
Intrinsic Compilation Model to enhance
Performance of real time application in

embedded multi core system
Sumalatha Aradhya #1, Dr.N K Srinath *2

F Research Scholar, Department of Computer Science and Engineering, R V College of Engineering,
Mysore Road, Bengaluru, Karnataka, India

1 sumalatha.aradhya@cedlabs.in
* Professor and Dean Academics, R V College of Engineering,

Mysore Road, Bengaluru, Karnataka, India
2 srinathnk@rvce.edu.in

Abstract— The embedded multi core system has critical performance issues. This is due to extra
optimization codes added by the compiler. In many cases, performance becomes challenging due to
increased cyclomatic complexity of the embedded software especially in the release version of the code. To
ease the extra complexities of the software, a better optimization approach through intrinsic compilation
model proposed in the paper. The proposed intrinsic compilation model handles software to hardware
integrity complexities through vector dynamic interface algorithm discussed in the paper. The vector
dynamic interface algorithm resolves the conflicts of optimization across multi core target by using
optimizer conflict resolver algorithm. The optimizer conflict resolver algorithm computed by the
recurrence logic derived through probabilities using vector rule algorithm. The intrinsic compilation
model makes use of effective partitioning logics to obtain optimized vector code data. The bench mark
shows improved speed up results between static code and vector code.

Keyword - compiler, intrinsic programming, parallel processing, performance, optimization, simulation

I. INTRODUCTION

The compiler set up with high optimization levels is not used in embedded integrated environment due to
enormous usage of volatile data present in the code. Volatile provides the safe way to use the data to process
interrupts and inter process communication. It is required to utilize the available resources up to optimum extent
as well as to obtain parallel performance invading Amdahl’s law [1]. While handling interrupts and inter process
communication data, it is required to face the issues occurred due to memory constraints, scheduler delays, in
efficient task distribution across processors and improper load balancing across multi cores. These issues induce
the performance problems. As a solution, an intrinsic compilation model is designed and implemented to
address the performance issue and this model is discussed in the paper. The three layered architecture
representation of the intrinsic compilation model depicted in Figure 1.

The embedded software faces performance issues due to higher degree of cyclomatic complexity [2]. The
reasons for the raised complexities are due to unaddressed deactivated codes, dead codes and spaghetti codes
used in the embedded software. Though most of the time compiler successfully eliminates dead or spaghetti
codes, the whole program optimization adds extra compiler codes in the software to optimize the code. The
extra code added by the compiler induces run time execution problems resulting in insidious bugs and anomalies
in the execution environment. Hence, an embedded industry today strives for optimized code developers as most
of performance fixes can be taken care of while at coding level [3]. The software developers need training or
extra skills to adapt code optimization techniques and these extraneous skills set kills lot of human resource
effort hours and effort values indeed practically leading to wastage of resource time and effort values. Thus,
there was need of code hinting tool to aid the performance of code and the programmer. In perspective of
solution to obtain optimal code, vector dynamic interface is implemented. The vector dynamic interface uses
static object code library generated by native compiler and static analysis data obtained through absInt [4]. The
intrinsic compilation subsystem components and their interfaces depicted in Figure 2

An enormous amount of work been done in optimizing the compiler to achieve speed up. To analyse and
improve the performance, the existing approach is auto vectorization. VTune Performance Analyzer [5], Intel
Thread Building Blocks [6], Terra [7] etc., have set the trend mark in optimizing the code using auto
vectorization techniques [9]. However, due to resource constraint and critical system requirements, most of the
time auto vectorization tools are not exercised in real time systems. To analyse the spaghetti codes, dead codes
etc., an existing approach is to set the native compiler option with code elimination switches. In real time
systems, especially in safety critical systems a certified tool chain such as KPIT’s GNU compilers, Reneases Rx
compilers etc. are widely used.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Sumalatha Aradhya et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i3/181003098 Vol 10 No 3 Jun-Jul 2018 854

Fig. 1. 3-layer architecture model of intrinsic compilation model

However in practice, a loop level optimization resulted in consumption of more execution time especially
when executing while loop. The existing approach to deal with loop optimization are to use loop unrolling
optimization techniques and this optimization results vary from one target to another target and are inconsistent.
For loop level dependencies, a partition implementation strategy proposed by Samuel Larsen et.al [10] through
selective vectorization. But, prototyping compiler transformations though easier at standalone applications,
require high performance computations with fine grained control to access memory [13, 18]. Hence, it is
required to hint the programmer to optimize the case while coding itself to reduce the release time hurdles. One
way to hint programmer is to use the modelling based approaches. For modelling, a real time constraint logic
through RT parallel computations suggested by Peter Hui et.al [15]. However, the worst case analysis needed
calculation methods such as program flow analysis and low level analysis. Falk et.al provided the compiler
framework to calibrate worst case execution time for real time system in their paper [21] and an extra time was
considered for unnecessary measurements.

