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Abstract - The use of Bayesian location estimation methods (a subset of consensus average tracking 
methods) is one of the most commonly used tracking methods in Wireless Sensor Networks (WSN) due to 
high error tolerance, tracking accuracy and scalability. In these networks, due to Quasi-spherical of the 
transmitting radiation pattern (sensing), it is only possible to estimate the target distance from the 
received signal level. In this paper, a hybrid method called DCACT based on dynamic clustering and 
baysian estimation methods (IMMKF and MMPF), will be presented that tracks the maneuvering target 
with very good accuracy. The simulation results show DCACT method based on multi-mode particle 
filter (DCMMPF), with a 50% reduction in active sensors, track the target well only with increasing the 
location estimation error and velocity estimation error up to 26 and 16 percent respectively. 

Keywords: WSN, Tracking, Posterior Cramer-Rao Lower Bound, Multi-modeKalman Filter, Multi-mode 
particle filter 

1. Introduction 

In recent years, much attention has been paid to the use of WSN in target tracking.Common networks are mostly 
based on radar networks but the advantages and excellence of WSN such as the possibility of sampling within 
the scope of the operation, lacking LOS, Low cost and low interference have made these systems more effective 
on the battlefield [1].Tracking the target in a wireless sensor network is one of the research topics that have been 
gaining interest in recent years [2-5].The most important thing in target tracking in a wireless sensor network is 
to estimate the position and direction of the target(or extracting the target velocity vector) using observed 
measurements (based on the received signal level).This estimate is used to determine the next header and to 
wake up sensor nodes that are effective in target tracing.Given that the transmitted radiation pattern (sensing) of 
the nodes are quasi-spherical and practically it is only possible to estimate the distance from the received signal 
level, the prediction of the signal direction is not possible andthe distance detection method of a single node is 
limited to this method.In many articles, writers assume that the sensor node can extract the target position [6-
8].But, due to the limitations of the wireless sensor network; this is only possible to measure the distance (range 
only). 

Several papers and research have been conducted in the field of tracing the passive object. Wenjun Tanget 
al. [7]have been working on a distributed consensus-based distributed particle filter in a wireless sparse sensor 
network.The main objective of this plan is to provide an optimal way to limit the consensus average error in 
sparseWSN.In this method, the information is weighted from local particle filters and finally, a consensus of 
these sensors is considered as an optimal output consensus. 

Wang, Xingbo et al.[9]in order to compensate for the sub-optimality of the EKF tracking method, provide an 
algorithm based on the combination of the ML method and the standard Kalman filter. In this paper, in which 
additiveandmultiplicative noises and nonlinear target motion are the purposes of input assumptions, the ML 
method is used to estimate the initial location of the target and to eliminate nonlinear effects in the distance 
measurement and then uses the standard Kalman filter algorithm to estimate the target path. This paper then 
compares the tracking error using the proposed method and the developed Kalman filter in the conclusion 
section. 

Ziyia Jia et al.[10] have tried to provide a distributed algorithm to obtain target path in a binary networkwith 
the same distributed sensors.In this paper, the estimation of the moving target velocity (in purely progressive 
motion) is determined by the time the target is detected by each network sensor.In this method, target tracking is 
based on the sensing node tracking, which involves several problems, such as fading and Multipath, so this 
method can be used in high density nodes. 

In[11]Atieh Mohammadian Keshavarz and their colleagues have presented a method for tracking 
Maneuvering target in 3D in WSN.In this method, in a three-dimensional space with scalable and multiplicative 
noise, sensor clusters based on Posterior Cramer-Rao Lower Band(PCRLB) is selected and then object tracking 
is performed based on IMMPF. 
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Many references in this field, such as [6, 12-16]often do not include two fundamental points: 

1) All consensus-based methods, such as the Kalman filter and derivatives, require the initial positioning of 
the target.As mentioned,each sensor node alone cannot extract the target location without the help of its 
neighbors.In many of these articles, it is assumed that each node can estimate the position of the target, which is 
not based on the limitations of the present article. 

