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Abstract—This paper performs a simultaneous cross-sections and semi-rigid connections optimization 
for plane steel frames with semi-rigid beam-to-column connections, in company with fixed, semi-rigid and 
hinged base connections using, for the first time, a bees algorithm (BA), along with a genetic algorithm 
(GA). Both of algorithms are applied using Shallan et al. [1]optimization model. In this paper, the 
truthful Kanvinde and Grilli[2]nonlinear model is used for simulating semi-rigid base connections, where 
this model considers all deformations in different base connection elements under the applied loads to 
determine the relative spring rotation θr for the sake of getting accurate base rotational stiffness value. In 
addition, Frye and Morris [3]nonlinear model is used for simulating semi-rigid beam-to-column 
connections. The P-∆ effect and geometric nonlinearity are considered. The stress and displacement 
constraints of AISC-LRFD [4] specifications, alongside size adjustment constraints, are considered in the 
design process. 

Keywords -Genetic algorithm; bees algorithm; plane steel frame; optimization; semi-rigid connection; 
geometrically nonlinear; the P-∆ effect; semi-rigid base. 

I. INTRODUCTION 

Most of the design procedures shorten the simulation of steel connections by assuming them either a 
perfectly pinned or a fully rigid connection. In opposition, actual steel connections have some rotational 
stiffness between these two severe assumptions, and their real behavior is complicated and nonlinear. Thus, for a 
precise structural analysis, a nonlinear model is required for simulating steel connections either beam-to-column 
connections or base connections, along with considering the P-∆ effect and geometric nonlinearity (i.e., the 
change in coordination). 

Two types of steel constructions are termed in AISC-LRFD[4]: fully restrained (FR) and partially restrained 
(PR), where the PR type is considered according to rational experimental and numerical studies.  

Some researchers worked on the behavior of semi-rigid connections using experimental studies to get the 
nonlinear behavior of the connection such as Frye and Morris[3], Abdalla and Chen[5], Chisala[6], Kim et al. 
[7], Wu et al. [8], Aydin et al. [9]and Maali et al. [10]. Due to its rational simulation and it's wide usage in the 
literature studies, the odd-polynomial Frye and Morris [3]model are used in the current study. On the contrary of 
beam-to-column connections, an accurate model of semi-rigid base connections is usually unnoticed in most of 
the literature studies. Only Kanvinde and Grilli[2]model is reasonably accurate for modeling semi-rigid base 
connection, where it considers deformations of all different elements of the base connection, so this model is 
used in the current study to simulate base connections. 

BA is one of the evolutionary population-based optimization algorithms, which simulates the natural 
foraging behavior of honey bees to discover the best solution to get a honey.Furthermore; GA is one of the first 
evolutionary population-based optimization algorithms, which imitates the evolution theory of Darwin.    

II. SUMMARY OF THE LITERATURE STUDIES 

Table 1 shows a comparison between the previous literature studies, where all the literature studies simulate the 
beam-to-column connection using Frye and Morris [3]model, while Hensman and Nethercot[11]model is used 
to simulate the base connection if it is considered as a semi-rigid. 
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Yes 

NO     

Initial Population 

Fitness Evaluation 

Selection  

Crossover and Mutation 

New Population 

Stop Criteria

End 

Table 1 Comparison between previous studies 

Study Frame Base Used algorithm Design code 

Shallanet al.[1] Plane Fixed TLBO, GA AISC-LRFD 

Musa and Ayse[12] Space Fixed GA AISC-LRFD 

Musa Artar[13]a Plane Fixed TLBO AISC-ASD 

Musa and Ayse[14] Plane Semi-rigid GA AISC-ASD 

Musa and Ayse[15]b Plane Fixed GA AISC-LRFD 

Musa and Ayse[16]b Space Fixed GA AISC-LRFD 

Hadidi and Rafiee[17] Plane Fixed New HS AISC-LRFD 

Mohammad and Payam[18] Plane Fixed Fuzzy GA AISC-ASD 

Alqedra et al.[19] Plane Fixed ITHS AISC-LRFD 

Arafa et al.[20] Plane Fixed HS AISC-LRFD 

Hadidi and Rafiee[21] Plane Fixed Improved PSO AISC-LRFD 

Rafiee and Hadidi[22] Plane Fixed BB-BC AISC-LRFD 

Hayalioglu and Degertekin[23] Plane Semi-rigid HS AISC- LRFD 

Hayalioglu and Degertekin[24] Plane Semi-rigid GA AISC-LRFD 

Hayalioglu and Degertekin[25] Plane Fixed GA AISC-ASD 

Degertekin and Hayalioglu[26] Plane Semi-rigid GA Turkish code 

aBraced frame, b Composite beam, ITHS: Intelligent tuned harmony search, TLBO: Teaching-
learning-based optimization, HS: Harmony search,PSO: Particle swarm optimization, BB-BC: 
Big bang-big crunch. 

