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Abstract— Combinatorial optimization problems (COPs) are challenging class of problems in the field of 
optimization. Permutations are preferred as solution representation scheme in most cases. Metaheuristic 
techniques can be used to look for good solutions for COPs with low cost. Moth-flame algorithm (MFO) is 
one recent population-based metaheuristic technique for continuous optimization problems. In this work 
improvement of MFO when used to solve COPs is studied. An improved version of MFO (called 
LCMFO) where Lévy-flight function is used to prepare initial solutions is proposed. Also crossover 
functions of genetic algorithms are used together with the basic technique of MFO to generate new 
solutions. Both MFO and LCMFO are tested with travelling salesman problem (TSP) as one popular 
COP. Experimental results show that there is a notable improvement of about 20-40% in the quality of 
solutions found by LCMFO over MFO only. 

Keyword - Combinatorial Optimization Problems (COP), Moth-Flame Optimization (MFO), Crossover 
Function, Lévy-Flight Distribution, Travelling Salesman Problem (TSP) 

I. INTRODUCTION 

Combinatorial optimization problems (COPs) are NP-hard problems [1],[2]. It takes time of an exponential 
order for an exact algorithm to find the optimal solution [3]. Many real-world instances belong to such discrete 
optimization class such as travelling salesman problem (TSP) [1],[4],[5], assignment problem [6],[7], constraint 
satisfaction problem [8], knapsack problem [9], minimum spanning trees [10], scheduling problems [11], 
vehicle routing problem[12], and others. For COPs it requires enumerating the whole combinatorial search 
space in a brute force manner if only optimal solution is required and nothing else. The most famous COP in 
literature is probably TSP. In TSP, one has to make a tour of  cities, starting from a root city, passing by each 
city just once, then returning back to the root one. Solutions of TSP are best encoded as permutations of cities 
[13]. Here the optimal tour has the minimal total covered distance. Assuming that travels between any pair of 
cities are the same (i.e. symmetric TSP) and there is no constraint that may reject some tour then it easily noted 

that the size of the solution space is 
!
 . This is considering the worst-case of TSP. However for large  , 

asymmetric TSP and TSP with constraints have a search space of size Ω . Moreover, going beyond the 

brute force method and using tree- based algorithms [13] (commonly called branch and x methods including 
branch and bound, branch and cut, and branch and price) an exponential cost may result. 

Besides exact methods of COPs, approximation algorithms such as metaheuristic techniques [13] found a 
great interest of the research community to solve different classes of optimization problems in a reasonable time. 
However, there is no guarantee of reporting one optimal solution by a metaheuristic algorithm but finding a 
near-optimal solution in a reasonable time may be accepted. Almost all metaheuristic techniques depend on real 
values in the range (0,1) to encode solutions of the studied problem. Also finding a new neighbourhood of a 
current solution follows a systematic way during the search. Thus there is a difficulty facing metaheuristic 
methods when solving COPs exemplified in the different encoding schemes for solutions generated by an 
applied technique as well as the final solutions of the problem (i.e. solutions required by the cost function to 
calculate the fitness). Mapping from a real-valued solution to a permutation one degrades the quality of 
generated solutions regardless of how much the mapping methods are good. This decreases the convergence rate 
of applied algorithm. Also the ability to overcome local minima areas in the search space becomes limited. 
Therefore it is worthy to investigate how a metaheuristic technique is improved when solving a COP. 
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From the dense forest of metaheuristic techniques [14],[15]and many others. We pick the Moth-flame 
optimization (MFO) algorithm of Seyedali Mirjalili [16] to solve various instances of TSP is selected. MFO is a 
recent population based algorithm that proved to have a high performance in different problems [17]-[19]. Like 
many metaheuristic techniques, MFO is inspired from nature. It is based on the navigation method of moths in 
light. Generating new candidate solutions is going through a systematic way using a mathematical equation 
modeling the moths' orientation. One approach of improving the quality of solutions for COPs is hybridization 
between metaheuristics with other metaheuristics or metaheuristics with exact methods as was well classified by 
Talbi [20] and Blum [21].  

In this work, we adopt a different point of view to improve the performance of a technique like MFO for 
solving TSP problem. Instead of calling another technique for help in improving the quality of solutions 
generated by the original algorithm, we examine a kind of transplantation of good operators in MFO algorithm 
itself to get an improvement during the search process. Next subsection is illustrating our proposed approach. 