Fig. 2. Subsystem components and interface of intrinsic compilation model

II. RELATED WORK

The optimal alignment of data across memory models with conflict free access been proposed by A. Seznec
et al [16] has implementation logic specific to vectors on cache, but it has limited scope in real time systems.
The traditional embedded compilers do not provide features of designated initializations and providing
automation through scripting or manual effort is timid task. We have partially adopted the extending g++
methodology used in the paper [7, 8] for vector code. Sherwood et al. [12] proposed dynamic optimization
approaches to aid multi-threaded interference in parallel programs with code segmentation logics. To achieve
the best feasibility and performance maths specific applications, hybrid Intel TBB with MPI for parallelization
approach [3] and Intel Cilk Plus Array Notation for vectorization using ivdep pragma directives been used [22].

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Sumalatha Aradhya et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i3/181003098 Vol 10 No 3 Jun-Jul 2018 855

But, Intel TBB library sometime will not be compatible with non-Intel specific targets especially real time
embedded systems. TLOG provides a code generator for parameterized loops where loop sizes are symbolic
parameters [13] and has limitations with vector arrays. The Table I depicts the comparisons of parallel software
interface comparisons in brief [21, 22].

TABLE I. Parallel software Interface comparisons with Hardware abstraction

Sl
N
o

Software
Interface

Data
Parallelism

A-synchronized task
parallelism

Host
and/or
device

Abstraction
of memory
hierarchy

Explicit data
mapping and

movement
1

Cilkplus

Cilk_for,
array
operations,
elemental
functions

Cilk_spawn/sync Host only Data
N/A (host
only)

2

CUDA <<…….>>
Async kernel
launching and
memcpy

Device
only

Blocks,
threads,
shared
memory

cudaMemcpy
function

3
C++ 11 X

std::thread,std::async,
std::future

host only Data N/A(host only)

4
OpenACC

Kernel/parall
el

Async/wait, acc
parallel, acc data

Host only #pragma acc
N/A(Host
only)

5

OpenCL

Data and
task based
parallelism
at kernel
level

Command specific
apis,clEnqueueNDKer
nelRange

Host only

__global,
__local,
__kernel,__c
onstant,__pri
vate

N/A(Host
only)

6
OpenMP

Data
parallelism

Fork-join model
Host and
device

#pragma
directives

SIMD
program

7
Pthreads(POSI
X threads)

Data
syscall interface,
wrapper library
functions

Host and
device

_pthread
pthread_t,
system call
routines

8 Thread
Building
Block

Task
parallelism

Templates Host Data
Vector
program

9 Unified
Parallel C

Data
Wrapper function with
bupc_

Host Data Implicit

10

Charm++
Data
parallelism

Fork-Join mode,
Adaptive Message
passing interface,
method invoking
procedures

Host only Data N/A(host only)

11

Coarray
Fortran

Data
parallelism

sync all, barrier like
SPMD constructs

Host only

locks, point
to point event
synchronizati
on using
events,
cofence,
finish

Implicit

12
OpenHMPP(H
ybrid
Multicore
parallel
Programming)

Data
parallelism

Pure function, no
static , volatile
variables, codelet RPC
remote execution
<LabelOfGroup>
callsite, synchronize,
region

Host only
#pragma
hmpp

allocate,
release,
advancedload,
delegatedstore

13 PVM(Parallel Task Library routines Host & PVM_ Explicit

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Sumalatha Aradhya et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i3/181003098 Vol 10 No 3 Jun-Jul 2018 856

