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Abstract—Potassiumpolytitanate(PPT) with different degree of protonation is proposed as a new kind 
of inorganic adsorbent for lithium ions recovery from natural aqueous solutions. The phase and chemical 
composition, as well as the particle size distribution of the sorbents are studied using XRD,XRFanalysis, 
and laser diffraction. The efficiency of lithium ions recovery and the adsorption process kineticsfor are 
investigatedusing standard solutions of lithium chloride. The sorption capacity and kinetic 
characterisitcsof the studied materials are estimated using pseudo-first and pseudo-second-order models. 
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I. INTRODUCTION 

In recent years, a need for lithium and its new natural sources hasbeen sharply increased. This is dueto the 
fact that lithium is an indispensable element in the production of electrode materials for batteries used in 
portable electronics, hybrid cars and electric vehicles. On the other hand, lithium is widely used in ceramics, 
glasses, lubricating compositions, metal alloys, air cleaning and other areas. 

According to the experts, land resources represented by ores or brines contain more than 14 million tons of 
lithium [1]. Although the amount of lithium in these resources is sufficient for the current consuming, it is 
necessary to prepare new technologies to use alternative sources and meet growing demands expected in the 
near future. As an example of such sources it is possible to consider sea water containing up to 230 billion tons 
of lithium, although the concentration of alkali metal in it is rather low (0.1-0.2 mg/l) [2]. 

It is known that pyrometallurgy and hydrometallurgy processes can be used to extract lithium from primary 
and secondary resources. Although pyrometallurgical processes have relatively low exploitation cost, they 
require intensive monetary investments and are accompanied by undesirable environmental pollution. 
Hydrometallurgical processes, including solvent extraction, adsorption (ion exchange) and precipitation, are 
promising methods for extracting lithium in the form of pure lithium carbonate (Li2CO3) and lithium hydroxide 
(LiOH) due to a low energy cost and minor waste production. However, Li (I) exists in the natural aqueous 
solutions altogether with other metal ions, such as Na (I), K (I), Ca (II), Mg (II), Fe(III), etc. Therefore, the 
existing impurities must be removed, otherwise the product will have low purity due to co-precipitation of other 
metals.  

Although the represented in the market commercial reagent allow recovering of Li from acidic aqueous 
solutions with high separation factor between lithium and other monovalent metal cations, a use of these 
materials is limited due to their low extraction efficiency. Therefore, for sources in which the concentration of 
lithium ions is low and concentration of other cations is high, reactions based on adsorption and ion exchange 
are more effective. 

There are a number of inorganic ion-exchange materials with extremely high selectivity only for lithium ions. 
Potential sorbents for the extraction of lithium from water resources are compounds with a spinel structure of 
Li-Mn-O composition. Depending the methods of synthesis, the adsorption and ion-exchange capacities for 
extracting lithium from various water resources vary from 1.5 to 55.0 mg/g [3-14]. 

However, nowadays, the titanium oxides are considered as promising sorbents due to their greater stability,in 
comparison with themanganates,in the technological processes accompanying with desorption of lithium, which, 
obviously, are applied for the following extraction of Li and regeneration of the sorbent. At the same time, the 
structure of the crystal lattice of hydrated titanium oxide (or metatitanic acid) determines its selectivity with 
respect to lithium ions in a presence of such cations as sodium, potassium, magnesium, and calcium ions, typical 
inthe saline lakes [15]. 
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Protonated forms of potassium polytitanate (PPT) are similar in their composition and structure with 
metatitanic acid and can become a more attractive alternative due to low cost of synthesis and extremely high 
sorption capacity. At the same time, the structural characteristics of the protonated PPT can be varied by 
adjusting the protonation conditions. It is assumed that asubstitution degree of the potassium ions by hydronium 
ions presented in the protonated form of PPT will affect the amount of lithium ions extracted from aqueous 
solution, and, as a consequence, influence the composition and structure of lithiated products obtained during 
lithium ions recovery. 

Thus, in this work, it is proposed to use protonated potassium polytitanates as a new inorganic ion exchangers, 
effective for extracting lithium from aqueous solutions. Amorphous potassium polytitanate (PPT) due to its high 
imperfection and layered structure is an effective ion exchanger and sorbent for ions of various metals.  
However, aqueous dispersions of PPT have high pH value, and in the neutral or acidic media potassium 
polytitanate particles uncontrollably changes their chemical composition due to replacement of metal ions by 
protons / hydronium ions.That is why; the goal of this work is to recognize the effect of the protonation degree, 
controlled by pH value of preliminary treatment, on efficiency of lithium extraction from aqueous solution of its 
salt. 