A. Main idea of the proposed algorithm   

In order to increase the ability of investigating new areas in the search space we think of using a perturbation 
operator from a totally different approach like the genetic algorithm. A crossover function [22]-[25] is used to 
move from current solutions to next stage solutions together with the systematic equations of MFO. Emerging 
generated solutions by a crossover function helps to escape from local minima which are highly expected if we 
follow the same method to look for new solutions during each iteration of the algorithm. We also use Lévy-
flight distribution function [26],[27] to reduce the effect of any probable bad initialization on the final reported 
solution. Lévy-flight function has proved effectiveness when used with many optimization algorithms [28]- 
[30]. In view of this, the proposed new technique is called Lévy-Crossover-MFO or LCMFO. 

This paper is organized as follows. In section 2 the basic version of MFO algorithm is introduced. Section 3 
sheds light on TSP. The proposed LCMFO technique is explained in section 4. Section 5 shows the 
experimental results of testing both MFO and LCMFO against standard TSP datasets. Finally Section 6 contains 
the paper conclusions 

II. MOTH-FLAME OPTIMIZATION ALGORITHM 

MFO is one recent member in the family of population-based metaheuristic techniques. As well introduced in 
[16], the main inspiration of the algorithm is the navigation method of moths at night. In MFO the candidate 
solutions are moths (i.e., moths form the search space) and the problem’s variables are the position of moths in 
space. Best positions or best solutions so far are known as the flames. The set of moths is represented in a matrix 
as shown in Eq. 1 where  is the number of moths and  is the problem dimension. The corresponding fitness 
values for all moths are stored in an array as shown in Eq. 2.  Flames are stored in a similar matrix as shown in 
Eq. 3. Also the array of Eq. 4 is used to store the corresponding fitness values of flames. The logarithmic spiral 
mechanism used to update moths with respect to a flame is illustrated by Eq. 5 that updates the -th moth, Eq. 6 
that indicates the distance between the -th moth and -th flame, and Eq. 7 determines the decrement rate of 
flames along the search depending on the maximum number of flames  , the maximum number of iterations  
and current iteration number  . MFO has a few internal parameters that control the shape of the search path like 
a constant  and a random number  in the range 1,1 . Fig. 1 summarizes the general steps of MFO (as given 
in [16]) which incorporates initialization of solution, updating solutions and the termination criteria.  
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Eq. 7   

 
Algorithm 1: Moth-flame Optimization (MFO) 

Initialize MFO search parameters. 
Initialize the population of moths. 
Repeat until maximum number of iterations is reached 

Update flame number using Eq. 7.  
Calculate the fitness of initial moths. 
if iteration number == 1 then 
     Sort the initial population of moths according   
to fitness. 

                   Update flames positions and their fitness. 
else 
     Merge both previous population and flames  
according to fitness.  
     Update flames positions and their fitness. 
end 
Update the positions of best flame so far and its fitness.  
Set the moths as the previous population. 
for all population of moths 
      Calculate the distance to the corresponding  
      flame using Eq. 6. 
      Update moth positions with respect to its  
      corresponding flame using Eq. 5. 

              end 
end  

Fig. 1. General steps of Moth-flame algorithm 

III. Traveling salesman problem (tsp) 

This problem has various formulations in literature. Probably, the most famous one is representing the 
problem as a graph [31]. A non-directed graph representation means that there is symmetry in distance between 
each pair of connected cities. If distances differ when reversing the direction between any pair of cities then this 
is equivalent to a directed graph. Also, it is obvious to consider this problem as a permutation-based one as we 
are looking for the optimal order of cities.  

Whatever the current dataset of the problem represents a directed or undirected graph, the solution of TSP 
can be always expressed as a permutation.  The optimal solution is that one with a minimal length of a complete 
tour or a Hamiltonian cycle. TSP starts from a node called depot and salesman visits all cities (each city visited 
only once) and returns back to the starting node [32]. Adjacency matrix (square matrix) is used to represent TSP 
instances. Given  cities and the distance between each pair of cities  where =  (undirected graph). 
Distance between each pair of connected cities is Euclidean distance and is computed in Eq. 8. 