2) In practice, considering the limited battery and computational power, it is not possible to implement 
consensus average filtering filters in each sensor node (based on the state-vector combination method). 

To fix these problems, an algorithm is selected for this researchwhich combines dynamic clustering based on 
PCRLB, Multi-laterationand average consensus filters (two different methods, IMMKF and particle filtering). In 
this algorithm, after sensor selection and forming a PCRLB-based dynamic cluster in the context of the target, 
by using the multilaterationmethod, the position of the target is extracted from the object observation and the 
result is sent to the data integration center (Figure 1). 

 
Figure 1. The proposed tracking method scheme 

At this center, with the implementation of average consensus tracking algorithm,the future position and 
trajectory of the target are foreseen.The corresponding new dynamic cluster is determined to awaken the nodes 
that the target moves towards them.This algorithm will be repeated until the end of the tracking mission (Figure 
2). 

 
 
 
 
 
 
 
 

Figure 2. The Proposed Tracking methode Block Diagram 

The content of this article is organized as follow.In Section 2, the WSN and target dynamics are introduced. 
In the third section, the formation of the dynamic cluster and the selection of active sensors are described.In 
Section 4, the target observation and positioning model (which is used as input for the tracker filter) is expressed 
and the tracking algorithm is described in Section 5.In the final section by simulating the proposed method, the 
accuracy of the estimation of the target location and targetvelocity is extracted.Scalability of the DCACT 
method in the tracking of the target with high percentage variationof active sensors is investigated and the 
results are presented. 
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2. Problem formulation 

2.1 Network architecture 

In WSN, sensors are usually distributed randomly in a uniformdistribution due to the lack of access to the sensor 
trace environment.Based on the principle of WSN, the geographic location of the sensors is determined at the 
beginning of the network configuration, and the position of each sensor in the network is determined.Due to the 
fact that the sensors are completely randomly distributed in the network structure, the method of tracking the 
target in this structure will have the ability to extend and generalize in the same networks (with regular or 
Gaussian distribution) 

2.2. TargetDynamic 

The state equations are expressed in the following general form: 

 1

( )
k k k

k k k

m  

 

x F x w

z h x v
    (1) 

 

Vectors 0Nkv ~ ( ,R)and ~ (0, )k Nw Q are white Gaussian noise zero mean with RandQ 

covariancematrices.The coordinate’s vector of the target kx is         
 , , ,

Tt t
x

t
y

tx k k y k kv v   and the 

matrices Q, G, F, and R in general can also be time-dependent.The element jth is derived from the nonlinear 

vector mapping ( )kh x  in terms of the kx  vector as    2 2
( ) ( )t s t s

j jx k x y k y   . 

As a result, jth is the element of the vector of observations kz , which means that jz is the equivalent of the 

received signal from the sensor jth, and it is modeled as follows. 

(2)     ( )j j k jk k z h x v  

( )j kv is the noise of the received observations in the jthsensor at k time. To get enoughobservations for 

tracking, at least, the top 3 sensors are selected based on the PCRLB benchmark to estimate the target 
position[17]. 

3. Sensor selection and dynamics clustering 

One of the major challenges encountered in WSN is the high telecom load because all sensors need to send their 
observations to a sink.Given the bandwidth and power constraints, the size of sent observations should be 
minimal.In this regard, the issue of power consumption is important because it determines the life span of the 
network.As shown in [12], the power consumption level per each transmitted byte 10 times the calculation 
byte.These values are 400 nJ for each byte of transmission and 40 nJ for each byte of calculations in this 
reference.Also, broad bandwidth is required to prevent interference between observations from the requirements 
of sending all observations which it is almost impossiblein WSNs.To solve these problems, only the sensors that 
have better quality observations can be selected. Here, according to event base structures of WSNs, observations 
can be limited to the scope of the target.In this case, at least 3 sensors should be selected using the Cramer-Rao 
lower bandfrom the total numbers of sensors that can see the target.Since this band is the low limit of the 
variance of the non-bias estimation error to estimate the state of an uncertain target[18],wecan select the best 
sensors for providing observations with the least possible error. 

