and adds it to
the end of the message supposed to be sent to the recipient. If the recipient of the message code is the same as
message authentication code, the packet will be confirmed. The study introduced a complementary function
called X-HMAC by examining HMAC structure. This function uses two cryptography keys derived from the
dedicated cryptography key of each packet and the dedicated cryptography key of each packet derived from the
main X-HMAC cryptography key. In two phases, it hashes message bits and HMAC using bit Swapp and
rotation to left. The results show that X-HMAC function can be a strong barrier against data identification and
HMAC against the attacker, so that it cannot attack it easily by identifying the blocks and using HMAC
weakness.

Keywords: Cryptographic Security, Message Authentication Code, Expanded Hashing, HMAC, X-HMAC

1. Introduction

Nowadays, with the advancement of computers and the speed of sending data on the network, a lot of
information is sent and received from a unit of time. Thus, given the necessity of information security in the
network and, on the other hand, the necessity of speed in the exchange of information is one of the future needs
of a two-way parallel cryptography algorithm for cryptography and decryption of bulk information. In the
cryptography using HMAC, one can ensure the authenticity and reliability of a message. HMAC creates the
message authentication code using a cryptography key and a hash function and adds it to the end of message to
be sent to the recipient. If the message authentication code is identical to the message on the recipient's side, the
packet is verified. Nowadays, HMAC is widely used in popular security protocols such as Ip-Sec, Transport
Layer Security (TLS), and Secure Sockets Layer (SSL).

Given the conducted studies, some attacks have been made on HMAC in recent years, which could compromise
the security of this widely used function [1, 2, 3, 4]. However, the attacks made were mostly due to the
weakness in cryptography key used. In this function, the weakness is in the hashing function used in HMAC. In
recent years, some studies have been conducted securing the key or using more secure hash functions, but
unfortunately, it could not show the required efficiency and provide security [5, 6].

As stated, in the sent packet, the message and HMAC parts are recognizable in the packet. Using this feature,
the attacker can make attacks like birthday attack and a quick attack or collision attack and can access the
cryptography key. Moreover, by achieving cryptography key, manipulating the messages, and making HMAC
using the available cryptography key, it sends the message towards the receiver, and the recipient does not
notice the attack and confirms the message.

The advancement of cryptographyhas caused the emergence of different analysis methods, so that the encryption
systems are intermittently broken. As all the experts in the field state that the security is never a hundred
percent, but one can increase it in the network and other areas such as software by providing new security
methods.

In this study, a complementary function called Extended HMAC (X-HMAC) is introduced by examining the
structure, which uses two cryptography keys derived from the dedicated secret key of each packet and the
dedicated cryptography key of each packet derived from the main X-HMAC key. In two phases of message bits

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Seyyed Mehdi Mousavi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i4/191104086 Vol 11 No 4 Aug-Sep 2019 1046

and HMAC, it hashes by bit-turning and left-turning, which creates a strong barrier against the attacker in access
to the well-formed structure and increases security of HMAC against these attacks.

2. Literature Review

Lee et al. (2017) conducted a study entitled “Analysis of coping with bit-flipping attacks on LoRaWAN
Networks.” The paper tries to use hashing algorithm of block-data bits to repel bit-flipping attacks. According to
the results of this study, one can understand that the above method can be used to improve the security of data
transmission and to cope with bit-flipping attacks [7]. Joe et al. (2015) presented a study entitled “Analysis of
first-order attacks on HMAC.” Given the identification of PIA and MAC blocks, the author has analyzed the
possible attacks on HMAC [2]. Momeni and Taheri (2016) presented a study entitled “Time analysis attack on
stream cipher algorithm.” In this paper, the vulnerability of a word-based stream cipher algorithm was examined
from time-attack analysis point of view. By modifying this function and fixing the number of LFSR function
clocks used, this attack could somehow be prevented [8].