        
₂

 
₂
  , 1 ,  Eq. 8 

Where   ,  are the dimensions of the -th city in dataset. Let   denote a permutation of cities then the cost of 
a TSP solution as ≔ ₁  , ₂, ₃, … .  is computed in the cost function [33] as given in Eq. 9:  

, ,  
Eq. 9  
 

In Eq. 9, the distances between adjacent cities in the solution, i.e. ,  starting from ,  
until , , sum up to the total cost of the current feasible solution. Thus, the minimal  tells about the 
optimal solution. 
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IV. PROPOSED LÉVY –CROSS MOTH-FLAME OPTIMIZATION(LCMFO) 

LCMFO used Lévy-flight function to produce a population of initial solutions. Lévy-flight function as 
suggested in [34] is implemented. Lévy-flights are another kind of random walks whose step lengths are drawn 
from Lévy distribution. Lévy-flights are more efficient than Brownian random walks in exploring a large-scale 
search space. This is due to the variance of Lévy flights [26]. We are also encoding a scheme to pass from a 
continuous space (real numbers) to a combinatorial space (a solution is expressed as a permutation of integer 
numbers [35]). Then fitness function is applied to generated permutations. We are using a crossover method as a 
perturbation operator to reproduce new solutions. Besides using the systematic way (or equations of update 
solutions) of MFO algorithm alone to generate new candidate solutions, crossover operator provides a totally 
different neighborhood generator. This makes a variance in solutions so as to increase exploration of the 
solution space for next generation [20],[36]. When applying crossover method to generated solutions by MFO 
we aim to escape from local minima that is highly expected due to following same steps for navigating search 
space. This leads to new promising areas in the solution space and allows for improvement of best solution so 
far. 

A. Lévy – flight  function 

Lévy-flights are another kind of random walks whose step lengths are drawn from Lévy distribution 
[27],[37]. Step length is 0 2 and Lévy-function is used to produce a set of candidate solutions as initial 
ones using gamma function as in Eq. 10. 

= 1 β sin
β
/

β
 2  

Eq. 10  
 

B. Crossover Operation 

Crossover operation means mating between a pair of solutions to generate a new pair [38]. A randomly 
selected cut point in parent solutions is determined and the tails of two parents are swapped to get new off-
spring [39] as in Fig. 2. 

Parents   Off-spring 

0.097 0.278 0.546 0.957 0.964  0.097 0.278 0.546 0.485 0.800 

            

0.157 0.970 0.957 0.485 0.800  0.157 0.970 0.957 0.957 0.964 

Fig. 2.Crossover Operation. 

C. LCMFO Algorithm 

Figure. 3 summarizes general steps of proposed LCMFO. Initial population is generated using Lévy-flight 
function. Then initial population of moths is sent to the fitness function that applies required mapping steps to 
obtain a permutation-based solution and calculates the fitness.  

In the first iteration of the algorithm, moths are the generated initial population. This population is sorted to 
form the flames. Moths represent the so-called previous population in the next iteration. The best solution so far 
is determined as the best candidate in the flames. Lastly, positions of moths are updated according to the 
corresponding flames. Next iteration starts by updating population size in terms of reducing the number of 
flames for the purposes of convergence. After that a crossover function is applied to flames with a 
predetermined probability 0 which decides whether to generate a third population or not. In the crossover 
function, a random value  in 0,1  is generated each iteration and if  then crossover operation is taking 
place between each two consecutive flames. The third generated population in the search travel is called cross-
flames. Now, a triple-population matrix of previous population, flames and cross-flames is sorted according to 
fitness. Only the top population can survive to be the new flames. The best solution so far is updated to the top 
one of the flames. Updated moths from first iteration become the previous population. And so on until the 
number of search iterations is exhausted. 
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Algorithm 2:Lévy-Cross Moth-flame Optimization (LCMFO) 

Initialize LCMFO search parameters. 
Initialize a population of moths using Lévy-flight using Eq. 10. 
Calculate the fitness of initial population of moths. 
Repeat until the maximum number of iterations is reached 
Update flame number using Eq. 7.  
if iteration number == 1 then 
    Sort initial population of moths according to fitness. 
          Update flames positions and their fitness. 
else 
   Run out crossover function with probability  on flames to get cross-flames. 
   Merge previous population, flames and cross-flames according to fitness.                   
          Update flames positions and their fitness. 
end 
Update positions of best flame obtained so far and its fitness. 
Set the moths as the previous population. 
       for all moths in current population 
           Calculate the distance to the corresponding flame using Eq. 6. 
           Update the moth positions with respect to its corresponding flame using Eq. 5.   
       end 
end 