The Cramer-Raolower band for the covariance matrix of thestate vector errorx is equal to the inverse of the 

Fisher information matrix kJ . 

(3)      1ˆ ˆ T

k k k k k kE    C x x x x J  

In which ˆkx is the estimator of the vector kx .The calculation of the Fisher information matrix requires high 

computations.However, it can be calculated recursively[18, 19]: 

(4)   133 12 11 12
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z
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Where 

(5)  
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Here ( )kH x is the Jacobin nonlinear vector functionof ( )kh x .Root mean square error(RMSE)of Non-bias 

estimator  ˆ , 1,3k m m x is themthcomponent state vector kx in the following condition applies. 

(6)      2
ˆ k k kE m m b m   x x  

Where  kb m  is the mthcomponent of diagonalmatrix 1
k
J . 

Since the objective of tracking the target in order to minimize the target location error, a suitable criterion for 
sensor selection is considered as follows: 

(7)     max 1 , 3k k kb b b  

That  1kb  and  3kb  are the CRLBs of x and y respectively.If the prior distribution of state p(x0)isGaussian 

with covariance C0, then J0 = C0
-1.  

Choosing the best sensor with the above criterion is a hybrid problem that requires high volume computing. 
According to this issue,in order to reduce the computational volume, the following algorithm is proposed. 

Flowchart 1- Sensor Selection Algorithm with the PCRLB benchmark 

1. Input parameters: B The number of sensors that target in their field of view, M is the maximum number 

of sensors that are allowed to select and threshold th is the acceptableminimum mean square error. 

2. Output parameters: N Number of selected sensors, A set of sensor indexes selected. 

3.  1,...,S B ,   A   ,  0N   

4. Calculation of  bkfor N=N+1sensors (N of which is related to the selected sensor of the previous step) and 
sensors of the set S. 
5.Selects the sensor that produces the lowest bk. This sensor is identified by the J index. 
6.Remove the selected sensor from S group like  S=S/ j . 

7.   1 ,N N A A U j    

8.Checking the benchmark for the continuation of the algorithm(if N<M and bk< th )if yes go to step 4 

otherwise stop the algorithm. 
 

4. Observation and positioning model 

As noted above, in WSN, since these sensors only have the ability to calculate their distance from the target, 
they cannot alone extract the position of the target position.Therefore, the target position could be extracted only 
with the combination of sensors observations.For this subject, at least 3 observations of the sensor should be 
shared so that the multilateration method can extract the target's Cartesian position.Here, 3 sensors in a dynamic 
cluster are selected based on the PCRLB criteria participate in the initial positioning process. 

 

 

 

 

 

 

2 2 2( - ) ( - )u i u i ix x y y r  , 1, 2,3i    (8) 
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Suppose that 3 sensor nodes with specific coordinates.  A target with uncertain coordinates in the field of view 
of these sensors is introduced.The distances are measurable to each of the sensor nodes as follows: 

To do this, it's best to write a set of linear equations based on u u(x ,y ) . Here we need to delete the values of 
2 2

u ux  and  y . To do this, it suffices to deduce the third equation from the two previous equations: 

(9) 

2 2 2 2
1 3 1 3

2 2
1 3

2 2 2 2
2 3 2 3

2 2
2 3

( - ) - ( - ) ( - ) - ( - )

-

( - ) - ( - ) ( - ) - ( - )

-

u u u u

u u u u

x x x x y y y y

r r

x x x x y y y y

r r









 

After sorting out the equations we have: 