Mahjan and Masih (2015) conducted a study entitled “Parallel Processing of BlowFish Algorithm.” In this
study, the algorithm was explained and using CUDA, a part of this algorithm can be implemented in CPU and
multiplied by theimplementation of speed [9]. Ayr et al. (2016) presented a hybrid model (symmetric and
asymmetric) and could increase the data cryptography security using the proposed algorithm [10]. Thomas
Perine and Lee Wong (2014) examined the likelihood of attacks like birthday attacks and brute-force. In both of
them, attacks are doneas MAC bits and the message is specified in HMAC algorithm [11].

Dinor and Larent (2017) presented a study entitled “Improving public attacks against HMACs and HAIFA.” In
this study, the main reason for the weakness of these two algorithms is mainly the hash function used; the
shorter the hash function length, the hash function used has more security weakness [12]. Geo and Print (2014)
stated two successful attacks against HMAC and NMAC, in which the second type of attacks even the length of
the key used long ago, could not affect. Then by providing a new approach, they could prevent such attacks
[13].

Jeong et al. (2013) showed that the recovery of HMAC / NMAC passwords is possible. Using their proposed
algorithm, which slows down HMAC/NMAC process a bit, the authors of the paper could improve the
cryptography key and enhance the security in the above algorithms [3]. Concini et al. (2006) considered HMAC
and NMAC security research to use the hash function and collision functions hash SHA-0 and SHA-1, and MD4
and MD5 to recover keys in HMAC and NMAC [5].

Navi and Akram (2011) given the low security of MD5-SHA1 hash algorithms and vulnerability against attacks
such as birthday attack and authors, present a solution to increase HMAC using random key generation using
MD6 and its use in HMAC [6]. Satiov (2012) studied the Flame virus analysis [14].

Najjar et al. (2006) did a study entitled “Dynamic HMAC Function.” In this study, the researchers believe that
using IV and dynamizing Outer pad (Opad) and Inner Pad (Ipad) can reduce attacks on HMAC, and the
introduced algorithm can be a replacement for HMAC [15].

3. Proposed method

Given studies and surveys, the most significant cause of attacks to HMAC is the identification of the message
packet and the HMAC. In the proposed method, we call X-HMAC, using a two-phase algorithm, whose first
phase relates to bit Swapp of packet message, and the HMAC using RAM key, and in the second phase, the
rotate packet is hashed using another cryptography key, can prevent the message packet and the Mac from
detecting, and the attacker cannot detect and attack the message area and HMAC. At the end of the packet, the
hashed message can be sent towards the receiver via one or more packets using the proposed algorithm. Using
XHMAC cryptography key, the receiver is able to separate the message and the HMAC, and then, can examine
the authenticity of the message using HMAC, and if the message is cryptography, after decoding the message
after authentication, it decrypts the decryption key.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Seyyed Mehdi Mousavi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i4/191104086 Vol 11 No 4 Aug-Sep 2019 1047

X-HMAC ALGORITHM

General_Key

Initialize Vector

Key_Generator

Key_1
(Swapp Data Bits)

Key_2
(Number of Rotate

Data Bits)

Phase_1
(Swapping)

Phase_2
(Rotate To Left)

Input
(Data After Addition HMAC)

Output
(Swapped & Rotated Data By Keys)

Figure 1: Extended HMAC pseudo-algorithm

1. First cryptography key

The first cryptography key algorithm is as follows:

The firstcryptography key is a key to the packet length (including HMAC and the message), using the HMAC-
SHA256 approved by National Institute of Standards and Technology (NIST) organization.

In fact, this cryptography key determines which of the packet bits should be swapped. If

 (1) xor (key (i), key (i + _rightbyte))

Equal to one, the swapping takes place between the bits in the first phase.

*rightbyte: specifies the middle of the key (in fact, the same is KeyLength / 2).

2. The secondcryptography key

This key is obtained using the firstcryptography key, and includes an integer, actually determines the number of
turns to the left or right of the packet bits.