III. GENETIC ALGORITHM (GA) 

A genetic algorithm is one of the oldest optimization algorithms inspired by John Holland [27], where 
it mimics the evolution theory of Darwin. GA starts with an initial population consists of a certain 
number of listed suggested solutions, where each solution is called individual or chromosome. 

Each individual or chromosome consists of a string of genes, where each gene represents a certain 
suggested optimization variable. These genes are coded in a binary-string, so decoding process is 
proceeded to convert genes to decimal values, then the fitness value of the problem using these suggested 
variables is determined for each individual in the initial population. 

Based on the fitness value of each individual, the selection process is carried out to select chosen 
individuals to go through a reproduction process. Crossover and mutation are the main reproduction 
parameters used for creating the next generation of solutions, by repeating the same steps until reaching 
the last generation. Fig. 1 shows a flowchart of GA processes. 

 

 
 

Fig. 1 Flowchart of the basic GA 
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IV. BEES ALGORITHM (BA) 

The BA is an optimization algorithm inspired by Pham [28], it mimics the natural foraging behavior of 
honey bees to find the best solution. 

The following is a description of the BA steps, while its flowchart is shown in Fig. 2.  

1- The algorithm starts with the (n) scout bees being located randomly in the search space, these bees 
represent the initial population, for example, n=10 as shown in Figs. 3 and 4. 

2- The fitness of the sites visited by the scout bees after the return are evaluated and sorted in a 
descending order and stored in an array.  

3- The best m sites will be selected out of (n), and then we choose the best e site out of (m), for 
example, m=5, and e=2 as shown in Fig. 5. 

4- Recruit the number of bees for the selected sites and evaluate the fitness of the sites as follows: 

A number of bees (n2) will be selected randomly to be sent to e sites and choosing (n1) bees randomly 
which their number is less than n2, to be sent to m-e sites. 

 5- A neighborhood search sites of a size (ngh) is selected, where ngh will be used to update the m bees 
declared in the previous step if there is any better neighbor solution as shown in Figs. 6,7 and 8.  

6- Choosing the best m bee (the highest fitness) to the next bee generation where other bees in the 
generation will be assigned randomly around the search space (n-m) as shown in Fig. 9. 

7- Steps from 1 to 5 are repeated till reaching the last generation and get the optimum solution as 
shown in Fig. 10. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Flowchart of the basic BA 
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Fig. 3 Area of search, where highest location needed to be found Fig. 4 Initialize a population of (n=10) scout bees with random search 
and evaluate the fitness 

 

Fig. 5 Select (m=5) for best bees, and (e=2) for elite bees and (m-
e=3) other selected bees 

Fig. 6 Determine the size of neighborhood size (ngh) 

 

Fig. 7 Recruit bees for selected sites (more bees for the e=2 elite 
sites) 

Fig. 8 Select the fittest bee from each site 

Fig. 9 Assign the (n–m) remaining bees to random search Fig. 10 Find the global best point 

V. MODELING OF A SEMI-RIGID BASE CONNECTION 

Hayalioglu and Degertekin[23], [24],[26] performed an optimization for a semi-rigid steel frame with a 
semi-rigid base, but they used Hensman and Nethercot[11] model to determine stiffnessKbase of four bolt 
flexible base as shown in Eqs. 1 and 2. This model is a linear-constant model and doesn't mimic the 
actual nonlinear behavior of the flexible base, and doesn't study deformations in different base connection 
elements, also it doesn't take consider the applied loads on the base connection. 

20

2 tZE
K base


  (1) 

22
fc

b

tH
rZ   (2) 

where E is the modulus of elasticity, t, rb, Hc, and tf are shown in Fig. 11. 
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whereL୲ୣ୬ୱ୧୭୬ is shown in Fig. 13, E୮୪ୟ୲ୣ is the modulus of elasticity of base plate, t୮ is the base plate 
thickness, and G୮୪ୟ୲ୣ is the shear modulus of the base plate equals 77.2 Gpa. 

 Base plate flap deformation in compression side ∆௖௢௠௣. 
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where m is the flap length of the base plate as shown in Fig. 13.  

Finally, a spring rotation θ୰ of the base connection can be calculated as follows. 

 
 2/

...

NS
comptenconcrod

r 


  (20) 

For simplification, some dimensions are considered fixed during the design optimization procedure such 
as rod gross diameter=2.5 cm, Lrod=50 cm, d =120 cm, Nrod=2, t୮=2.5 cm, and the base plate extension out 
of column section=10 cm for each side, where the anchor bolts at 5 cm of column flange edge, the 
pedestal extension out of the base plate=10 cm for each side. 

