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Abstract - The paper presents a comparative analysis of the models for predicting machined surface 
quality developed by the application of multiple regression and artificial neural networks. The models 
were developed using experimental data for the mean arithmetic deviation of surface roughness and the 
axial cutting force obtained by implementing the Taguchi experiment plan. Comparative analysis of the 
models has shown that artificial neural networks give the best results in terms of predicting the mean 
arithmetic deviation of surface roughness on the basis of process parameters and axial cutting force. 
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I. INTRODUCTION 

Experimental research seeks to establish dependence between quality of the machined surface and parameters 
of the cutting process. Prediction of the machined surface quality through the mean arithmetic deviation of the 
surface roughness (Ra) is made by using a multiple regression mathematical model and by applying models 
based on artificial neural networks that connect machining process input parameters with the quality of the 
machined surface. 

Çiçek, Kivak and Samtaş [1], using the Taguchi experiment design in a drilling operation on austenitic 
stainless steel AISI 316 with high-speed steel (HSS) twist drills, conventionally and cryogenic, varying feed f 
(mm/o) and the cutting speed vc (m/min) at two levels, develop a regression model that combines the indicated 
parameters with the machined surface quality through the mean arithmetic deviation Ra (μm), with a 96,3% 
coefficient of determination. 

Rodrigues et al. [2] use a regression analysis to obtain a mathematical model that links the spindle speed n 
(rpm), feed f (mm/rev) and cutting depth a (mm) with the machined surface quality through the mean arithmetic 
deviation Ra (μm) by conducting a full experiment plan and varying of the mentioned parameters at three levels 
in a turning operation on structural steel with high-speed steel (HSS) tools. The adjusted coefficient of 
determination in this case is 66,1% which indicates a strong connection between the machined surface quality 
and the mentioned parameters. 

Raghunandan, Bhandarkar and Pankaj [3], based on the data obtained using the Taguchi experiment design in 
a truning operation on EN-19 material with cemented carbide inserts, come up with a model linking a mean 
arithmetic deviation of surface roughness Ra (μm), cutting speed vc (m/min), feed f (mm/rev) and cutting depth a 
(mm). The adjusted coefficient of determination, which describes the given connection, in this case is 52,8%. 

Ficici, Koksal and Karacadag [4] investigate the effect of tool modification (twist drill cutting edge grinding 
in μm), cutting speed vc (m/min) and feed f (mm/rev), using Taguchi experiment design in a drilling operation on 
austenitic stainless steel AISI 304 with high-speed steel (HSS) twist drills. Development of the regression model 
links the stated parameters with the machined surface quality through the mean arithmetic deviation Ra (μm) and 
the implementation of the confirmatory experiment using the optimal combination of parameters find that the 
prediction error is 4,34%. 

Rashid and Lani [5], in addition to using multiple regression to obtain a mathematical model, use artificial 
neural networks for predicting surface roughness in a milling operation on aluminum. By performing the 
experiment, using a complete factorial plan, they develop the models that connect surface roughness expressed 
through the mean arithmetic deviation of the roughness profile Ra (μm), the spindle speed n (rpm), the velocity 
of the auxiliary motion vf (mm/min) and depth of cut a (mm). The developed mathematical model gives the 
result with an average error of 13,3%, while the artificial neural network shows more favorable results with 
6,42% of the average error. 
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Šimunović, Šarić and Lujić [6] apply artificial neural networks for predicting the surface roughness of a 
workpiece of steel Č.4730 (EN 25CrMo4), machined by turning, using as input parameters the type of material, 
type of tool, depth of cut, feed and spindle speed. This model, based on artificial neural networks, gives results 
with an average error of less than 5% in the light of the data used to train, validate and test the possibilities of 
the model. 

Konanki and Sadineni [7], by conducting the Taguchi experiment plan and using input data for the cutting 
speed vc (m/min), spindle speed n (rpm) and depth of cut a (mm) varied on three levels in a turning operation on 
AA 6351 alloy, develop a model for predicting surface roughness on the basis of artificial neural networks using 
a mean arithmetic deviation Ra (μm) with an average test error of  2,24%. 

These models give a good approximation of the experimental results, but do not take into account the impact 
of  the tool wear on the quality of the machined surface. 

Nedić, Tadić and Đorđević [8], on the basis of experimental investigationsin turning and drilling operations 
on softly annealed steels with pearlite-ferrite structure, come to a polynomial dependence in the form of a third-
degree polynom between the mean arithmetic deviation of the surface roughness Ra (μm) and machining tools 
wear VB (mm). 

Spaić and Marinović [9], by using the artificial neural networks based on the experimental results obtained in 
a drilling operation on steel Č.4732 (EN 42CrMo4) with high-speed steel twist drills, establish a model for the 
axial drilling force F3 (N) dependent on the tool wear width VB (mm). They demonstrate that artificial neural 
networks can be adequately used to predict the axial drilling force as a carrier of information on the tool wearing. 