The algorithm to this key is as follows:

publicstring KeyGenarator(string IV, string XHMACSecret,int Xhmaclength)
 {

general GENERAL = newgeneral();
var xhash = newHMACSHA512(Encoding.ASCII.GetBytes(XHMACSecret));

byte[] _xhmac = xhash.ComputeHash(Encoding.UTF8.GetBytes(IV));
byte[] bar = newbyte[Xhmaclength];

Array.Copy(_xhmac, 3, bar, 0, Xhmaclength);
return GENERAL.ToBinary(bar);

 }

publicint Key2(string key, int dataLength)
 { returnConvert.ToInt32(key.Substring(Convert.ToInt32(key.Substring(

dataLength / 3, 8), 2) % dataLength, 8), 2) % dataLength;
 }

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Seyyed Mehdi Mousavi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i4/191104086 Vol 11 No 4 Aug-Sep 2019 1048

The second cryptography key acts like this:

It calculates the correct value of the dataLength / 3 byte and obtains its residual to dataLength. Then, 8 bytes of
the key is taken as that much and converted to integer; then, its remainder is calculated on the dataLength and
the integer obtained determines the rotation to the right or left.

3. The first phase of cryptography

In the first phaseof cryptography, using the firstcryptography key explained above, it is determined whether i-bit
and dataLength + I should be swapped or not.

The algorithm is as follows:

4. The second phase of cryptography

In this phase, rotation is done to the left equal to the number of secondcryptography key described in
(secondcryptography key)the algorithm is as follows:

5. The first decoding phase

As this phase is almost the same as the second phase of cryptography, it is possible to integrate the second phase
cryptography function and the second decoding phase function and reduce the spatial complexity of X-HMAC
algorithm. Here, for a greater clarity of this phase, we have prevented this.

The second phase algorithm is as follows:

publicbyte[] Swap(byte[] data, string key)

 {
int i;

int _dataLength = data.Length;
int _rightbyte = _dataLength / 2;

Parallel.For(0, i = (_rightbyte - 1), ctr =>//phase 1(swap phase)
 {

if (xor(Convert.ToBoolean(Convert.ToInt16(key.Substring(i, 1))),
Convert.ToBoolean(Convert.ToInt16(key.Substring(i + _rightbyte, 1)))))

 {
if (data[i] != data[i + _rightbyte])

 SwapBytes(data[i], data[i + _rightbyte]);
 }

 });return data;

 }

publicbyte[] RotateLeft(byte[] data, int key) //phase 2:RotateLeft
 {

int _datalength = data.Length;
byte[] data1 = newbyte[_datalength ‐ key];

byte[] data2 = newbyte[key];
 data1 = data.Skip(key).Take(_datalength ‐ key).ToArray();

 data2 = data.Take(key).ToArray();
Array.Copy(data1, data, data1.Length);

Array.Copy(data2, 0, data, data1.Length, data2.Length);
return data; }

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Seyyed Mehdi Mousavi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i4/191104086 Vol 11 No 4 Aug-Sep 2019 1049

6. Second decoding phase

This phase is the same as the first cryptography phase and is decrypted using the first phase algorithm.

4. Results

It should be noted that the proposed two-phase X-HMAC algorithm is a step in increasing the security of the
HMAC, and it alone cannot provide the cryptography security of information. In other words, X-HMAC
algorithm is not a cryptography algorithm.

1. Examining the security of extended HMAC

No definitive security is possible in an algorithm, but solutions can be made to increase the security by
identifying the problems and deficiencies of an algorithm. In this part, using the Cryptool software, we will
implement a series of valid NIST tests and examine the results.

1.1. Birthday collision tests

For using 16-bit AES cryptography algorithm and HMAC-SHA256, 32-bit length, the length of the X-HMAC
will be forty-eight bits (384 bits). The resistance and the hash needed for a successful attack to X-HMAC
cryptography algorithm are calculated as shown in the following table.

Table 1: Birthdays collision

length
of

hex
string

#bits hash
space
size

(2#bits)

