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1. INTRODUCTION 

Digital Signal Processing (DSP) has revolutionized many areas in science and engineering such as space, 
medicine, commerce, military, technology and communication. DSP is made effectively possible by Laplace 
Transform (LT) and Discrete Laplace Transform (DLT) which changes a signal in the time domain into frequency 

s-domain [15]. The Laplace transforms are practical in the view of fast decay factor sxe . Construction of 
polynomial filters for detection of peaks in periodic signals in DSP is developed in [16]. With numerical 
computation and MATLAB obtaining exact solutions for Dirichlet-Neumann inverse problem are discussed in 
[4]. In practice, many applications of Laplace Transform (LT) and Discrete Laplace Transform (DLT) are 
discussed by several authors [3, 9, 14, 10]. 

The LT and DLT are respectively defined as 
0

[ ( )] = ( ) stL f t f t e dt


  and 

=0

[ ( )] = ( ) , > 0sn

n

L f n f n e s


 . From the basic difference identity 1
0

=0

| =n n
n

x x


    [1], the DLT can be 

expressed as 1[ ( )] = ( ) snL f n f n e  . Let ( )u k  be input signal(functions) and   be the time interval 

between two successive signals. 

In [8], authors have defined a new type Laplace Transform as  

 1
0

=0

( ) = ( ) | = ( ) .sk sr

r

L u k u k e u r e


     
     (1) 

This transform is called as Generalized Laplace Transform (GLT) and it lies in between DLT and LT. The GLT 
becomes DLT and LT when = 1  and 0  respectively [2, 3]. If we take   as time between two 
successive signals in DSP (1) becomes Laplace Time Tuning Transform (LTTT). To develop certain theories on 

LTTT we need to reveal the basic theory of   and their inverse [5, 12].  

The main definition of fractional difference equation (as done in [13]) is the   fractional sum of ( )f t  by 

( )

=( ) ( ( 1))

1
( ) = ( )

t
t s

s a t s

f t f s




 




  




  , where > 0 . 

When = m  is a positive integer, if we replace ( )f t  by ( )u k  and   by   . 

(i.e. ( ) = ( ) ( ), [0, ), > 0u k u k u k k       ), we arrive an m-series  
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where ( 1)( 1) = ( 1)( 2) ( 1)mr r r r m      and 
k 
  

 is the integer part of 
k


. This m-series is a 

numerical solution of the m th  order generalized difference equation  

 ( ) = ( ), [0, ), > 0.mv k u k k     (3) 

When = 1m , k  , replacing ( )u k  by ( ) sku k e  and by rearranging the terms, the equation (2) for

( ) sku k e  becomes LTTT given in (1). 

Let > 0  be time tuning factor of two successive signals and ( )u k  be a real valued function on 

[0, )  representing input signal of a system in DSP. In this paper, by deriving several formulas on m-series to 

circular functions with respect to  , we analyze the Laplace Time Tuning Transform in the field of Digital Signal 
Processing.  

2. PRELIMINARIES 

Before stating and proving our results, we present some notations, basic definitions and preliminary results which 

will be useful for further subsequent discussions. ( 1)( ) ||m k
m ju k
    = 

  1 1 1
( 1)( ) | | |k k k

j j m ju k  
          , where 

1 ( ) |kju k  = 1( )u k  = 1 ( )u k  - 1 ( )u j , 

 1 1 ( ) | |k k
j ju k 

     = 2 ( )u k  = 1
1( )u k  - 1

1( )u j   , and so on, =
k

j k
    




, 

( ) = { , , 2 , }j j j j      and 1( ) = ( )j j  . jc  is a constant for all ( )k j   and for any 

positive integer m . 

Also, 1 = {1,2, , 1},mL m   10( )mL   = { } ,   is empty set, 1( )mt L   = set of all subsets of 

size t  from the set 1mL   such that if 1 2{ , , , }tm m m    1( )mt L   then 1 2< < < tm m m  for 

= 1, 2, , 1t m  , 
1

1 1
=0

( ) = ( )
m

m m
t

L t L


    is the power set of 1mL  , 
1

=1

( ) = 0
m

t

f t


  for 1m  , and 

=2

( ) = 1
t

i

f i  for 1t  , and   1( )t mm t L   means that  1 2 1, , , ( )t mm m m t L  . 