Sl
N
o

Software
Interface

Data
Parallelism

A-synchronized task
parallelism

Host
and/or
device

Abstraction
of memory
hierarchy

Explicit data
mapping and

movement
Virtual
Machine)

parallelism Device

14
RaftLib

Task and
pipeline
parallelism

raft::kernel Host
Compute
graph of
kernel

Explicit

15 ZPL(Zebra
Programming
Language)

Data
parallelism

Command specific
codes through ^
symbol, device.cpcl_

Host and
device

Command
specific

Explicit

16

Chapel
Data, task
and nested
parallelism

Data driven on
clauses, SPMD like
parallelism : Coforall
loc in Locales do

Host and
device

Data Implicit

17

X10
Data
parallelism

APGAS
(Asynchronous
Partitioned Global
Address Space) and
using async S
statement

Host
Interfaces
e.g., interface
Normed {...}

Implicit

We found that other important points needed to achieve better performance were the management of the data
inside cache memories, affinity of threads into the cores of the systems and scheduling of the threads runtime
execution [4]. Furthermore, specifically for our application it was also important to assure the reproducibility of
results across different parallel executions and across executions with different number of threads. Among the
three different implementations based, respectively on OpenMP [24], Intel Cilk Plus [22], and Intel TBB [6], the
last one has the best results in terms of performance with the minimum number of changes required to C++
application source code. When comparing the performance on systems with different number of sockets and
high number of cores, we found that the hybrid MPI implementation improved the performance when combined
with Intel Cilk Plus and Intel TBB parallel implementations [9, 24,25]. The application scaled very close to the
theoretical expectation, also when using SMT, reaching a speed-up of about 35x on 32 SMT enabled cores [25].

Our intrinsic compilation module acts as a plug in to the existing software and enhances the code
optimization by hinting the programmer with intrinsic code sets. A mature vectorization algorithm by name
vector dynamic interface algorithm proposed in this paper helps compiler transformations effectively to speed
up performance of high end real time embedded applications.

III. INTRINSIC COMPILATION MODEL DERIVATION

Given any real time based embedded application, static or actual code of application gets fragmented into
partition set. To obtain the partition data set from the repository of data obtained through static analyser AbsInt
which is based on abstract interpretation [4], the best possible partitioning set through approximation methods
on variant set is used. Section A-F provides detailed derivation of the approximation logic used to obtain
optimal partitioned data set.

A. Derivation of Vector Function and Computation Logic

Hypothetically in congruence, an application as super set has F function blocks, D data paths, Op operational
logics and control logics and the group is shown as super set, SetApartition, in equation (1).

)1(}},{,{ OpDFSetApartition

For each vector sequence, function path F in the super set SetApartition is derived as shown in eqs. 2 and 3[26,
28],

)2(22exp1)(xxf

 0, xwhere

For fixed series fn(x), function derived as proportional to 1/√(n) for all random variable x and probability of
median of such occurrences represented as, Fn ≤ t/√n. The statistics of derived function estimated as, √n (j/n - f
(xt)) where, 1 ≤ t≤ n. For each sequence of function derived, the set of computations for fixed bound derived as
[26],

)3(.*)0)0((*)1)1((*)2)2((nxfxfxfF

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Sumalatha Aradhya et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i3/181003098 Vol 10 No 3 Jun-Jul 2018 857

Finding the functions to be optimized for SetApartition as set F is possible, with propagation of sequences
derived from the probability of occurrences as per equations (2) and (3). F is a nonlinear set of data and each
occurrence f(x) is an active function. The occurrence of duplication is filtered by the iterative mapping of
functions stacked. When the function set has identical mapping, the propagation from one function to another
function directly in both forward and backward direction. Both the functional units result in maximum error
when identical mapping is found. The individual cases are discussed as below:

Case i. Fixed bound computation set, Fis 0, implies a plain linear set with no identical mapping. The linear
dependency of the function blocks are shown in Figure 3. It shows the case where the functions are mapped
linearly and the value of zero is added to the set F, that is, f(x) is evaluated to 0 as per equation. (3).

Case ii. F or f(x) > 1, implies the backward value is increased and the occurrence of identical mapping with
more conflicts. The error rate increases linearly and leads to exploding of functionality errors. The Figure. 4
depict the identical mapping found for the functions mapped in the sequence.

With respect to the function mapping found for identical tasks, the different probability of occurrence of
activities and computations in the function set is represented in Figure 5.

Fig. 3. Subsystem components and interface of intrinsic compilation model

The actual flow path of the computation is shown in Figure. 5 and is predicated with the possible occurrences
such as repetition before and after ʎ change, pre active computation with single repetition and full pre active
computation set. Once such data set is obtained, the iterative mapping and collision between function sets are
detected further by using vector rule algorithm and optimal conflict resolver algorithm discussed in section III.B
and III.C.