Number of hashed elements such that (probability of at least one hash collision) =
p

p =
10−18

p =
10−15

p =
10−12

p =
10−9

p =
10−6

p =
0.1%

p =
1%

p =
25%

p =
50%

p =
75%

8 32 4 × 3 ×
109

2 2 2 2.9 93 2.9 ×
103

9.3 ×
103

5. 0
×
104

7.7 ×
104

1. 1
×
105

16 64 1.8 ×
1019

6. 1 1.9 ×
102

6,1 ×
103

1.9 ×
105

6. 1
×
106

1.9 ×
108

6. 1
×
108

3 .3
×
109

5. 1
×
109

7.2 ×
109

32 128 3, 4 ×
1038

2.6 ×
1010

8.2 ×
1011

2.6 ×
1013

8.2 ×
1014

2.6 ×
1016

8.3 ×
1017

2.6 ×
1018

1. 4
×
1019

2. 2
×
1019

3. 1
×
1019

64 256 1.2 ×
1077

4.8 ×
1029

1.5 ×
1031

4.8 ×
1032

1.5 x
1034

4.8 ×
1035

1.5 ×
1037

4.8 ×
1037

2.6 ×
1038

4. 0
×
1038

5.7 ×
1038

(96) (384) (3.9 x
10115)

8.9 ×
1048

2.8 ×
1050

8.9 ×
1051

2.8 ×
1053

8.9 x
1054

2.8 ×
1056

8.9 x
1056

4.8 ×
1057

7.4 ×
1057

1. 0
×
1058

128 512 1. 3 ×
10154

1.6 x
1068

2.5 ×
1069

1.6 x
1071

5x2
×
1072

1.6 x
1074

5. 2 ×
1075

1.6 x
1076

8.8 ×
1076

1 × 4
×
1077

1.9 ×

publicbyte[] RotateRight(byte[] data, int key) //phase 1:RotateRight
 {

int _datalength = data.Length;
byte[] data1 = newbyte[key‐1];

byte[] data2 = newbyte[_datalength ‐ key + 1];
 data1 = data.Skip(_datalength‐key).Take(key).ToArray();

 data2 = data.Take(_datalength ‐ key).ToArray();
Array.Copy(data1, data, data1.Length);

Array.Copy(data2, 0, data, data1.Length, data2.Length);
return data;

 }

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Seyyed Mehdi Mousavi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i4/191104086 Vol 11 No 4 Aug-Sep 2019 1050

In fact, we have calculated this resistance for the hash function used in HMAC, but given the use of key by
HMAC, one can conclude that HMAC resistance to the birthday attack is greater than the hash function used.

2.1. Frequency analysis test

In this section, the result of one of the thousands of frequency analysis tests of a 128-bit string where initially
encrypted by AES cryptography algorithm and then the authenticity of the message is added by HMAC by X-
HMAC algorithm, is examined.

String before cryptography:

“aaaaaaaaaaaaaaa”

AES cryptography string (key: “1”):

“oklrUkBhTjItm5HFv2tAaw” ==

Strings obtained after applying HMAC (key: “1”):

“oklrUkBhTjItm5HFv2tAa5Z6lpGahA0vPPpWJ01hFawr5DnQzbeAp3C / xXNp985w”

Strings obtained after applying X-HMAC (key: “1”):

“KcZFs3I4t + 1oDXLPUtIzUIGl559KxOmsIrWFfIc6GbbwFO4X + K5tPvnOFEktakgM”

Frequency Analysis Test by Cryptool:

Figure 2: An example of frequency analysis on extended HMAC

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Seyyed Mehdi Mousavi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i4/191104086 Vol 11 No 4 Aug-Sep 2019 1051

The result of the frequency analysis test by Cryptool:

Figure 3: The result of an example of frequency analysis on extended HMAC

3.1. Test of data randomness

HMAC algorithm is safe against this test, and using Poker-Tests presents the test result of one of the thousands
cases here.

String before cryptography:

“0123456789”

AES cryptography string (key: “1”):

“tIESavsn0Q0Jmpynfn80MA ==“

Strings obtained after applying HMAC (key: “1”):

“tIESavsn0Q0Jmpynfn80MGtC6kP4 / tlgPUKJNgx + 2mzGY9BaVCCJDkURH4tM7gFL”

Strings obtained after applying X-HMAC (key: “1”):

“+ iGhM1OU78 / mhg1oXUh / H9ssB6hRJsGP202YzHoLSoQRIciiI / FpncApdpAiTV9k”

The result of the poker test at 0.5 level is given in the figure below (this test is done by Cryptool).