(10) 
2 2 2 3 2 2

3 1 u 3 1 u 1 3 1 3 1 3

2 2 2 3 2 2
3 2 u 3 2 u 2 3 2 3 2 3

2 (x -x )x -2 (y -y )y = (r -r ) -(x -x )-(y -y )

2 (x -x )x -2 (y -y )y = (r -r ) -(x -x )-(y -y )

The above equations can easily be expressed as a linear matrix: 

(11) 

3 1 3 1

3 2 3 2

2 2 2 3 2 2
1 3 1 3 1 3

2 2 2 3 2 2
2 3 2 3 2 3

2

( ) ( ) ( )

( ) ( ) ( )

u

u

xx x y y

x x y y y

r r x x y y

r r x x y y

    
     

     
          
Which can be written as the following linear equation: 

(12) Ax b  
The above equation is anoverdetermined equation. In this type of linear equation, when the average value of the 

square error is minimized, the pair u u(x ,y )   will minimize
2

2
Ax-b  (which is equal to the Euclidean 

norm).Since 
22 T

2
v = v v exists for each matrix v, we will have: 

(13) 
bbbA2xAxAx

b)(Axb)(AxbAx

TTTTT

T2

2





 
Minimizing this value will be the minimization of the average squares.By putting this Polynomial equal to zero, 
we have: 

(14)    T T T T2A Ax 2A b 0 A Ax A b  
By solving the above equations, the value of the x vector, which is the approximate location of the target, is 
obtained. 

5. Tracking algorithm 

In practical scenarios, common goals are similar to those of your own (speed, location, and acceleration) with 
time.For example, a target that is moving at a steady pace may suddenly enter into its own mode of maneuver.It 
is impossible to model this kind of behavior in a constant way.Therefore, in addition to estimating the target 
state, it is also necessary to estimate its fashion. 

5.1.Multi-Mode Kalman filtering method 

One of the most widely used algorithms for intercepting modes which modalities can be changed by the Markov 
random variable sequence is the IMM [20]. 

The current state of the system is assumed to be one of the n possible modes of the  1,..., nM M M

set.Furthermore, by default, the initial probability is that the target is in jM mode specifies and is equal to

 0
j jp M   .Also, the probability of a change from one mode to another is modeled in the form of the first-

order Markov process with the transmission matrix with the following subdivisions: 

(15)  1|k k
ij j ip p M M   
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The transport mode matrix is defined as follows. 

(16) 

11 1

1

n

n nn

p p

p p

 
   
  

P


  



 

5.1.1.Multi- Mode Kalman Filter 

Suppose  jM k is the mean of jM  at time k.If the jM mode happens, the target mode changes with the 

following model. 

(17)      1 j jk k k  x F x w  

And also the received data is as follows. 

(18)      1 1 1j jk k k    z H x v  

Figure 3 shows the general schema of the IMM algorithm.In general, the IMM consists of three steps: 1. 
Interaction, 2. Filtering and 3. Combination 

 
Figure 3. The general scheme of the IMM algorithm[20] 

1) Interaction 

At this stage, for the mode  1jM k   , the combined  0ˆ |j k kx  estimate and its corresponding covariance 

matrix  0
ˆ |j k kP are calculated from the following equations: 

 

 (19)      0 |
1

ˆ ˆ| | |
r

j i j i
i

k k k k k k


x x  
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Where the combinational probabilities  | |i j k k are obtained from the following equation: 

 

 

 

 

 

 

 

 

 1|j k k   is called the predicted mode probability and it is equal to 

(23)     
1

1| |
r

j ij i
i

k k p k k 


   

The goal change is usually modeled based on the Markov process, which is likely to transfer a mode to another 
mode as follows 

(24)      1 |ij j ip P M k M k   

2) Filtering 

In this step, the Kalman filter equations with the appropriate model are used to update the hybrid mode in (18) 
using current data. In order to update, it is necessary to calculate the probabilities of different modes, which are 
obtained from the following equation. 