Fig. 4. Subsystem components and interface of intrinsic compilation model

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Sumalatha Aradhya et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i3/181003098 Vol 10 No 3 Jun-Jul 2018 858

B. Vector Rules Algorithm

To obtain sequence of distinct optimized function elements, i.e., Os, following vector rule algorithm applied.

Step 1: For a sequence of (x1, x2…xt), function f(x1, x2…xt) computed such that Optimal set of
function f (o1, o2…ot) is obtained. Thus, f(x1, x2…xt) = f(o1, o2…ot), provided xi and oi have same
relative ordering. For all recurrence r, function f exist such that f! =r.

Step 2: Initialize recurrence r with t and set function set f to 0.

Step 3: Os is the maximum set i.e., f (o1, o2…os), set to maximum set Os

Step 4: Swap static sequence with optimized sequence

Step 5: Decrease recurrence r by one until r reaches 1, otherwise return to step 2.

All remaining partition set elements follow the vector rule algorithm correspondingly. The probability of
possible optimizer conflicts obtained as container array conArray. The collisions occurred during static to
optimal code transformation obtained as per logic referring to recurrence logic derived at section C-F. A
container array is represented as conArray[p], and p represents probability occurrences. Initially, p is set with
value 1 and then, for all p with (pi, pi-1… p0), the probability conArray set obtained as, (conArray
(pTransitiontj + (collision1 + 1/Transitiont) - (p/Transitiont))*conArray[p-1]), where, Transitiont represents
transition sequences and collision1 represents first collision occurred. If array data, conArray[p], obtained as 10-
20, then reset conArray[p] to 0. Otherwise, compute optimizer conflict algorithm.

Fig. 5. Probability of pre active computation occurrences in function

C. Optimal Conflict Resolver Algorithm

Following the vector rule described in section III.B and III.C, the container array obtained i.e., conArray is
used for resolving conflict probabilities by using optimal conflict resolver algorithm. The optimal result of
collision free set is stored in variable Optim_Collision_Result. The probability p is used through iteration
variable Transition_iteration_t and the optimal result is obtained until maximum transition count, i.e.,
Transition_tmax is reached. The optimal conflict resolver algorithm is given as below.

Step 1: Initialize Optim_Collision_Result <- 0 as Transition_t <- 1 and probability p <- p + 1

Step 2: Assign p <- p + 1

Step 3: Optim_Collision_Result = Optim_Collision_Result + conArray[p]

Step 4: if Optim_Collision_Result > Transition_iteration_t go to step 5, 6 otherwise goto step 2

Step 5: Optim_Collision_Result <- (n - p - 1) & (1 - Optim_Collision_Result)

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Sumalatha Aradhya et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i3/181003098 Vol 10 No 3 Jun-Jul 2018 859

Step 6: Increment Tranisition_iteration_t by 1

Step 7: Repeat Step 2 to 4 until Transition_t <- Transition_tmax <= Transition_iteration_t

The vector rule algorithm and optimal conflict resolver algorithm mentioned in section III.B and III.c are
used in vector dynamic interface algorithm depicted in section III.D. The vector dynamic interface algorithm
makes use of mathematical model derived in section III.

D. Vector Dynamic Interface Algorithm

The vector dynamic interface model design is depicted in Figure 6. The vector dynamic interface is
implemented through the optimizer conflict resolver scheme. The vector computation imposes vector schemes
for all one to one mapped prepared/Unprepared data set retrieved through input fragmentation framework [8],
with the set of expressions and sub expressions, user defined functions, control logics, operations, interrupts,
pragmas and macros etc. The permutation logic for sequence of distinct elements of computation with relative
ordered vector set exercised through vector dynamic interface algorithm

Fig. 6. Vector dynamic interface algorithm

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Sumalatha Aradhya et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i3/181003098 Vol 10 No 3 Jun-Jul 2018 860

The results and discussions of execution of implementation logic depicted in section II.H

E. Derivation of the total vector deviation and transformation logic

The maximum deviation, maxDev, calculated when vectorized set F >static set F and minimum deviation,
minDev, when vectorized set F <static set F as shown in eqns. 4 and 5 respectively [26].