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Seyyed Mehdi Mousavi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i4/191104086 Vol 11 No 4 Aug-Sep 2019 1052

Figure 4: The result of an example of poker test on extended HMAC

4.1. Collision test

In X-HMAC algorithm, as the output length depends on the length of HMAC and DATA, we will have:

ିுெ݊݁ܮ ൌ ௧݊݁ܮ ுெ (2)݊݁ܮ

One can conclude that the proposed algorithm can increase the security against a collision attack, and this
increase is more than HMAC security against collision, as HMAC-SHA256 algorithm is ultimately 256 bits
long. However, using the same HMAC for example X-HMAC, we will have 128-bit data:

ିுெ݊݁ܮ ൌ ௧݊݁ܮ ுெ = 128 b + 256 b = 384 b (3)݊݁ܮ

5.1. Brute-force test

The number of brute-force attacks, if all output fields are exclusive to the hash function, it is calculated by the
following formula:

(4) Number Of Brute_Force_Attack = 2

In the previous form, *n is the number of output bits of a hash algorithm.

Number of search states to attack the hash algorithm HMAC-SHA512 (data length: 128 bits):

(5) 2512

Number of search states to attack hash algorithm X-HMAC-SHA512 (data length: 128 bit):

(6) 2ହଵଶାଵଶ଼

X-HMAC algorithm for a 128-bit string can increase security by 2640 times.

6.1. Test of avalanche effect

An avalanche test for a string is calculated using the Hamiltonian distance from the following equation.

Avalanche (i) =Hamming Distance (Hi ,Hj)(7)

Average Avalanche ൌ
ଵ

 Avalanche ሺiሻ

ୀଵ
(8)

The results of the avalanche test are summarized in the following table with the implementation of C-Sharp
environment.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Seyyed Mehdi Mousavi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i4/191104086 Vol 11 No 4 Aug-Sep 2019 1053

Table 2: The result of a sample of an avalanche test on the extendedHMAC

Row The range of
implementation of
test algorithm the d

X-HMAC key
status

Input status status IV Test result of
avalanche

test(%)

1 0-1000 Variable (0-1000) Fixed (input: 1) Fixed
(abcdefghijklm0001)

92.20

2 4000-5000 Variable (4000-
5000)

Fixed (input: 1) Fixed
(abcdefghijklm0001)

91.12

3 3000-4000 Variable (3000-
4000)

Fixed (input: 1) Fixed
(abcdefghijklm0001)

91.33

4 8000-9000 Variable (8000-
9000)

Fixed (input: 1) Fixed
(abcdefghijklm0001)

93.04

5 0-1000 Random (88 bit) Random (88
bit)

Random (string +
number)

91.94

The higher the percentage of the avalanche test, the safer the algorithm will be. For instance, in the first row of
this test, it is shown that on average for a 1000 range, with IV constant and input text, 92.20% of the input string
has changed and this is very suitable for a cryptography algorithm. If this result is less than 80%, the algorithm
is obsolete and unusable and over 90% shows an appropriate algorithm for the avalanche test.

2. Security of key cryptography

In our X-HMAC algorithm, we obtained a dedicated key with a length of 512 bits using the HMAC algorithm
and the inclusion of the IV and the main X-HMAC key. The keys 1 and 2, used in the algorithm to determine
Swapp and rotation of the bits, are derived from the dedicated key. It is obvious that if the keys derived or
dedicated key of X-HMAC algorithm is disclosed using attacks like knowing the non-cryptographytext, the
attacker cannot access the original key and cannot attack other data blocks through the dedicated key and break
the X-HMAC of other blocks.

3. Comparison of the speed of using and not using the proposed algorithm

Using a system, we set up a constant string with a key and variable IV, during 1000 times of cryptography-
computing implementation and adding hmac, and calculated the time of this process. Then, we computed the
average run-time average of each run. Then we calculated the runtime of this process by adding x-hmac and the
average of each run. As expected, the run-time due to the addition of the x-hmac function to the cryptography
process has increased, but it is very low.