In [7] the authors have introduced generalized polynomial factorial 
( ) = ( )( 2 ) ( ( 1) )mk k k k k m        . Using Stirling numbers of first kind m

rs  and second kind m
rS , 

the following identities have been obtained:  

 ( ) ( ) ( ) ( 1)

=1 =1

( ) = , ( ) = , ( ) = ( ) .
m m

m m m r r m m m r r m m
r r

r r

i k s k ii k S k iii k m k           (4) 

Definition 2.1  [11] Let ( )u k , [0, )k    be a real valued function. The generalized difference operator   

on ( )u k  is defined as;  

 ( ) = ( ) ( ), [0, ), > 0,u k u k u k k        (5) 

and the inverse of   on ( )u k  is defined as,  

 
1if ( ) = ( ), then ( ) = ( ) .jv k u k v k u k c     (6) 

  11Ingeneral, = .          
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Lemma 2.2 [7] Let p and q be any real numbers. If 1 cos 0p  , then  

 1 sin ( ) sin
sin =

2(1 cos ) j

p k pk
pk c

p
  

 




 (7) 

 and  

 1 cos ( ) cos
cos =

2(1 cos ) j

p k pk
pk c

p
  

 




 (8) 

are solutions of (3) for ( ) = sinu k pk  and cos pk  respectively when = 1m .  

Remark 2.3  Throughout this paper, we denote 2 2 3 3= ( 2 ) ( 2 )P p n s q n s    and 

2 2 3 3= ( 2 ) ( 2 ).P p n s q n s    P and P  are depending on 2n , 3n , 2s , 3s , p  and q .  

To evaluate 1 ( ) sku k e   (LTTT) we present the following lemmas and theorem.  

Lemma 2.4 [6] Let ( )v k  and ( )w k  be two real valued functions. Then,  

 1 1 1 1[ ( ) ( )] = ( ) ( ) [ ( ) ( )].v k w k v k w k w k v k               (9) 

Lemma 2.5 [11] Let [ , )k   . Then,  

 1 | = .
1 1

k j
k k

j

e e
e

e e

 
 

  
     (10) 

Lemma 2.6 [11] Let n  be any non-negative integer. Then,  

 
( 1) ( 1)

1 ( ) | = .
( 1) ( 1)

n n
n k

j

k j
k

n n

 
 

 
 

   
 (11) 

Theorem 2.7  [6] (m-series formula) Let (2)m . Then, we find 
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1
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 
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 
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LHS of (12) gives m-series and RHS provides the value of the m-series to ( )u k .  

3. SUMMATION OPERATOR 

In this section, we introduce some summation notations for representing m-series in a simple manner. (i)  

 = (1,0), (0,1) ,oo  (ii)   = (1,0), (0,1), (1,1) ,oe   

(iii)   = (1,0), (0,1), (1, 1) ,eo   (iv)   = (1,0), (0,1), (1,1), (1, 1) ,ee    

(v)  

( )
2 2

2

2 2
(( )) = ,

2

u v
uv

u vn
n n




 
 
  
 

 (vi)  

( )
2 2

3

3 3
(( )) =

2

u v
uv

u vn
n n



 
 
  
 

 

(1)  If 2n  and 3n  are odd positive integers, then  

 

111 322
( )( ), 32 2 22
322

12 3
( , ) =0 =0 2 32 3 2 3

( 1)
= ( 1) .

! !2

nnn
sss c

s

n n
n n s s

nn

s s



 


   

       (2)  If 2n  and 3n  are even positive integers, then  
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22 322
( )( ), 32 2 22
322

12 3
[ , ] =0 =0 2 32 3 2 3

( 1)
= ( 1) .

! !2

nnn
sss c

s

n n
n n s s

nn

s s



 


    

Operators used for product of circular, k-factorial and exponential functions.  

 

111 322
( )( ) ( ) ( ), , 31 2 41 1 2 2 12

1 2 3 1
12 3 1 2 4

( , ) =0 =0 =0 =0 1 2 3 41 2 3 1 2 3 4

( )( 1)
=

( 1) ! ! ! !2

nnn
ss s ss c m s n m s

n n s s s
n n n s s s s

n n n m s

s s s s


 

   




   

Operators used for product of circular functions with exponential alone.  