....(4)..............................F(x))..... - (x)(Fn = maxDev n

....(5)..............................(x))......F - (F(x)n = minDev n

F. Derivation of recurrence logic

The static loop sequence i till r recurrences and with address sequence mr is framed as,

 Step 1: loop i: 1 to N

 Step2: loop j: 1tor

 Step3: mr = mr (i - 1) r + j

With the vectorization, the static loop sequence reduced to half with offset addresses mr1 and mr2 is generated as,

 Step1: loop i: 1 to N/2

 Step2: loop j: 1 to r

 Step3: mr1 = m r1 (i - 1) r + j

 Step4: mr2 = m r2 ((2(i -1) r + rn) / 2+j)

Such vectorization transformation is provided as a hint to optimize the code to the programmer while coding.
To obtain the vector optimized code, the derivation logic given in section III.E and III.F are applied. From the
actual static set to the new vector optimized set, the total deviation is calculated as per Eqns. 4 and 5 given in
section III.E. The computation activity with recurrence sequence is vectorized by using transformation logic
shown in III.F. By using all the derivation logic on the set of embedded application is tested as explained in
section G with experimental set up as shown in Figure 7.

G. Experimental Setup , Results and Discussion

The result, vector optimized code, obtained using a vector dynamic interface algorithm and intrinsic interface
logic in synonym with vector rule explained in section III. The mathematical model formulated in section III is
used in the implementation of intrinsic compiler optimization model for obtaining the result that is to obtain
vector optimized code. The test environment set up is shown in Figure 7. The RTSim and Matlab simulator
provides the graphical interface. For the test purpose, we have considered an Embedded IoT module. The test
executed through visual basic test script file containing real time test scenarios. The test result obtained shown
in Figure 10

Fig. 7. Test Environment Set Up

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Sumalatha Aradhya et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i3/181003098 Vol 10 No 3 Jun-Jul 2018 861

The analysis of the vector computation set obtained using the mathematical model derived in section III is
represented in Figs. 8 and 9. The analysis shows performance achieved through set partition and memory usage
by both static code and vector optimized code. It is been proved that intrinsic compilation model when used
across the static partitioned real time embedded software reduced the compiler consternation such as speed up,
memory constraint and throughput across ARM MP Core processor. Speed up of static code set is compared
with vector code and result margins shows that performance of vector set well than that of static code set. The
representation of vector result as shown in Figure 10 demonstrates that optimal speed up is achieved. The result
data contains the partitioned data set spaces obtained for functions, expressions, control logics and computation.
The analysis chart shown in Figure 8 represents the partition data set obtained from static analysis of code run.
The analysis chart shown in Figure 9 represents the partition data set obtained after implementing the intrinsic
compilation model framework. It is clear that the after the optimization the partition data set occupied less
memory space than that of actual code partition data set. The updated code set is plugged in through library
libVec.so and libComco.so [8]. As shown in Figure 7, the test procedure is written using visual basic script and
the test is driven through the compiled set of libraries and by test stub control triggered through communication
links such as CAN [29] and ARINC [30] in safety real time applications. The result obtained at the GUI front
end simulated through MATLAB shows the memory space occupied by each partition data set namely Function
Set, Operation Set, Expression Set and Control Set

Fig. 8. Partition Setup – Static or Actual code

Fig. 9. Partition Setup – Optimized or vector code

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Sumalatha Aradhya et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i3/181003098 Vol 10 No 3 Jun-Jul 2018 862

The partition data set computed through the derivation logic explained in section II and the execution time of
the actual and optimized comparison data with respect to partition data set is shown in Figure 10. From Figure
10, it is clear that vector or optimized partition data set statistics are better than static or actual partition data set.
For the experiment, the real time application from integrated control module software is considered. Through
the static analyser, AbsInt[4] , we obtain the static partition code data set and the re run of the code attempted
after the static analysis and implementation of intrinsic compilation model logics at the test IDE.

Fig. 10. Speed up Comparison of static code Vs. Vector code

IV. CONCLUSION

To obtain the better proximity in compiler optimization, proposed intrinsic compilation model is a remarkable
approach for resolving the code complexities, memory constraints and scale up performance consternations. The
result proves that execution of optimal code has provided better speed up than normal static code. The adaption
of intrinsic compilation model helps any embedded coder to write optimized code. The adaption of the
vectorization logics through an interactive feedback to improve the loop recurrence optimization while coding is
proposed in the paper. The compilation model avoids unnecessary code measurement time of compiler and thus
providing proliferation to improve the speed up of real time application in use.