II. EXPERIMENTAL 

Protonated potassium polytitanates were obtained by the treatment of aqueous dispersion of the parent 
potassium polytitanate (PPT), characterized by strong alkaline reaction (pH ~ 10.5), with aqueous solution of 
sulphuric acid, till obtaining a stable pH value equal to2; 3; 4; 5; 6; and 7. The obtained powders were 
centrifuged, dried at 40 oC for 4 h and grinded up. The protonated forms of the produced PPT derivatives were 
marked as PPTP2, PPTP3, PPTP4, PPTP5, PPTP6, PPTP7, in accordance with pH value of their aqueous 
dispersions,  and further characterized by XRD (diffractometer ARL X’TRA), laser diffraction (particle size 
analyzerLaser Analyzerte 22 Micro Tec plus) and X-ray fluorescence analysis (X-ray fluorescence spectrometer 
SPECTROSCAN MAX-GV). 

To study the sorption kinetics and adsorption capacity of the produced PPT modifications, the suspensions of 
protonated potassium polytitanates (5 g/l) was mixed with lithium chloride solutions ([Li] = 10mmol/l).A 
change of [Li] was analyzed by potentiometric method every 5, 10, 20, 30, 60, 120, 180, and 240 minutes using 
laboratory equipment I-160MP with lithium-selective electrode (ELIS-142Li). 

The efficiency of Li (I) ions extraction by protonated potassium polytitanates was calculated in accordance 
with (1): 
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where С0and Сt are the initial and current concentration of Li (I) in the solution. 

An amount of the adsorbed Li (in mmol/g) at equilibrium (qe,) and during the process (qt) were calculated 
using the formulas (2) and (3): 
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where Co, Ct and Ce correspond to [Li] in the initial, currentand equilibrium condition, respectively; V is a 
volume of the solution (l); m is a  weight of the PPT powder used as the adsorbent (g). 

The obtained experimental data were processed using the kinetic equations corresponding topseudo-first- and 
pseudo-second-order models (equations4 and 5): 
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where k2 is pseudo-second-order rate coefficient, g/mmol·min. 
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III. RESULTS AND DISCUSSION 

In accordance with XRD data, all the protonated potassium polytitanates are X-ray amorphous materials (Fig. 
1). 

 
Fig. 1. XRD date of potassium polytitanates: 1 - TiO2 (anatase); 2 – TiO2 (rutile); 3 – K0,48H0,22Ti1,825O4(H2O)0,52; 4 – K2Ti2O5 

Onlyweak and wide reflections corresponding to K2Ti2O5 and crystalline forms of TiO2 (for PPTP3 and 
PPTP4) could be identified. The appearance of TiO2 crystals at low pH can be explained by intensive K+ ↔ 
H3O

+ ion-exchange taking place at these conditions favouring formation of unstable titanium acid, which 
decomposes producing crystallized titanium dioxide. In the case of samples protonated at higher pH values, the 
reflectionscan be considered as corresponding to nanoscale partially protonated forms of the potassium titanate, 
(K0.48H0.22Ti1.825O4(H2O)0.52). 

According to the results of elemental analysis (Table I), a regular decrease from 8.3 wt.%(PPTP7) down to 
1.1 wt.% (PPTP2) in the potassium content was noted.  

An average particle size of the protonated potassium polytitanates does not exceed 12 μm, and a minimal 
value of this one was obtained for PPTP4 (Table I). 

TABLE I.  The Chemical Composition of Potassium Polytitanates, Protonated at Different pH Values 

Sample 
name 

The content of oxides, wt.% 
Average particle 

size, μm TiO2 SO3 K2O Al2O3 SiO2 

PPTP2 93,9 3,1 1,1 1,1 0,2 12 

PPTP3 95,0 1,6 2,5 0,5 0,2 11 

PPTP4 93,7 1,8 3,5 0,7 0,2 7 

PPTP5 93,5 0,1 4,8 0,9 0,2 11 

PPTP6 90,0 0,4 8,0 0,9 0,2 10 

PPTP7 90,2 0,1 8,3 0,7 0,2 8 

The kinetics of Li (I) ions extraction by protonated potassium polytitanatesis shown in Fig.2. 
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IV. CONCLUSION 

The obtained results confirm that the protonated forms of the amorphous layered potassium polytitanate 
(PPTP) represent a new effective inorganic sorbent for the extraction of lithium ions from aqueous solutions. 
The PPTP samples obtained during the treatment of the parent potassium polytitanate (pH~10.5) in the sulfuric 
acid aqueous solution at pH value varied from 2.0 to 7.0 retain an amorphous structure of the initial PPT but are 
characterized with increased specific surface area. The highest adsorption capacity is recognized for the PPTP 
powders modified at pH~4. It is assumed that these conditions favor obtaining the PPT powder characterized 
with optimal combination of the specific area and average size of particles. The kinetics of the Li ions sorption 
by PPTP is in a good agreement with the pseudo-second-order model. This one indicates that in the adsorption 
process can be considered as ion-exchange chemical reaction and allows to estimate the equilibrium adsorption 
capacity of PPTP4 equal to 1.1 mmol/g. The obtained characteristics correspond to the best similar materials 
mentioned in the literature, have relatively low cost and very high rate of Li extraction. The last is considered as 
a result of large interlayer distance in the structure of protonated potassium polytitanates. 
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