Xu, Hiroyuki and Wei [10] show that tool wear VB (mm) in a drilling operation on aluminum alloys can be 
predicted by means of artificial neural networks by using process input parameters such as depth of cut a (mm), 
spindle speed n (rpm) and feed f (mm/rev), adding the values of measurable process parameters such as axial 
cutting force F3 (N) and torque M (Nm). 

Considering the aforesaid, it appears possible to develop multiple regression models and a model based on 
the application of artificial neural networks that will include both the process input parameters (the speed, the 
feed, the depth of cut) and measurable machining process parameters associated with machining tools wear (the 
force, the torque etc.) at the same time enabling a comparative analysis and reaching a conclusion on the 
character of the error of individual models. 

II. MULTIPLE REGRESSION MODELS 

A multiple regression model successfully describes interdependence of the phenomena in reality, and the aim 
of multiple regression is to make predictions of dependent variable variations based on the estimated model for 
different combinations of explanatory variables values [11]. 

Multiple linear regression model which is applied in cases when there are several explanatory (independent or 
regression) variables can be written in the form: 

ex...xxy kk   22110 . 

In this model, the variable y is the dependent variable, x1, x2, ... , xk are independent variables, β0, β1, β2, ... , βk 
are the regression coefficients (the parameters of the model to be determined), and e is a random variable. 

Given a statistical (random) sample of size n to be used for establishing the relationship between dependent 
variable y and the independent variables x1, x2, ... , xk, the following n equation corresponds to the above 
equation: 

n,....i,ex...xxy ikikiii 122110   . 

The basic task of forming the regression model is reduced to the estimate of unknown parameters of the 
model β0, β1, β2, ... , βk, to obtaining the estimated values of the parameters b0, b1, b2, ... , bk by the least squares 
method, and to forming the model as follows: 

kk xb...xbxbbŷ  22110 . 

To determine the model adaptation to empirical data, a standard error of regression and a coefficient of 
determination is used where the standard error of regression s represents the estimate of the random error σ 
standard deviation, while the coefficient of determination R2 shows the percentage of dependent variable 
variations explained by the combined impact of the explanatory variables included in the model [11]. 

The standard error of regression s, as the absolute measure of representativity expressed in the units of 

dependent variable y, is determined as the square root of the estimated value of the random error 2̂ variance 
and the number of degrees of freedom n-(k+1): 
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The coefficient of determination R2, as the relative measure of representativity of the model obtained, is a 
quantitative measure of the linear dependence degree of the dependent variable y and several independent 
variables x1, x2, ... , xk, and is determined as the ratio of regression variance and total variance [12]: 
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When the number of data in a random sample is small and several independent variables x1, x2, ... , xk, are 
observed, the coefficient of determination is high thus requiring its correction by taking into account the number 

of variables and the sample size n. This is done using the adjusted coefficient of determination 2R , defined as 
[11]: 
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The adjusted coefficient of determination 2R , which is always less than the coefficient of determination of  
R2 whose value approaches the value of the coefficient of determination by increasing the number of data in the 
sample, in this case represents a more precise relative measure of the model’s representativeness. 

In addition to determining the standard error of regressions s and the coefficient of determination R2, 
determination of the sense of the dependent variable y estimation based on each of the independent variable x1, 
x2, ... , xk requires significance testing of the estimated parameters b0, b1, b2, ... , bk [13]. 

The precondition for testing significance of the parameters is to calculate the standard error of a parameter 

jbS ,  j = 1,...,k: 
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The statistical significance of the estimated regression parameters is determined on the basis of the limit table 
t-value and the calculated value tj: 

jb

j
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b
t  . 

By reading the limit values from the t-tables for degree of freedom n-(k+1) and significance level p one can 
draw a conclusion on the statistical significance of the evaluated parameters and the sense for estimation of the 

dependent variable y on the basis of an independent variable xj. In case of tt j   the estimate of the dependent 

variable y makes sense. 

A multiple nonlinear regression model which is applied in cases when there are several independent variables 
can be written in the form: 

ex...xxy k
k   21

210 . 

A nonlinear regression model is reduced by the logarithmic transformation to the linear regression model of 
the form: 

elogxlog...xlogxloglogylog kk   22110 . 

In the given model, the variable log y represents the dependent variable, and the log x1, log x2, ... , log xk are 
independent variables. 