 

111 322
( )( )( ), , 32 2 22 1
321 2

22 3
( , ) =0 =0 =0 1 2 32 3 1 2 3

( 1)
= ( 1)

! ! !2

nnn
ssss c m m

s s

n n
n n m s s s

nnm

s s s





 


   

4. MAIN RESULTS 

In this section we assume that iP , iP , 
2 i

P P 
 
 

 , 
2 i

P P 
 
 

  are not multiple of 2  for 

= 1, 2, ,i n , ( ) = ( 1)( 2) ( ( 1))rm m m m m r     and s , p  and q  are any real numbers. We find 

m-series of product of polynomial factorial, sine and cosine functions. 

4.1  Inverse operator on product of two functions 

Theorem 4.1  If 2n  and 3n  are odd positive integers, then we have 
( )1 2 3( )sin cos
nm n nk pk qk    

 

, , 1 42 2( )1 1 1
( )1

( , )( , ) 11 2 3
2 2

sin( )( ( ) )
= .

(2(1 cos( ) ))

s c m s
s n s

s
m sn n n u v oo

uP vP
k m s

u vm k
uP vP

u v







 







  





 (13) 

 Proof. Take (1)
2 3

1( ) = sin cosn nf k k pk qk . Using (7), (8), (9) and changing the powers of sin  and cos  

into linear, we find that  

, ,1 1 42 2(1 )1 1 1
1 ( )1

11( , )( , ) 12 3
2 2

sin( )( (1 ) )
( ) = 1

(2(1 cos( ) ))

s c s
s s

s
sn n u v oo

uP vP
k s

u vf k k
uP vP

u v







 







  





. 

Applying 1  on both sides to above equation, we get  

, ,2 1 42 2(1 )2 1 1
1 ( )1

21( , )( , ) 12 3
2 2

sin( )( (2 ) )
( ) = 2

(2(1 cos( ) ))

s c s
s s

s
sn n u v oo

uP vP
k s

u vf k k
uP vP

u v







 







  





. 

Proceeding like this, we arrive 

, , 1 42 2(1 )1 1
1 ( )1

1( , ) ( , ) 12 3
2 2

sin( )( ( ) )
( ) =

(2(1 cos( ) ))

s c m s
s sm

s
m sn n u v oo

uP vP
k m s

u vf k m k
uP vP

u v







 







  





. 
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Similarly, if we take (2)
2 3

2 ( ) = sin cosn nf k k pk qk , we find 

, , 1 42 2(2 )1 1
2 ( )1

2( , )( , ) 12 3
2 2

sin( )( ( ) )
( ) =

(2(1 cos( ) ))

s c m s
s sm

s
m sn n u v oo

uP vP
k m s

u vf k m k
uP vP

u v







 







  





. 

Continuing this process (m-inverse) upto 1n , we get 
1
( )m

nf k  given in (13).  

Theorem 4.2 If 2n  and 3n  are even positive integers, then  

,
( ) ( )1 1 1 12 3

2 3 ( )1
[ , ]( , )1 2 3

( ) = (( ))(( ))sin cos
s c

n s n sm n n
s

n n n u v ee

k pk qk n n m k




    


  

 

32
( )22 142 2

32
1

12 31 1
2 2

cos( )( ( ) )
{ ! }.

( )!! !(2(1 cos( ) ))
2 2

nn

m n

m n
m s

uP vP
k m s nn ku v n

n nuP vP m n
u v

  
        





 

 
 






 (14) 

Proof. The proof is similar to the proof of Theorem 4.1.  

Remark 4.3 The m-series to 
( )1 2 3( ) = sin cos
n n nu k k pk qk  can be obtained by substituting (14) in Theorem 

2.7.  

Theorem 4.4 If 2n  and 3n  are odd positive integers, then we have 2 3( )sin cos
m sk n ne pk qk    

 
, , 12 2

1

( , )( , )2 3
2 2

sin( )( ( ) )
= .

