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Abstract—Path planning is a fundamental task for any robot, even more when it has to be deployed in 
dynamic environments, for example, with human interaction, as is the case of service robots. This activity 
that turns out to be simple for a person or pet in their daily activity, turns out to be a computational NP-
complete problem quite difficult to solve. This kind of problems are nondeterministic and with a time of 
computational solution of polynomial type. Many strategies have been formulated to solve this problem, 
but as such it is still an open engineering problem. We propose to use an Ant Colony Optimization (ACO) 
algorithm to define in a short time a pseudo-optimal path considering the shortest possible distance. To 
simplify the scheme and make it a real application, we decompose the navigation environment into 
regions in order to move the robot along them. The proposed scheme is evaluated for a real environment 
and robot with different obstacle configurations. In all cases the scheme was able to find adequate 
solutions without high computational costs. 

Keyword - Ant colony optimization, Navigation, Optimization, Path planning, Pheromone,Pseudo-optimal, 
Robot 

I. INTRODUCTION 

Planning the movement of robots is a quite complex problem, even more so when we consider dynamics in 
the environments. The most basic problem is to make a robot move from one point to another within an 
environment. This problem becomes even more complicated if such a solution requires using the most efficient 
path, which is usually the shortest. For this reason this kind of problems are usually attacked with uninformed 
search strategies. 

The Ant Colony Optimization (ACO) algorithm has been proposed many times as a motion planning strategy 
for robots [1, 2, 3, 4, 5]. In most cases the algorithm is defined specifically to find the shortest path in a known 
environment. This is given the very nature of the algorithm. It is common to find in these applications that the 
navigation environment is divided into squares in which the robot fits perfectly. This approach, however, is 
difficult to fulfil in reality, since the dimensions of the robot and itson board sensors make it difficult to locate it 
in the grid (and quite expensive). In addition, the robot is required to have an excellent odometry, which can 
also generate movement errors. 

However, this is not the only kind of robot in which the designer seeks to optimize a path. This strategy has 
also been used in robotic arms, submarine movement, automated guided vehicle, or welding robots. In these 
applications the kinetic, dynamic and energetic equations are rewritten in such a way that the problem becomes 
a search, and then the ACO is applied to look for the solution [6, 7, 8, 9]. In this kind of applications the 
algorithm has also been quite successful. 

A particularly interesting case, and of much current interest is the multi-robot. This is a multi-objective 
optimization problem that has the characteristic of being intimately linked to the structure of the ACO, so the 
algorithm could well be emulated in physical form with many robots. However, the typical strategy is also to 
use off-line the ACO to find the shortest path, and then transfer this information to the group of robots [10, 11, 
12]. 

ACO has also mixed with other movement planning strategies for robots [13, 14, 15, 16, 17]. The algorithm 
has been mixed with potential fields, tabu search, genetic algorithms, particle swarm optimization, and even 
fuzzy logic. In these cases the alternative strategy is used as heuristics to define the possible paths under the 
conditions of the task, and the ACO performs the best optimization. These strategies tend to be more real than 
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the traditional grid, but the selected heuristics inherit their problems to the strategy, as for example problems of 
local minima. 

We propose a path planning strategy for a robot in a dynamic observable environment using ACO for the 
selection of the most optimal path within the possible paths. Instead of using grids or heuristics, and thinking of 
applying the strategy on a real robot navigating a real environment, we decompose the navigation environment 
into regions, and force the robot to navigate from region to region. This idea reduces the complexity of the 
problem by reducing the possible paths, and facilitates the movement of the robot by defining the regions 
according to their size and topology of the environment. 

The following part of the paper is arranged in this way. Section 2 presents preliminary concepts and problem 
formulation. Section 3 illustrates the design profile and development methodology. Section 4 we present the 
preliminary results. And finally, in Section 5 we present our conclusions. 

II. PROBLEM FORMULATION 

A set of n robots is defined in a ܹ workspace. Let ܹ ⊂ Թଶ be the closure of a contractible open set in the 
plane that has a connected open interior with obstacles that represent inaccessible regions. Let ߲ܹ denote the 
boundary of ܹ. 

Let O be a set of obstacles, in which each O⊂O is closed with a connected piecewise-analytic boundary that 
is finite in length. Furthermore, the obstacles in O are pairwise-disjoint and countably finite in number. Let 
ܧ ⊂ ܹ be the free space in the environment, which is the open subset of ܹ with the obstacles removed. 

Consider that the free space ܧ is divided into a set ofs connected regions such that (Eq. 1): 
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The decomposition of ܧ into regions is done according to the movement needs of the robots, but in such a 
way that each region r is small in front of ܧ, and large in front of the size of the robots, in this way each robot 
can be considered as a moving point. See Fig. 1 for an example. Decomposition can be done with some 
geometric strategy, such as visibility graphs, approximate cell decomposition, exact cell decomposition or 
Voronoi diagrams. 