(25) 
 

2
/2

1

2

T T
j j j

j n

j

e



 

v S v

S
 

In which    1 1|j jk k k   v z z  is the innovation vector, n is the dimension and 
jS  is the covariance 

matrix.After this mode has been updated by using  1k z data,Probability of mode  1| 1j k k    using 

probability j , the predicted probability  1| 1j k k   for mode  1jM k  is obtained as follows. 

(26) 

   1
1| 1 1|j j jk k k k

c
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 
1

1|
r

i i
i

c k k

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3) Combination 

Estimated modes  ˆ 1| 1j k k x  and covariance matrix  ˆ 1| 1j k k P  for each filter by using the predicted 

mode  1| 1j k k    to estimate the final state of  ˆ 1 | 1t k k x ,They combine with corresponding 

matrices of covariance. 

(27) ˆ 1| 1k k  x  
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(28)

   

 
   

   

1

ˆ 1| 1 1| 1

ˆ{ 1| 1

ˆ ˆ1| 1 1| 1

ˆ ˆ1 1| 1 }

r

j
j

j

j

T

j

k k k k

k k

k k k k

k k k




     

  

      

     

P

P

x x

x x

 

 

Regarding the nonlinear state of state equations, we can use UKF and EKF. The UKF is rarely used in a multi-
mode approach because the covariance matrix cannot be positive Semi-definite by increasing the covariance 
matrix of non-conformal filters and computational errors [21]. 

In this case, UKF loses tracking capability.So, the report will only be used by EKF. 

5.1.2. Multi-Mode Particle Filter (MMPF) 

In this section we study the conventional particle filter algorithm in tracking the maneuverable target.Consider 
the dynamic equation of a generalized maneuvering target as follows. 

(29)  
 
 

1

1 1

, ,k k k k

k k k

m

 



 

x f x v

z h x w

Where 1kx  is the system state and  1,....,km M  denotes the mode of the system and M is the total number 

of possible target modes.The main idea in the MMPF algorithm is to define the vector of the new random 
variable,  ,k k kmy x , to be estimated.In other words, we want to estimate the lateral density function.

 |k kp y z . 

Suppose random samples represent the distribution of the probability function at time 1k  ,  1 1|k kp  y z  as

 1 1

sNi
k i 

y  .By obtaining new observations at time k , we seek to estimate  |k kp y z  by random sampling 

of  
1

sNi
k i 

y .Similar to the conventional Bayesian methods, this is done in two stages: predicting and updating. 

1) Prediction 

The prediction stage is based on the evolutionary model of the  1|k kp y y  mode, which can be displayed as 

follows. 

(30)       1 1 1| | , |k k k k k k kp p m p m  y y x y y

Also, the second word to the right is simplified as follows. 

(31) 
 

   
1

1 1 1

|

| , |

k k

k k k k k

p m

p m m p m m



  





y

x
 

The above relation is the same as the probability of transferring mode of the system.The first term is represented 
by the equation of system dynamics expressed in the following form. 

(32) 
   
 

1 1 1

1

| , | , ,

| ,

k k k k k k k

k k k

p m p m m

p m

  







x y x x

x x

Based on the above-mentioned relationships, having the random samples 1 1

sNi
k i 

y , the prediction stage is 

performed in two steps. 

Step 1 - A random sample of indexes  
1

sNn
k n

m


 is generated from indexes 
1

sNn
k n

m


.If 1
n
km i  is the n

km   

index, the probability ijp  is chosen by j.The n
km  selection algorithm with the condition 1

n
km i   is 

executed as follows. 
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Flowchart 2: Select the target particles in a Multi-Mode Particle Filter 

Choose a randomly uniform value between   ~ 0,1u  

Set  0c   and 
0 0b   

For 1:j m  

ijc c p   

jb c  

If
1jb u   and 

jb u  

n
km j and exit 

End 

End 

Step 2 - The system mode vector is predicted to be in accordance with the system dynamics. In other words, the 

particle n of the 
n
kx  vector is obtained as follows. 