ACKNOWLEDGMENT

The project idea is dwelled and nurtured while working for real time embedded project at CED LABS,
Tumkur Karnataka. We would like to thank all the technical guidance, motivation and support provided by the
development and testing team.

REFERENCES
[1] Mark D. Hill and Michael R. Marty, "Amdahl's Law in the Multicore Era", Computer, 41 (7), 33-38, 2008, [Online]. Available:

http://research.cs.wisc.edu/multifacet/papers/tr1593_amdahl_multicore.pdf
[2] Accounting for Secondary Uncertainty: Efficient Computation of Portfolio Risk Measures on Multi and Many Core Architectures by

Blesson Varghese and Andrew RauChaplin, WHPCF 13 Denver, Oct 2013, ACM, 1310.2274
[3] Multi-dimensional sla-based resource allocation for cloud computing systems by H. Goudarzi and M. Pedram, Proceedings first Intl

workshop on data center performance (DCPerf11), held in conjunction with ICDCS2011
[4] Kastner.D. and Ferinand, C, Efficient verification of non-functional safety properties by Abstract interpretation: Timing, Stack

Consumption, and Absence of Runtime Errors, Proceedings of the 29th International System Safety Conference ISSC2011, Las Vegas.
[5] Intel (R) VTune (TM) Performance Analyzer 9.0 by Intel Corporation, IntelWebSite. [Online]. Available:http://intel-r-vtune-

tmperformance-analyzer.software.informer.com/9.0/
[6] James Reinders, Intel Thread Building Blocks, Technical Report, Oreilly publications, 2007
[7] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek Terra: A Multi-Stage Language for High-Performance

Computing Stanford University Purdue University PLDI13 June 16-22, 2013, ACM 978-1-4503-2014-6/13/0.
[8] Sumalatha Aradhya, and Dr. Srinath N K, Proliferation framework on input data set to improve memory latency in multicores for

optimization , Proceedingsof IACC , June 2015,IEEE publications, 978-1-4799-8047-5, DOI: 10.1109/IADCC.2015.7154712.
[9] A.J.C. Bik, the Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance, Technical Report,

Intel Press, June, 2004.
[10] Samuel Larsen, Rodric Rabbah and Saman Amara singhe, Exploiting Vector Parallelism in Software Pipelined Loops ,Technical

Report, MITCSAIL-TR-2005-039, June 2005, MIT Computer Science and Artificial Intelligence Laboratory
[11] Hemang Mehta, S J Balaji, and Dharanipragada Janakiram, Extending Programming Language to Support Object Orientation in

Legacy Systems, Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai - 600036.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Sumalatha Aradhya et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i3/181003098 Vol 10 No 3 Jun-Jul 2018 863

[12] T. Sherwood, E. Perelman, G. Hamerly, and B.Calder. Automatically characterizing large scale program behavior. In Proceedings of
the 10th international conference on Architectural support for programming languages and operating systems, pages 4557, ACM
publications, 978-0-7695-4428-1/11, 2011 IEEE, DOI 10.1109/ISPA.2011

[13] Sverre Jarp, Alfio Lazzaro, Andrzej Nowak, Liviu Valsan ,Comparison of Software Technologies for Vectorization and parallelization ,
White-paper as part of the collaboration between CERN openlab and Intel SSG, CERN openlab, September 2012 version 1.0

[14] D. Kim, L. Renganarayanan, D. Rostron, S.Rajopadhye, and M. M. Strout. Multi-level tiling: M for the price of one. In SC ’07:
Proceedings of the 2007 ACM/IEEE conference on Supercomputing, pages 1-12, New York, NY, USA, 2007. ACM.

[15] Peter Hui, Satish Chikkagoudar, C. Artho and P.C. Olveczky ,A Formal Model for Real-Time Parallel Computation (Eds.): EPTCS
105, 2012, pp. 3955,doi:10.4204/EPTCS.105.4.

[16] A. Seznec and R. Espasa, Conflict free accesses to strided vectors on a banked cache, IEEE Trans. On Comp., vol. 54, pp. 913 - 916,
2005.