 
Fig. 1.  Decomposition of the environment in regions. Diagram of Voronoi created in an environment from six points representing obstacles 

Each region can be represented as a node of a graph, therefore the path between a region i and another region 
j can be represented by a graph as the connection of the nodes (regions) connected from i to j (Fig. 2). We want 
to optimize the selection of the route between the regions i and j by means of an Ant Colony Optimization 
algorithm (ACO). In such sense the ants represent the movement of the robots, and using pheromone deposits, 
the probability that an ant k located in node i will choose to go to another node j is given by (Eq. 2): 
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Where: 

 ߬௜௝
௞ t = Pheromone levels. 

 ߟ௜௝
௞  = Heuristic information (application dependent). 

 ߙ,  .Weights pondering the importance of pheromone and heuristic values (application dependent) = ߚ
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Fig. 2.  Graph with the navigation path between regions r1 and r6 shown in Fig. 1 

As in real ants, the higher the level of pheromone on a path, the greater the probability that the ants will take 
the path again. The summation in the denominator considers all possible choices (regions or nodes) in the ௜ܰ

௞ set 

when the ant is in node i. When 0 = ߚ, ൫ߟ௜௝
௞ ൯

ఉ
 = 1, then the probability only depends on the pheromone levels. 

On the other hand, when 0 = ߙ, the probability only depends on the heuristic values (the ant moves towards the 
nearest node). 

An important characteristic of the ACO is the percentage or rate of evaporation from the pheromone ߩ. This 
percentage of evaporation from node i to node jis determined as (Eq. 3): 
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After evaporation occurs, the new pheromone level is updated with additional pheromone deposits placed in 
the path by the ants that use it. The update is given by (Eq. 4): 
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 ௞is the associated cost or reward of ant k for choosing the path. According to the algorithm, based on theܥ
update of the pheromone level in a finite time there will only be one path between nodes i and j, and this will be 
the one with the lowest cost. 

The objectiveof this research is to find the shortest route between an arbitrary initial position (region i) and 
the target point (region j), advancing in ܹ avoiding obstacles even when they move (dynamic environment).We 
want the shortest route, and this will be the characteristic to optimize with the ACO. 

III. METHODOLOGY 

We propose the use of an ACO to select the navigation path in an observable environment. The navigation 
environment has been segmented into regions according to the size of ܹ and the location of the obstacles. The 
idea of the segmentation process is to divide the navigable free space ܧ into regions in such a way that the 
regions become desired locations for the robot. Therefore, the size of the regions must be small compared to the 
environment. In addition, we want the robots to be able to move smoothly within these regions, so we select a 
region size considerably larger than the area the robot occupies on the ground. According to these definitions, 
the ݎ௡  regions defined in ܧ  can each be represented as a navigation node, i.e. the navigation path selection 
problem has a total of n nodes that can represent the position of the robot at any time. 

The goal is to find the shortest path between the initial node and the target node. Consequently, for the design 
of the solution to the problem the size of the navigation environment loses importance, and the existing distance 
between nodes becomes more important. The total length of the path is selected as the cost or reward function 
associated with each possible solution. This total length is defined as the sum of the distances between the nodes 
that make up the path. We implement the algorithm for the navigation environment in our laboratory. We have a 
square space of 4.2 m x 4.0 m. On this environment we have configured different navigation environments by 
placing several obstacles in different locations. Our robot is the ARMOS TurtleBot 1 robotic platform with a 
ground plane size of 55.8 cm x 32.5 cm (Fig. 3). 

 
Fig. 3.  ARMOS TurtleBot 1 robotic platform. The robot has four tracks, each driven by a DC motor. It has WiFi communication capacity, 

and a control unit commanded by a Cortex A53 processor at 1.2 GHz 
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There is a great variety of options for regions and their sizes, it is not fixed the number of nodes adjacent to a 
given node i. The regions are evenly distributed along ܧ, but the distance between two regions (nodes) is always 
different, and is measured with respect to the centroid of the region. Fig. 4 shows an example according to the 
segmentation performed in Fig. 1. The distances are measured in centimeters, however in the algorithm are 
normalized in the range of 0 to 1. In the simulations the robot was considered as a point, with the ability to move 
in any direction. 

 
Fig. 4.  Regions and their centroids according to the segmentation in Fig. 1. Region 1 has two adjacent regions (r2 and r4), while region 4 has 

four adjacent regions (r1, r2, r5 and r6). The distance between the centroids of r2 and r3 is 1, while the distance between the centroids of r2 
and r6 is 1.5 

We use different obstacle configurations in the same environment, including the one in which there are no 
obstacles. Fig. 5 shows one of these configurations with five obstacles. The figure also shows the segmentation 
into regions and the location of the initial (green point region) and target (red point region) regions. These 
regions were selected arbitrarily, and changed with each new environment configuration. In this case we applied 
Voronoi from the four vertices of the obstacles, and then eliminated the intersection of the regions with the 
obstacles making the edges of the obstacles become the new boundaries of the regions. In total we create 20 
regions, and label them sequentially from top to bottom and from left to right. 