(33) 1 , ,n n n
k k k km x f x v  

In this case, the set of predicted particles is   
1 1

,
s sN Nn n n

k k kn n
m

 
y x . 

2) Updating 

At this stage, a new set of particles is sampled and the estimated latent density function is updated below. 

(34)    
1

|
N

i i
k k k k k

i

p w 


 y z y y  

Where 

(35)    1 1| |i i i i i
k k k k k k kw w p z w p z  y x  

6. Simulation 

Effectiveness of the proposed tracking approach is validated through some Monte Carlo simulations in terms of 
trackingaccuracy and energy consumption. In these simulations, 800 sensors in 35 hectares (1400 m in 250 m) 
were distributed randomly with a uniform distribution.Based on the principles of WSN, the geographic location 
of the sensors is determined at the beginning of the network configuration. Each sensor’s visibility is limited and 
can only see the target in a range of 30 meters radius.In this system, it is assumed that at any moment, up to 10 
sensors can be selected.We consider the multi-mode dynamics model in the below form: 

(36)     1k k km m    x F x G a w  

it assumes that the matrix  mF  is identical for all modes and is equal to [19]: 

sin 1 cos
1 0

0 cos 0 sin

1 cos sin
0 1

0 sin 0 cos

T T

T T

T T

T T

 
 
 
 

 
 

  
 

   
 
 
  

F  (37) 

The matrix G is also defined as: 
2

2

/ 2 0

0

0 / 2

0

T

T

T

T

 
 
 
 
 
 

G  (38) 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Morteza Sepahvand et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i4/181004205 Vol 10 No 4 Aug-Sep 2018 950



The state

with R an

 k t x

The acce









10

2

3

1

5

5

5





 
 






a

Designed

It is also 
the proba

(ω = 0.00

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The mea
independ

1

3

5

7

9

12

[0

[0

[0

[

[2

[





 


 

a

a

a

a

a

a

e vector and n

nd Q covarian

, 1

k

k

k

k

x

x

y

y

 
 
  
 
 
 

R




eleration of the











0

5.25 0 20

0 0 34

8 0 40

5 11

0 13

30

k



d filters are ba

assumed that
ability of 0.00

0005). 

Figure4. Trac

an square err
dent Monte Ca

2

4

6

8

11

13

0], [20

20], [

20],

20 20],

20 20],

40 0],


 

 
 


 

a

a

a

a

a

a

noise vector 

nce matrices a

310 , 10 I Q

e maneuver's t

20

0 34

4 40

0 119

19 139

39 150

150

k

k

k

k

k

k



 

 

 

 

 



ased on the fol

t the target w
77.Figure.4 sh

cing Schema man

ror of the loc
arlo runs, are a

0 0]

20 0]

[20 20]

[ 20 20

[0 40]

[0 40],



  


 

0Nkv ~ ( ,R
s follows: 

3 Ι  

target changes

 
llowing accele

with the probab
hows the simu

neuver goal in the

cation and th
also shown in 

]

R)  and ~kw

(39

s as follows at

(4

erations. 

bility of 0.907
ulated and esti

e DCACT method

he estimated 
Figures 5 and

~ (0, )N Q  a

9) 

t any time: 

0) 

77 remains in
imated target 

d with Multi-Mod

target velocit
d 6. 

(41)  

are zero-mean

 

 

 

 

 

 

 

 

n the current m
 

de Particle Filter 

ty in the x a

n white Gauss

mode and cha

and IMMEKF 

and y dimen

sian noise 

anges with 

sions, for 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Morteza Sepahvand et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i4/181004205 Vol 10 No 4 Aug-Sep 2018 951