(2(cosh cos( ) ))

s c m
s ssk

n n u v moo

uP vP
k m s

u ve e
uP vP

s
u v






 







  


 
 (15) 

Proof. After changing the powers of sin  and cos  into linear, we get 
, ,

1 1
2 3

( , ) ( , )2 3 2 3

( ) = ( (sin sin )) = Impartofsin cos
s c s c

sk skn n

n n n n

e pk qk e Pk Pk         

( ) ( ),
1

( ) ( )
( , )2 3

( ( )) = Impartof ( ),
1 1

iP s k i P s ks c
sk iPk i Pk

iP s i P s
n n

e e
e e e

e e

 
 

 
  

 
  

 

After simplification, we get 1
2 3( )sin cos

sk n ne pk qk    

 
, ,1 12 2

1

( , )( , )2 3
2 2

sin( )( (1 ) )
=

(2(cosh cos( ) ))

s c
s ssk

n n u v oo

uP vP
k s

u ve e
uP vP

s
u v






 







  


 
 (16) 

Applying 1  on both sides to equation (16), we get 

2
2 3( )sin cos

sk n ne pk qk   

  
, ,2 12 2

1

( , )( , ) 22 3
2 2

sin( )( (2 ) )
=

(2(cosh cos( ) ))

s c
s ssk

n n u v oo

uP vP
k s

u ve e
uP vP

s
u v






 







  


 
 

Continuing this process upto m-inverse, we get (15).  
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Remark 4.5 The m-series to 2 3( ) = sin cos
sk n nu k e pk qk  can be obtained by substituting (15) in Theorem 

2.7.  

4.2  Inverse operator on product of three functions  

Theorem 4.6 If 2n  and 3n  are odd positive integers, then  

( )1 2 3( )sin cos
nm sk n nk e pk qk     

 

( ) 4, , 1 11 42 2( )1
( )1 1

( , )( , ) 11 2 3
2 2

sin( )( ( ) )
= .

(2(cosh 2cos( ) ))

s sn ss c m s
s

s s k s
m sn n n u v oo

uP vP
e k m sk m u v

uP vPe s
u v



 



 







 







  
 (17) 

Proof. 

, ,1, 1
1 (1) 1 (1)

2 3

( , ) 1( , )2 3 2 3

( ) = ( (sin sin )) =sin cos
s c ss c

sk skn n

n n n n

k e pk qk k e Pk Pk


            

 
42 2(1 ) ( )1 1 1 4

( )1
1( , ) 1

2 2

sin( )( (1 ) )
1

(2(cosh cos( ) ))

s s s k s s s

s
su v oo

uP vP
k s

u vk e e
uP vP

s
u v

  




 







  





 
 

Applying 1  on both sides, we get 

, ,2 1
2 (1)

2 3

1( , )2 3

( ) =sin cos
s c s

sk n n

n n

k e pk qk


      

 
42 2(1 ) ( )1 1 1 4

( )1
2( , ) 1

2 2

sin( )( (2 ) )
2

(2(cosh cos( ) ))

s s s k s s s

s
su v oo

uP vP
k s

u vk e e
uP vP

s
u v

  




 







  





 
 

Then continuing this process, we get 

, , 1
(1)

2 3

1( , )2 3

( ) =sin cos
s c m s

m sk n n

n n

k e pk qk


      

 
42 2(1 ) ( )1 1 1 4

( )1
( , ) 1

2 2

sin( )( ( ) )

(2(cosh cos( ) ))

s s s k s s s

s
m su v oo

uP vP
k m s

u vm k e e
uP vP

s
u v

  




 







  





 
 

Similarly we can obtain, 

, , 1
(2)

2 3

2( , )2 3

( ) =sin cos
s c m s

m sk n n

n n

k e pk qk


      

 
42 2(2 ) ( )1 1 1 4

( )1
( , ) 1

2 2

sin( )( ( ) )
.

(2(cosh cos( ) ))

s s s k s s s

s
m su v oo

uP vP
k m s

u vm k e e
uP vP

s
u v

  




 







  





 
 

Continuing this process upto m -inverse for 1n , we get equation (17).  

Theorem 4.7 If 2n  is an odd and 3n  is an even positive integers, then  

, , 1
( )1 2 3

2 3 ( )1
( , ]( , )1 2 3

( ) = (( ))(( ))sin cos
s c m s

nm sk n n
s

n n n u v oe

k e pk qk n n m


 



   

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( )1 1 4 42 2

( )1 1
1

2 2

sin( )( ( ) )
.

(2(cosh cos( ) ))

n s s s

s s k s
m s

uP vP
k m sk e u v
uP vPe s
u v



 



 














  
 (18) 

 Similarly, we can obtain equation for 2n  even and 3n  odd positive integers.  