Table 3: Comparison of the speed of using and not using extended HMAC algorithm

The algorithmused
The running

times
Total run time

Average approximate time of every

run

HMAC 1000 times
59 seconds and 716

hundredths of a second

0.060 for each block

HMAC+X-HMAC 1000 times
66 seconds and 955

hundredths of a second

0.067 verses per block

4. Overall comparison of the use and non-use of the proposed algorithm

Here, according to some of the tests done on the experimental data input, we gather the result in the table below.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Seyyed Mehdi Mousavi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i4/191104086 Vol 11 No 4 Aug-Sep 2019 1054

Table 4: Comparison of the use and non-use of extended HMAC algorithm

Methodology Name HMAC X-HMAC
Presentation year 1996

2018

Brief description HMAC HMAC and then applying the function in
the proposed hash

Provider(s) Bellare et al. Mehdi Mousavi

Input length Arbitrary (depending on hash
algorithm)

Arbitrary (depending on hash algorithm)

Cryptography key length Arbitrary (depending on hash
algorithm)

Arbitrary (depending on hash algorithm)

Output length Arbitrary 128-256-512
The HMAC algorithm is safe against

attacks such as Pokers- Kasiski
Frequency Analysis test

Equal to the length of the input

Resistance against the
classical cryptography

algorithm

The HMAC algorithm is safe against
attacks such as the Pokers- Kasiski

Frequency Analysis test

In addition to the security of the HMAC

algorithm, it is used against attacks like the
Pokers-Kasiski Frequency Analysis test,

the security of the X-HMAC algorithm also
increases the overall security of using the

X-HMAC
Resistance against

Frequency Analysis
attack

HMAC algorithm is safe against
attack by frequency analysis.

In addition to the security of the HMAC
algorithm against the frequency analysis

attack, the security of X-HMAC algorithm
also increases the overall security of the X-

HMAC.
Using Initialize Vector
(IV) to prevent a key

attack and revealing the
HMAC key to all blocks

Unfortunately, HMAC function does
not allow the use of IV in the hmac
function, and if an attacker accesses
the key of one of the blocks, he will
be able to attack all other blocks that

use that key.

By adding IV in the cryptography steps, if

an X-HMAC key is released, a block is
released, with the use of IV, the x-hmac
key is reserved for other blocks, which
increases the security of cryptography.

Hash resistance used
against birthday collision

attack (assumption: no
collision in output hashes)

The hash resistance of the hmac
algorithm against the birthday
collision attack is 2ಹಾಲ/ଶ

In addition to maintaining the hash

hysteresis of the hmac algorithm against
birthday attack, this value has increased by

the following x-hmac algorithm.
Hash resistance against

brute-force attack
(assuming no collision in

output hashes)

The hash resistance of the hmac

algorithm will be against the brute-
force attack:
 2ೌ

Using x-hmac, not only no failure occurs in
hmac hash, but this resistance increases to

the following value:
 2ೌାವಲಲ

Comparison of speed
(This comparison is from
the average run of 1000
rounds of cryptography

then adding hmac)

0.060 seconds per data block

0.067 seconds per data block

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Seyyed Mehdi Mousavi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i4/191104086 Vol 11 No 4 Aug-Sep 2019 1055

5. Conclusion

The study dealt with using the studies done, the efficiency and widespread use of HMAC function in the famous
protocols such as Ipsec, SSL, and using it to identify authenticity of the message. With the prevalence of using
HMAC, the security of this algorithm is important and can greatly assist the cryptography community. It is
proven that the security of the HMAC algorithm is greatly a function of the used hashing algorithm and its
cryptography key, and the non-use of IV in this algorithm can affect the security of other blocks if the
HMACcryptography key of one block is disclosed.

By studying previous studies to increase the length of the HMAC key to increase the security of this function, or
to use safe hash functions or use of asymmetric algorithms instead of the abstract function, it has not been able
to help HMAC security or reduce the critical speed and using asymmetric double-sided algorithms to encrypt
bulky data is not cost-effective.

The study presented the message and HMAC bits prior to sending the proposed algorithm called X-HMAC.
Using HMAC algorithm and IV and two dedicated keys derived from the original Brute-Force Attack key were
hashed prior to sending (using the bit swapping and turning to the left of the bits) and then the data block was
sent to the receiver.