 

Fig. 3.Main steps of LCMFO optimization algorithm 

TABLE I. Parameters Settings 

Parameter Max_Iteration Pop_size lb ub P No. of Runs  

Parameter value 500 500 -10 10 0.01 10 1.5 

TABLE III. Experimental Results 

Data set Technique 
Average Best 

Value Improvement ratio % Value Improvement ratio % 

Ulysses 16 
MFO 171.4052 

19.97 
147.7626 

10.66 
LCMFO 137.1812 132.0055 

Bayg 29 
MFO 19099 

43.05 
17631.3401 

46.34 
LCMFO 10876 9460.2486 

St 70 
MFO 2024.7 

34.12 
1820.0815 

34.57 
LCMFO 1333.8 1190.9025 

Gr 96 
MFO 3172.5 

39.88 
2787.7799 

42.08 
LCMFO 1907.2 1614.6946 

Ch 150 
MFO 34002 

24.96 
32322.0798 

29.93 
LCMFO 25516 22649.1671 

Gr 202 
MFO 11076 

20.47 
10196.2219 

19.73 
LCMFO 8808.4 8184.6954 
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V. EXPERIMENTS AND RESULTS 

MFO and LCMFO were tested for different TSP datasets ranging from 16 to 202 dimensions [40]. TABLE 
I refers to the settings of search parameters. All datasets run in experiments for 500 iterations (denoted as 
Max_iterations in TABLE I) and a population of search agents of size 500 (denoted as POP_size in TABLE I). 
Real values of a solution were generated between two bounds, namely lower bound of -10 and upper bound of 
10 (denoted as lb and ub in TABLE I respectively). A crossover probability of 0.01 was used (denoted as  in 
TABLE I) and the step length of Lévy distribution β was set to 1.5. Each experiment is repeated for 10 of 
computer runs.  

Fitness value of average of solutions and best solution in each run were reported as shown in TABLE IIIIV 
(columns Average and Best respectively). The improvement ratio was calculated 

as1
       

       
. Results show a notable improvement in the quality of reported solutions 

when using the crossover operator. The improvement ratio obtained on average by LCMFO ranges between 
about 20% to 40% for different dimensions. Also, similar improvement ratio was registered for best reported 
solution by LCMFO over all runs except for the dataset Ulysses 16 that is an instance of a problem with 
dimension 16. Of course the distances matrix for each dataset plays a crucial role of determining feasible and 
unfeasible permutation solutions. Thus we don't expect that there should be a relationship between problem 
dimension and reported improvement ratio.   

 
 

Fig. 4 Fitness of average solution of LCMFO and MFO 
 

 
 

Fig .5 Improvement ratios for Average and Best 
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Reported results in TABLE VVI were also graphically plotted for more clarification about LCMFO 
algorithm behaviour. Fig. 4 shows a comparison between absolute fitness values of the average of solutions 
obtained by both techniques (column Value of Average in TABLE VIIVIII). Fig. 5 shows a plot of improvement 
ratio for both average of solutions and best solution (columns Improvement ratio of Average and Best in 
TABLE IXX) by LCMFO algorithm. Such figures also tell that the proposed algorithm behaves reasonably 
where the dataset with minimum improvement ratio on average has also the minimum improvement ratio for its 
best solution (namely Ulysses 16). Same observation holds for that dataset with maximum reported 
improvement ratio (namely Bayg 29). 

VI. CONCLUSION 

Although LCMFO algorithm decreased the speed of convergence rate of MFO yet there is still a change in 
solution with the increase of the number of iterations. LCMFO leads to obtaining more efficient solutions which 
are more close to the optimal one. In other words, LCMFO algorithm reduces the gap between quality of 
reported solutions and optimal one on the cost of speed of convergence. But this result may be considered quite 
fair regarding the difficulty of the problem under study like TSP. Moreover, mapping form continuous space to 
discrete space increase the challenge of applied search technique. It is obvious that the quality of an obtained 
continuous-values solution degrades after mapping it to a discrete form. It will be motivating to investigate other 
permutations-based problems in the class of NP-hard problems using LCMFO algorithm. Also, testing LCMFO 
with other mapping techniques (from continuous values into permutations) is of interest. 
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