Theorem 4.8 If 2n  and 3n  are even positive integers, then  

( ), , 1 11 ( )( ) 11 2 3
2 3 ( )1 1

[ , ]( , )1 2 3

( ) = (( ))(( ))sin cos

n ss c m s
snm sk n n

s s k s
n n n u v ee

k m
k e pk qk n n

e


 

 


   
  

  

 

32
4 2242 2

32

12 31
2 2

cos( )( ( ) ) 1
( ).

2( 1)! !(2cosh 2cos( ) )
2 2

nn
s s

m ss
m s

uP vP
e k m s nnu v

n nuP vP es
u v

  
     
  





 

 
 








 
 (19) 

Corollary 4.9 If 2n  and 3n  are odd positive integers, then 

1 2 3( )sin cos
nm sk n nk e pk qk    

 

( ), , 1 1 11 1 4( )1 1 4
( )1 1 1 1 1

=1 ( , )( , )1 1 2 3

sin( )( ( ) )
= .

(2cosh 2cos( ) )

n r sn s c m s s s
r s

r n s s k s m s
r r n n u v oo

S k m e UV k m s

e s UV



   


 


  







   
 (20) 

Proof. The proof follows by applying (ii) of (4) in equation 17.  

Remark 4.10 Hereafter we denote 

( )1

1
=2 1

(( 1) )
( ) = .

( )!

m mt i i
i

m mi i
i i i

m j
t

m m

 

 


 



 


  

Theorem 4.11 If 1n  and 2n  are odd positive integers, then the m-series to (17) is  

[ ] , ,( 1) 1
( ) ( )1 2 3

= ( , )1 2 3

( 1)
( ) ( ) ( ) =sin cos

( 1)!

k
s c m sm

n s k r n n

r m n n n

r
k r e p k r q k r

m


 

  
 




    

  

( )1 1 42 2( )1 4
( 1)( )1 1

( , ) 1
2 2

sin( )( ( ) )
|

(2(cosh cos( ) ))

n s

s s s k
m js s k s

m su v oo

uP vP
k m sm k u ve
uP vPe s
u v



  



 

 





  




  
    

, , ( )1 1 1 1 1 1 4
1

1 ( ) (( 1) ) )1 1 1
=1 { } ( ) ( , )( , )1 1 2 3

(( 1) )
( 1) ( )

s c m s n s s s sm
t

s s m j s
t m t L n n n u vt m oo

m j e
m

e

 

  
 

 
   



 

 


  

 

( )
42 2

( 1)

1 1
2 2

sin( )(( 1) ) ( )
| .

( )!(2(cosh cos( ) ))

m mt
k
m jm mtm s t

uP vP
s j t ku v

uP vP m ms
u v



 



  
 







 
 (21)  

Proof. The proof is obtained by substituting (17)  in Theorem (2.7) .  

Remark 4.12 when 3 = 0n  in (21) we will get 
( )1 2[ ]sin
nm sk nk e pk    and  when 2 = 0n  in (21) we will 

get 
( )1 3[ ]cos
nm sk nk e pk   .  

The following example illustrates a 2-series to (3) 2 4 45 3 .sin cos
kk e k k

   

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 G. Britto Antony Xavier et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2019/v11i3/191103040 Vol 11 No 3 Jun-Jul 2019 588



Example 4.13 Consider the case = 2m , = 6p , = 5q , = 2s , 1 = 3n , 2 = 4n  and 3 = 4n , let 

 1 2= 6(3 2 ) 5(3 2 )P r r    and  1 2= 6(3 2 ) 5(3 2 )P r r    In this case, 

2 2= {1, 2},1( ) = {{1},{2}}L L , and  

 

[ ] (2 1)
(3) ( ) 4 4

=2

( 1)
LHS = ( ) ( ) ( )sin cos

(2 1)!

k

s k r

r

r
k r e p k r q k r


 

  





    

RHS is the sum of the terms, (i) 
2 (3) 2 4 4( ) |sin cos

k k
jk e pk qk 

    and 

(ii) 
(1)

1 (3) 2 4 4( ) |sin cos
j k

j

k
j e pj qj 

  
  

, where  

(3 ), ,2 11 ( )2 (3) 12 3
2 3 ( )1 1

3[ , ]( , )2 3

2
( ) = ( ))(( ))sin cos

ss c s
ssk n n

s k s s
n n u v ee

k
k e pk qk n n

e


 

 


   
   

 

 

32
4 2242 2

32
2 12 2 31

2 2

cos( )( (2 ) ) 1
( ).