VI. MODELING OF A SEMI-RIGID BEAM-TO-COLUMN CONNECTION 

Similar to the literature studies, Frye and Morris [3]model is assumed in the current study because it is easy 
to apply and it is an odd-power polynomial model, which is reasonably worthy for simulation of the nonlinear 
M-࢘ࣂbehavior of the semi-rigid beam-to-column connections, as expressed in the following equation.  

5
3

3
2

1
1 )()()( MCMCMCr    (21) 

where C1, C2, and C3 are the curve-fitting constants, andࣄis a standardization constant dependent on the 
connection type and geometry, as shown in Table 2 [29]. 

Fig. 14 shows that Frye and Morris's model is valid to eight different types of the semi-rigid beam-to-
column connections.  

According to the literature studies [21], [17] and others, and to simplify the problem, some of the connection 
size parameters required in Frye-Morris polynomial model [3] are taken fixed through the design optimization 
procedure, as shown in Table 3. Moreover, for connections 1, 2, and 8, da&dp=web depth-10.16 cm, also, for 
connections 5 and 6, dg=beam depth+15.24 cm[1]. 
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X. TOTAL COST AND PENALIZATION 

The total cost of a plane steel frame bearing in mind the cost of the members and the semi-rigid beam-to-
column connections is defined by Xu and Grierson [31] as follows. 

 
 


NB

i j
ijijiji

NM

i
is RLACostTotal

1

2

1

0

1

_   (26) 

i

iis
ij S

LA 225.0
  (27) 

iisij LA 125.00   (28) 

where ࢙ࢽ is the steel density, Ai is the cross-sectional area, Li is the member length, ࢐࢏ࡾ is the rotational 
stiffness of the connection, j represents two ends of a semi-rigid connection, NM and NB represent the total 
number of members and beams in the frame, respectively, ࢏ࡿ is an estimated value for rotational stiffness of a 
connection, as shown in Table 3.  

Penalty function gives a bad fitness value for any solution violates any constraint to terminate it as expressed 
in the following equation. 

810cos_  CtTotalFitness  (29) 

where C is the penalty constant equals zero for the solutions achieve all constraints, otherwise, it equals one. 

XI. NUMERICAL EXAMPLES 

Three benchmark examples are examined in the current study to investigate the effect of simulating the 
semi-rigid base connection using Kanvinde model, whereas both BA and GA optimization techniques are 
used. Three base connection cases are considered in the current study; fixed (F), semi-rigid (S), and hinged 
(H). The used algorithms properties and steel properties are as follows. 

Algorithms properties. 

The algorithms used in the following benchmark examples are a genetic algorithm with reproduction 
parameters of 0.9 for the crossover and 0.05 for the mutation, in addition, a bees algorithm. Both of the 
algorithms have a population size of 100, and 50 maximum generations/iterations.  

Steel properties. 

A36 steel is used, where ࡱ ൌ ૛૙૙ ࢇ࢖ࡳ, yield stress ࢟ࢌ ൌ ૛૞૙ ࢇ࢖ࡹ, shear modulus ࡳ ൌ ૠૠ. ૛ ࢇ࢖ࡳ, and 
the unit weight of material ࢙ࢽ ൌ ૠ. ૡ૞ ࢚/࢓૛, according to AISC-LRFD[4]. 

11.1 Single bay with a nine-story frame. 

The geometry of the single bay with a nine-story frame, along with the member grouping and the design 
loads are shown in Fig. 17. The W, W1, and W2 loads are equal to 17.8 kN, 27.14 kN/m, and 24.51 kN/m, 
respectively.  

The member cross-sections and the story connections for the optimum solutions using BA and GA for the 
three base connection cases are shown in Tables 4 and 5, respectively.  

It is obvious from the results and Fig. 16 that the most rigid connections, i.e., types 6 and 7 are mostly 
chosen. 

Furthermore, a comparison between the total frame cost, weight and roof drift of the optimum frames in the 
current study with those in previous studies are shown in Table 6. The comparison shows that GA achieves a 
better result than BA for all base connection cases, while both of the algorithms achieve better results than the 
literature results using same base case, i.e., fixed base. 