[17] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy and S. A ,Exploring SIMD for Molecular Dynamics Using Intel R Xeon Processors
and Intel R Xeon PhiTMCoprocessors , Parallel Computing Lab, Intel Corporation, IEEE publication, 2013

[18] Y. Zhang, S. Misra, D. Honbo, A. Agrawal, W.keng Liao, and A. N. Choudhary, Efficient pairwise statistical significance estimation
for local sequence alignment using GPU, in ICCABS, 2011, pp.226231

[19] Rafiqul Zaman Khan ,Current Trends in Parallel Computing, International Journal of Computer Applications (0975 8887) Volume 59
No.2, December 2012

[20] R. M. Rabbah and K. V. Palem. Data for design Space optimization of embedded memory systems. ACM Transactions on Embedded
Computing Systems, (2):132, May 2003

[21] Falk, Heiko, and Paul Lokuciejewski. ”A compiler framework for the reduction of worst-case execution times.”, Technical Report,
Real-Time Systems 46.2 (2010)

[22] I. Karlin, J. McGraw, J. Keasler, B. Still, uning the LULESH Mini-app for Current and Future Hardware, LLNL-CONF-610032,
NECDC 2012, Livermore, CA, United States

[23] HPCWebsite. [Online]. Available: https://www.hpcwire.com/2015/03/02/a-comparison-of-heterogeneous-and-manycore-
programming-models

[24] François Broquedis, François Diakhaté, Samuel Thibault, Olivier Aumage, Raymond Namyst, and Pierre-André Wacrenier R.
Eigenmann and B.R. de Supinski ,Scheduling Dynamic OpenMP Applications over Multicore Architectures (Eds.): IWOMP 2008,
LNCS 5004, pp. 170–180, 2008. @ Springer

[25] Jarp, Sverre & Lazzaro, Alfio & Leduc, Julien & Nowak, Andrzej. (2011). Evaluating the scalability of HEP software and multi-core
hardware. Journal of Physics: Conference Series. 331. 10.1088/1742-6596/331/5/052009.

[26] Richard G. Brown, “ Advanced Mathematics- precalculus with Discrete Mathematics and Data Analysis”, 1st ed. ,McDougal Littell
Inc., A Houghton Mifflin Company, Illinios. ISBN:0-395-77114-5

[27] C L Liu and D P Mohapatra, “Elements of Discrete Mathematics-a computer oriented approach”, 3rd ed., Tata McGraw-Hill Publishing
company Limited, New Delhi, India, ISBN-13:978-0-07-066913-0.

[28] Kenneth Hoffman and Ray Kunze, “Linear Algebra”, 2nd ed., PHI Learning Private Limited, NewDelhi, 2009, ISBN: 978-81-203-
0270-9.

[29] An ISO Standard, ISO 11898-1:2015, Road Vehicles- Controller Area Network (CAN)-Part 1: Data link layer and physical signaling”,
The ISO website. [Online]. Available:www.iso.org/standard/63648.html

[30] ARINC Specification 429, Part 1-17. Annapolis, Maryland: Aeronautical Radio, Inc. 2004-05-17. pp. 78–116

AUTHOR PROFILE

Mrs. Sumalatha Aradhya received B E degree from Dr. Ambedkar Institute of
Technology, Bangalore in year 2000 and M Tech from M V J College of Engineering,
Bangalore in year 2006 and currently perceives her PhD in the field of parallel
computing from R V College of Engineering, Bangalore. The author has 16+ years of
experience with diversified exposures to telecom, avionics and memory computing
areas across the industries such as IntelliNet Technologies, Bangalore; L & T Infotech,
Bangalore; HCL Technologies, Bangalore and Quest Global, Bangalore. Her research
interests are compilers, high performance computing, and embedded systems

Dr. N K Srinath is currently working as Dean of Academics at R V College of
Engineering, Bangalore. He has 33 plus year of experience in teaching and his area of
research are systems engineering and operations research. He has more than 52
international journal publications and he is author of several text books related to
microprocessors and data base systems. He served as advisory committee member for
various national and international proceedings, and was part of expert committee
member of UGC as chairman and is active member of several education bodies’
advisory committees.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Sumalatha Aradhya et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i3/181003098 Vol 10 No 3 Jun-Jul 2018 864

	Intrinsic Compilation Model to enhancePerformance of real time application inembedded multi core system
	Abstract
	Keyword
	I. INTRODUCTION
	II. RELATED WORK
	III. INTRINSIC COMPILATION MODEL DERIVATION
	IV.CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES
	AUTHOR PROFILE