2( 1)! !(2(cosh cos( ) ))
2 2

nn
s s

ss
s

uP vP
e k s nnu v

n nuP vP es
u v

  
     
  





 

 
 








 
   

5. LAPLACE TUNING TRANSFORM AND ITS APPLICATIONS 

In this section we derive expression for Laplace Tuning Transform for the functions (input signals) sine, cosine 
and polynomial factorials, and discuss its applications in DSP.  

Theorem 5.1  If 2n  and 3n  are odd positive integers, then 2 3( ) ( )sin cosn ni L pk qk  

 

, ,1 12 2
2 3

=1 ( , )( , )2 3
2 2

sin( )( 1)
= ( ) =sin cos

2(cosh cos( ) )

s c
sr n n

r n n u v oo

uP vP
s

u ve pr qr
uP vP

s
u v







 







  
 

  
 

 

( )
2 3 2 3

=0

(ii) ( ) = ( ( ) ( ))sin cos sin cos
s k rn n n n

k
r

L pk qk e p k r q k r


     
     

   
, ,1 12 2

1

( , )( , )2 3
2 2

sin( )( (1 ) )
=

2(cosh cos( ) )

s c
s ssk

n n u v oo

uP vP
k s

u ve e
uP vP

s
u v






 

 





  



 

  

Proof. The proof of (i) follows by taking = 1m  in (15), multiplying by   and applying limits for k  from 0  
to  .  

Example 5.2 Taking 2 3= 1, = 1, = 2n n p  and = 3q  in Theorem (5.1), we obtain 

2 2

=0

sin 5 sin
(sin 2 cos3 ) = = sin 2 cos3

2(cosh cos5 ) 2(cosh cos )
sr

r

L k k e r r
s s




   


      
   

  

which is verified for = 0.5  and = 5s  by MATLAB coding given below : syms r  

(0.5* ( 5*0.5* )* (2*0.5* )* (3*0.5* ), ,0, )symsum exp r sin r cos r r inf  

= (0.25* (5*0.5))./ (2*( (5*0.5) (5*0.5))) (0.25* (0.5)). / (2*( (5*0.5) (0.5)))sin cosh cos sin cosh cos    
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Theorem 5.3  If 2n  and 3n  are odd positive integers,then 

1 12 3 2 3

=0

( ) ( ) = ( )sin cos sin cos
n n srn n n n

r

i L k pk qk r e pr qr


  
      

  

, ,1 1 1 11 1 4( )1 1 4
11 1 1

=1 ( , )( , )1 1 2 3

1 sin( )( 1)
= .

(2cosh 2cos( ) )

n n rn s c r s s
r r

r sr r
r r n n u v oo

S e UV s

e s UV



 





  





 
  

 

( )1 12 3 2 3

=0

(ii) ( ) = ( ) ( ) ( )sin cos sin cos
n n s k rn n n n

k
r

L k pk qk k r e p k r q k r


      
      

   

( ), ,1 1 1 11 1 4( )1 1 4
( ) 11 1 1 1 1

=1 ( , )( , )1 1 2 3

1 sin( )( (1 ) )
=

(2cosh 2cos( ) )

n r sn s c s s s
r s

r n s s k s s
r n n n u v oo

S k e UV k s

e s UV



   


 


  







   
  

Proof. The proof of (i) follows by taking = 1m  in (20), multiplying by   and applying limits for k  from 0  
to  .  
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Example 5.4 Taking 1 2 3= 2, = 1, = 1, = 5n n n p  and = 7q  in Theorem (5.3), we obtain 

22, ,1 12 1 4( )2 2 1 1 4
11 1 1

=0 =1 3(1,1) ( , )1

1 sin( )( 1)
( sin5 cos7 ) = ( ) ( ) sin5 cos7 =

(2cosh 2cos( ) )

rs c r s s
r rsr

r sr r
r r u v oo

S e UV s
L k k k r e r r

e s UV




 






  




 

    
  

  

which is verified for = 0.5  and = 10s  by MATLAB.  
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Conclusion: From the outcome of our findings, we observe with the help of the diagrams generated by MATLAB 
that LTTT gives innumerable outcomes by varying the Time Tuning Factor   for the given input signal and this 
enables us to make a choice for an optimal one in DSP. 
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