As shown
extended

One of th
supportin
nodes to 
scalabilit
number v
will be h
and work
scalabilit
scheme,R
number o

n in Table 1,in
d Kalman filter

Metho

DCIM

DCM

he most impo
ng nodal trans
several hundr

ty is related to
variationscan 

held accountab
ks well unde
ty of the pr
RMSEof targe
of distributed 

n the DCACT
r (DCIMMEK

d name R

MMEKF 

MMPF 

ortant characte
sfer tolerance
red nodes, wit
o the type of 
be used. In co

ble.Therefore,
er all conditio
roposed DCA
et  locationan
sensors(400 s

Figure5.RMS

T method, the 
KF) is 3times g

Table 1: RMSE o

RMSE of loca

0.33

0.13

eristics of the
e due to envir
thout having a
method.Some
ontrast, scalab
 the design of

ons is one of
ACT approac
d speed estim

sensors in a sp

Figure 6. R

SE of targetlocati

mean error of
greater than th

of location and v

ation estimatio

317m 

381m 

e tracking met
ronmental fac
a particular pro
e methods ma
ble methods,in
f algorithms th
f the most im
ch for a red
mation, respect
pace of 1400ൈ

RMSE of velocity

ion estimation 

f estimating lo
hemulti-mode

elocity estimation

on RMSE 

thod is its sca
ctors,it can to
oblem in the a
ay not be scal
n changing th
hat are respon

mportant issue
duction of 50
tively,are sho
220 m 2). 

y estimation 

ocation and ve
e particle filter

n 

of velocity est

3.845m/s 

1.553m/s 

alability.Scala
lerate density
algorithm's pe
able, i.e., in a

he number of n
nsive to any n
es of tracking
0% of the a

own in the  fig

elocity withMu
r (DCMMPF) 

timation 

able tracking 
y variations fr
erformance.Th
a low or limit
nodes in large

number of sen
g in WSN.He
active sensor
gures 7,8 and

 

 

 

ulti-Mode 
method. 

algorithm 
rom some 
he issue of 
ted nodes, 
e volumes 
nsor nodes 
ere is the 
r.Tracking 
d 9 for the 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Morteza Sepahvand et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i4/181004205 Vol 10 No 4 Aug-Sep 2018 952



As show
30% erro

F

F

wn in Tables 2
or magnificatio

Figure 7. shows th

Figure 8. RMSE o

Figure 9.RM

2 and 3, the D
on  

he monitored targ

of target location 

SE oftarget speed

DCACT metho

get scene with a 5

estimation with 5

d estimation with

od is well-sca

50 percent decrea

50 percent decrea

h 50% decrease in

alable and pur

ase in acive senso

ase in active senso

n activesensors 

rsues the targ

 
ors 

ors 

get with a max

 

 

ximum of 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Morteza Sepahvand et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i4/181004205 Vol 10 No 4 Aug-Sep 2018 953



Table 2: The position RMSE in the scalability test 

Method name 800 sensors 400 sensors Percentage error increase 

DCIMMEKF 0.3317m 0.4326m 30.50% 

DCMMPF 0.1381m 0.1745m 26.35% 

Table 3: The velocity RMSE in the scalability test 

Method name 800 sensors 400 sensors Percentage error increase 

DCIMMEKF 3.845m/s 4.358 m/s 13.34% 

DCMMPF 1.553m/s 1.814 m/s 16.80% 

7. Conclusion 

The simulation results show the DCACT tracking sustainability (based ondynamic clustering and the use of 
multi-mode Kalman filtering methods and multi-mode particle filtering).The DCMMPF tracking method has 
better results in RMSE of location and speed.TheRMSE of location and velocity with Multi-Mode extended 
Kalman filter (DCIMMEKF) is 2.5 times greaterthan the multi-mode particle filter (DCMMPF) method. Also, 
the scalability was tested and the results showed that the DCMMPF method, with a 50 percent decrease in active 
sensors,present steadily tracking the target with an increase up to 30% in RMSE of location and speed.Also, the 
RMSE of location and velocity in the DCMMPF method remainsabout 40% of DCIMMEKF, so it is considered 
as the preferred method. 
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