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Abstract - This paper shows the design of a temperature control for a water heater using a digital 
controller on an FPGA with SPI communications protocol, which makes use of a thermo-resistance with 
alternating current (110v-60Hz) to heat water from the room temperature to its boiling point. The 
Dimmer that has a Triac BTA16-600B works with control values between 3.3-5 Volts with a charge value 
for up to 220 Volts AC and peak currents of 5 Amps, the temperature sensor is a K-type thermocouple 
coupled to a Cold junction Max 6675K compensator. 

Keyword-FPGA, Digital Control, Temperature control, Measuring and instrumentation. 

I. INTRODUCTION 

Currently the work of electronic instrumentation has changed radically, since the integration of signal 
conditioning circuits [1], make it not only required to perform the digital readings by a communication bus [2], 
but also to design robust systems that allow centralizing information through a field bus between different 
programmable digital devices and thus have control of all system variables. [3-4] 

At present, there is a strong tendency to use programmable logic devices type FPGA to perform the 
calculations of various digital controllers [5], since they can perform the necessary calculations concurrently; 
what makes them ideal in applications that require a high response speed [6], dynamic shift of the sampling 
period [7], in addition to performing tasks of communication and visualization of the system variables in a 
parallel way in a graphical interface [8].  

The systems of data acquisition and temperature variable control are widely used in various industrial and 
productive applications, ranging from a simple temperature control of a tank, machines for precision metal 
welding [9], chemical plants [10], until the temperature control of one of the modules of a spaceship [3]. In 
general terms, you can find a large number of applications that carry out processing tasks with fairly short 
sampling and capture times [11], making corrections to drift errors, errors due to Gaussian noise, delays due to 
acquisition time, correction by cold juncture, etcetera. [12]; procedures that were performed with analog 
circuits, but nowadays are performed with sensors packed in the same silicon module that performs the work of 
conditioning and transmission of information. 

In addition to the process of signal acquisition and controller calculation, linearization and signal filtering 
tasks are required [13-14], along with the possibility of performing control systems such as PID, Fuzzy Logic 
[15] or another digital technique that fits the needs of the system, even could be used auto-tuning techniques 
applicable in an FPGA-type device to some of the aforementioned control techniques. 

II. METHODOLOGY 

A. Cold junction compensator Max 6675K 

The operations of a thermocouple are based on the energy change in which there is a flow of energy from the 
area of higher temperature to lower temperature, in the union of the two metals that this thermocouple is formed 
a potential difference between the ends which make up the metals and varies depending on the difference in 
temperatures. The responses of these measurements depends on the nature of these metals and their 
manufacture, the part that comes into contact with the element to be measured is called hot junction which is 
directly the measurement that is of interest for the operation of the system. The tips of the elements where the 
measurement is taken electrically are called cold junction. The equation that describes this electrical behavior is 
given by: 

∗ ∗ ∗                      1  

Where α is a parameter dependent on the types of materials used for its manufacture and gives the sensitivity 
of the tension at the exit of the cold junction, To is the ambient temperature where the measurement will be 
made and the temperature of interest. [16] 
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a) 

 
b) 

Figure 5. (a) State diagram (b) Diagram of blocks  

Modeling, design and implementation of digital control over the FPGA 

 
Figure 6. Loop Diagram closed 1 and 2 

The closed loop system in this case can be described as a feedback system with gain 1, since the sensor 
directly delivers the measured values and it is not necessary to convert and manipulate the data delivered by it. 

The data delivered by the FPGA, which were subsequently transmitted under the SPI communication, are 
analyzed and validated by the system under a PID controller, are delivered to the actuator under a temperature 
value set by the user. The PID controller under a compensation coefficient and with a peak over no more than 
5% guarantees a heating speed in the shortest possible time; it is a system that guarantees a non-saturation of the 
Dimmer. 

The response in open loop was found with the measurement of heating times until these measurements 
reached desired constant values. The Matlab identifier gives us a graph of temperature vs. time, see Fig. 7, in 
which it can be seen that the maximum stable value is around 92 degrees, which is the boiling value of water at 
the height of the city in the that the tests were done. 
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