 Figs. 18, 19, and 20 show the effect of different base connection cases on the roof drift, weight, and the total 
frame cost, correspondingly, where these figures show that there is no difference between F and S cases except 
minor increment in roof drift at S case, it indicates that the relative rotation of base connection is negligible 
and the applied loads produce insignificant deformation on different base component using Kanvinde model. 
On the other hand, H case obtains the highest cost, weight, and roof drift.  
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Table 9 Comparisons between the current study and previous works 

Study Algorithm Base case Conn.type T.s (mm) W (kg) T.C (kg) 

Rafiee et al. 
[22] 

BB-BC 

F 1 67 128,418 140,744 

F 2 25 195,578 237,050 

F 3 35 100,254 106,868 

F 4 58 87,432 93,255 

F 5 37 111,865 123,743 

F 6 40 103,357 113,055 

F 7 26 150,274 204,773 

F 8 56 126,120 136,881 

Hadidi and 
Rafiee[21] 

HS-PSO 

F 1 76 52,196 58,939 

F 2 62 43,746 55,118 

F 3 58 40,040 46,328 

F 4 68 41,853 47,788 

F 5 63 38,532 46,407 

F 6 48 37,950 46,469 

F 7 49 38,737 47,328 

F 8 75 47,018 53,489 

Hadidi and 
Rafiee[17] 

BB-BC F V 41 114,133 120,891 

HS F V 55 50,772 60,691 

HS-BB-BC F V 68 38,115 44,343 

Shallan et al. 
[1] 

TLBO F V 68 34,507 41,827 

GA F V 75 34,786 41,676 

Current 
study 

GA 
S V 63 33,564 40,640 

H V 77 35,624 44,276 

BA 

F V 69 35,308 43,000 

S V 70 33,896 40,976 

H V 75 39,975 48,640 

11.3 Three bays with a twenty-four-story frame. 

The third example is the 168-member frame. Its geometry, accompanied by the member grouping and design 
loads are shown in Fig. 25. The W, W1, W2, W3, and W4 loads have values of 25.628 kN, 4.378 kN/m, 6.362 
kN/m, 6.917 kN/m, and 5.954 kN/m, respectively.  

The story connections and member sections for the optimum solutions using BA and GA are shown in 
Tables 10 and 11, where as shown, the 3rd floor and above usually attains the most rigid connections, i.e., types 
6 and 7, then, followed by more flexible connections, i.e., types 3, 4, and 8 till the most flexible connection, 
type 1, for the roof floor. 

Table 12 presents a comparison between the total frame cost of the optimum frame in the current study with 
those from previous studies, along with the frame weight and roof drift. While Figs. 26, 27 and 28 display the 
effect of base connection case on the roof drift, weight, and the total frame cost, respectively. As shown from 
the comparisons and the figures, and similar to the previous examples, GA attains better results than BA, while 
both of the algorithms attain better results than the literature results using same base case, i.e., fixed base. 

Furthermore, there is an apparent relation between the base case and the total frame cost and weight, 
whereas the lowest cost and weight are attained in S case. In contrast, the worst results, i.e., highest cost, 
weight, and roof drift result in H case. 
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Table 12 Comparison between the current study and previous works 

Study Algorithm Base case Conn. type T.s (mm) W (kg) T.C (kg) 

Rafiee et al. 
[22] 

BB-BC 

F 1 204 381,754 502,197 

F 2 245 139,161 202,737 

F 3 170 236,249 267,414 

F 4 184 211,149 249,806 

F 5 237 140,536 171,868 

F 6 231 150,362 176,864 

F 7 240 359,372 385,074 

F 8 190 297,834 383,738 

Hadidi and 
Rafiee[21] 

HS-PSO 

F 1 200 384,890 505,366 

F 2 245 135,368 189,791 

F 3 194 172,004 205,473 

F 4 208 175,521 210,296 

F 5 238 133,930 162,582 

F 6 217 137,054 165,828 

F 7 221 125,589 156,161 

F 8 203 261,722 341,798 

Hadidi and 
Rafiee[17] 

BB-BC F V 212 238,721 260,152 

HS F V 174 209,040 289,580 

HS-BB-BC F V 255 132,313 151,481 

Shallan et al. 
[1] 

TLBO F V 263 105,550 131,322 

GA F V 268 102,778 128,226 

Current 
study 

GA 
S V 265 101,289 126,065 

H V 283 101,977 133,795 

BA 

F V 252 106,657 137,764 

S V 252 106,435 136,530 

H V 253 107,156 139,508 

XII. CONCLUSIONS 

Accurate simulation of semi-rigid beam-to-column connections, along with semi-rigid base connections is 
very significant to attain accurate results for frame response. This study attempts to make an optimization for 
semi-rigid frames, whereas semi-rigid beam-to-column and base connections are simulated using logical Frye 
and Morris and Kanvindemodels, respectively. The current study is applied to three benchmark problems using 
two of the best optimization algorithms, BA and GA, and the following results are obtained.  

 There is a noticeable relationship between the base case with the cost and weight of the frame, where, semi-
rigid base case produces the lowest cost and weight in comparison with fixed and hinged base cases. 

 Conversely, hinge base case results in the highestcost, weight, and roof drift. 

 For the distribution of beam-to-column connections types through frame floors, the distribution mostly begins 
with the stiffest types for lower floors and as the floors get higher as they get more flexible types. 

 More obviously shown by the results, GA attains better results than BA for all examples and for all base cases. 
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