If the attacker reaches the data block, he must first break and X-HMAC algorithm and decrypts it to obtain the
correct layout of the block bit with the message and the HMAC, and then find a way to break HMAC. Clearly,
the proposed X-HMAC algorithm can be a barrier against an attacker.

In the end, we state that the X-HMAC proposed function is written for bit hashing of HMAC in terms of the
internal structure of the algorithm and cannot replace a cryptographic algorithm. However, its use as a
complementary HMAC or using it in HMAC structure (to save memory and speed) can be suitable in improving
HMAC security.

References

[1] Bellare, M., Canetti, R., & Krawczyk, H. (1996, August). Keying hash functions for message authentication. In Annual International
Cryptology Conference (pp. 1-15). Springer, Berlin, Heidelberg.

[2] Guo, L., Wang, L., Li, Q., Zhang, Z., Liu, D., & Shan, W. (2015, March). A first-order differential power analysis attack on HMAC-
SM3. In First International Conference on Information Science and Electronic Technology (ISET 2015). Atlantis Press.

[3] Jeong, K., Lee, Y., Sung, J., & Hong, S. (2013). Security analysis of HMAC/NMAC by using fault injection. Journal of Applied
Mathematics, 2013.

[4] Kim, J., Biryukov, A., Preneel, B., & Hong, S. (2006, September). On the security of HMAC and NMAC based on HAVAL, MD4,
MD5, SHA-0 and SHA-1. In International Conference on Security and Cryptography for Networks (pp. 242-256). Springer, Berlin,
Heidelberg.

[5] Contini, S., & Yin, Y. L. (2006, December). Forgery and partial key-recovery attacks on HMAC and NMAC using hash collisions. In
International Conference on the Theory and Application of Cryptology and Information Security (pp. 37-53). Springer, Berlin,
Heidelberg.

[6] Naqvi, S. I., & Akram, A. (2011, May). Pseudo-random key generation for secure HMAC-MD5. In Communication Software and
Networks (ICCSN), 2011 IEEE 3rd International Conference on (pp. 573-577). IEEE.

[7] Lee, J., Hwang, D., Park, J., & Kim, K. H. (2017, January). Risk analysis and countermeasure for bit-flipping attack in LoRaWAN. In
Information Networking (ICOIN), 2017 International Conference on (pp. 549-551). IEEE.

[8] Momeni & Taheri (2016). Attack time analysis on a flow cipher algorithm. Electronic Defense and Cyber Defense Magazine, 4 (1).
[9] Mahajan, T., & Masih, S. (2015, September). Enhancing Blowfish file cryptography algorithm through parallel computing on GPU. In

Computer, Communication and Control (IC4), 2015 International Conference on (pp. 1-4). IEEE
[10] Iyer, S. C., Sedamkar, R. R., & Gupta, S. (2016). A Novel Idea on Multimedia Cryptography Using Hybrid Crypto Approach. Procedia

Computer Science, 79, 293-298.
[11] Peyrin, T., & Wang, L. (2014, May). Generic universal forgery attack on iterative hash-based MACs. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques (pp. 147-164). Springer, Berlin, Heidelberg.
[12] Dinur, I., & Leurent, G. (2017). Improved generic attacks against hash-based MACs and HAIFA. Algorithmica, 79(4), 1161-1195.
[13] Guo, J., Peyrin, T., Sasaki, Y., & Wang, L. (2014, August). Updates on generic attacks against HMAC and NMAC. In International

Cryptology Conference (pp. 131-148). Springer, Berlin, Heidelberg.
[14] Sotirov, A. (2012). Analyzing the MD5 collision in Flame. Presentation at SummerCon, slides available at http://www. trailofbits.

com/resources/flame-md5. pdf.
[15] Najjar, M., & Najjar, F. (2006, May). d-HMAC Dynamic HMAC function. In Dependability of Computer Systems, 2006. DepCos-

RELCOMEX'06. International Conference on (pp. 119-126). IEEE.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Seyyed Mehdi Mousavi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i4/191104086 Vol 11 No 4 Aug-Sep 2019 1056

	Increasing Cryptography Security usingHash-based Message Authentication Code
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	3. Proposed method
	4. Results
	5. Conclusion
	References