 
Fig. 5.  One of the configurations used for the evaluation of the proposed strategy. The starting point was arbitrarily selected at the top 

(green) and the target point at the bottom (red). According to the obstacles, the environment was decomposed in 20 regions 

We apply the ACO algorithm to find the shortest path. Fig. 6 shows a flowchart of the implemented algorithm. 
As such it is a classic Ant Colony Optimization algorithm, first we configure the starting node (region), and then 
we search the following nodes to find the next node with the lowest cost. Then it verifies if the found node is the 
target node, if it is not it keeps moving from the new position always looking for the next node with the lowest 
cost. With this strategy at some point it will find the target node, in that moment it must begin to optimize the 
path. For it begins to play with the update of the value of pheromone, if the path is not optimized the logic 
makes that the pheromone evaporates and the value is updated according to the deposits of pheromone, and the 
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whole algorithm is restarted until it finds an impossible way to improve or finish the iterations programmed in 
the algorithm. 

 
Fig. 6.  Flowchart of the ACO-based search algorithm 

To evaluate the behaviour of the strategy in a dynamic environment we play with the obstacles. That is to say, 
after establishing an environment configuration and finding an optimal path with our algorithm based on ACO, 
we move the obstacles and apply again with the new environment configurationwithout altering the current 
pheromone value. 

IV. RESULTS AND DISCUSSION 

In the algorithm ants travel from the initial region to the target region evaluating all possible paths. We 
assume that they return using the same path and depositing pheromone on their return. They deposit more 
pheromone at short distances than at long distances and only along the path used. Each ant decides 
autonomously which region to visit according to the level of pheromone on the path and the distance to the 
nearest region. 

For example, for the case shown in Fig. 5 we measured in the laboratory and constructed the distance matrix 
as shown in Fig. 7. The distances were measured in centimetres between the centroids of each region, and only 
for the neighbouring regions of each region. For example, from region 1 it is only possible to move to regions r2, 
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r3 and r4. For the other distances an infinite value was assigned to make the trip to them impossible. In the same 
way we did for the distances of a region to itself (diagonal of the matrix). 

 
Fig. 7.  Defined distance matrix for the documented environment 

The pheromone deposit matrix is defined of the same size as the distance matrix. This matrix is initialized 
with small values all of equal value. The configuration of this example environment is shown in the lower part 
of Fig. 7. The variables used in the function are in order: 

 Distance matrix: Square matrix of distances. 

 Number of ants running per iteration: 100 

 Number of best ants who deposit pheromone: 20 

 Number of iterations: 2000 

 Rate at which pheromone decays: 0.95 

 Alpha (exponent on pheromone): 1 

 Beta (exponent on distance): 1 

The algorithm spent just under a minute finding the shortest path as shown in Eq. 5. We have represented this 
response in the navigation environment in Fig. 8, and as a graph in Fig. 9. The path uses six nodes (regions): r1, 
r4, r8, r13, r17 and r19. The total distance is 359 cm. 

,ሺሾሺ1 :݄ݐܽ݌_݀݁ݐݎ݋݄ݏ 4ሻ, ሺ4, 8ሻ, ሺ8, 13ሻ, ሺ13, 17ሻ, ሺ17, 19ሻሿ, 359.0ሻሺ5ሻ 

 
Fig. 8.  Navigation path selected by the proposed algorithm drawn on the real environment in laboratory 

 
Fig. 9.  Navigation path selected by the proposed algorithm represented by a graph 
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We tested the algorithm with diverse configurations of environments modifying the amount and position of 
the obstacles but maintaining the location of the starting points and target, therefore the initial and target regions 
were always the same. The algorithm in each case was able to identify the shortest path between the two regions. 
The simulation time is basically the same in each case. The computational cost in all cases is very similar. 

The last tests with the strategy sought to automate the generation of regions from photographs of the 
environment and image processing. The final objective is to make the strategy autonomous and independent of 
the configuration of the environment. 

V. CONCLUSION 

In this paper we propose a strategy of quasi-optimal selection of the shortest path for a robot in an observable 
environment. The strategy uses as optimization scheme the Ant Colony Optimization (ACO) algorithm. To 
make viable the strategy on real navigation environments, in particular those facing a service robot, we propose 
to decompose the free space of the environment in a finite number of regions by means of some geometrical 
strategy, in particular, considering the location of the obstacles. This decomposition must be done in such a way 
that the regions will be small with respect to the environment, thus the navigation path is more precise. The 
results of the strategy under laboratory conditions demonstrate its success in determining the shortest path. 
Future research may include other additional criteria to the algorithm, such as the dangerousness of the path or 
the advantages of a path as a source of energy. It is also necessary to evaluate much more complex 
environments and automate the strategy. 
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