Given a random sample of size n to be used for establishing relationship between the dependent variable y 
and the independent variables x1, x2, ... , xk, the following n equation corresponds to the above equation: 

n,...,i,elogxlog...xlogxloglogylog ikikiii 122110   . 
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The basic task of forming the regression model in this case is reduced to the estimation of unknown 
parameters log β0, β1, β2, ... , βk, to obtaining the estimated values of the parameters log b0, b1, b2, ... , bk, and to 
forming the model in the form: 

kk xlogb...xlogbxlogbblogŷlog  22110 . 

Determination of model adaptation to empirical data is also performed using the standard error of regression 
and the coefficient of determination. In order to determine the sense of the dependent variable log y estimation 
on the basis of each of the independent variables log x1, log x2, ... , log xk significance testing of estimated 
parameters log b0, b1, b2, ... , bk is required. 

Transformation of the obtained linear regression model leads to the formation of a nonlinear regression model 
which is formed to describe behavior of the dependent variable y: 

kb
k

bb x...xxbŷ  21
210 . 

III. ARTIFICIAL NEURAL NETWORKS MODEL 

A model based on artificial neural networks consists of interconnected artificial neurons (Fig. 1) that imitate 
functioning of biological neurons. The signals x1, x2, ..., xk, which are described by numerical quantities and 
multiplied by the weighting coefficients w1, w2, ... ,wk, when entering the neuron are summed up analogously to 
the sum of the potential in the biological neuron body. If the summed number (weighting sum) is above the 
defined threshold wk+1, the neuron produces the output signal y. Apart from the threshold, an artificial neuron 
can have an additional function, the transfer function f [14]. 

 
Fig. 1. Artificial neuron 

The weighting sum, by adding an input signal xk +1 with a fixed value of 1, can be written in the form: 
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while the output y as the result of the transfer function f can be written in the form: 
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A rather common case seen in practice of establishing a connection between one dependent variable and 
multiple independent variables requires formation of a model based on artificial neural networks with multiple 
inputs, a single output, or an output layer, and one or more hidden layers (Fig. 2). 

 
Fig. 2.  Artificial neural network model with multiple inputs and one output 
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The transfer function can be a linear or non-linear function, and most commonly used transfer functions 
are linear, jump function and sigmoid transfer function [15]. 

In order for the neural network to represent non-linear relations, which in practice are most commonly 
used, it is necessary for the transfer function of its process elements, artificial neurons, to be a nonlinear function 
of its inputs. The function that fulfills this condition is a sigmoid transfer function [14]. 

Artificial neural networks require training, i.e. application of algorithms that adjust the amounts of 
weighting coefficients whereby a very popular Backpropagation learning algorithm for multilayer artificial 
neural networks, developed in the MATLAB software package, is used. 

IV. EXPERIMENT DESIGN 

In this paper the Taguchi orthogonal experiment plan L9 [16], given in Table I, with nine combinations of 
machining process parameters, was used. 

TABLE I.  Ortogonal Matrix L9 

Com. No. 
Factors 

X1 X2 X3 X4 

1. 1 1 1 1 

2. 1 2 2 2 

3. 1 3 3 3 

4. 2 1 2 3 

5. 2 2 3 1 

6. 2 3 1 2 

7. 3 1 3 2 

8. 3 2 1 3 

9. 3 3 2 1 

The experiment was conducted using twist drills (TD) DIN 338 Ø3, DIN 338 Ø5 and DIN 338 Ø8 made of 
high-speed steel Č.7680 (EN HS6-5-2) the chemical composition of which is given in Table II. The drills were 
produced by grinding technology and thermally machined to 64-68 HRC hardness, in black versions with 
normal blade (NB), manufactured by „Swisslion Industrija Alata, a.d.Trebinje“. 

TABLE II.  Chemical Composition of Steel Č.7680 (EN HS6-5-2) [%] 

C W Mo Cr V Si Mn P S 

0,82-0,9 5,5-6,75 4,5-5,5 3,8-4,4 1,75-2,2 0,2-0,45 0,15-0,4 ≤0,03 ≤0,03 

The input parameters of the drilling operation were the nominal diameter of the twist drill (d), speed (n), the 
feed (f), and the angle of installation of the workpiece (ε) was taken as an additional parameter. 

Variation of the speed and feed was adopted based on the recommendation of the twist drills manufacturer. 
The adopted values of the experiment factors, the nominal diameter, the speed, the feed and the angle of 
installation of the test tube are given in Table III. 

TABLE III.  Experiment Factors Values 

No. d (mm) n (o/min) f (mm/rev) ε (o) 

1. 3 300 0,03 0 

2. 5 500 0,05 3 

3. 8 800 0,10 5 

Material used in experiment for the test tubes was enhancement steel Č.4732 (EN 42CrMo4) thermally 
treated to 28 HRC hardness with chemical composition given in Table IV. 

TABLE IV.  Chemical Composition of Steel Č.4732 (EN 42CrMo4) [%] 

C Si Mn P S Cr Mo 

0,38-0,45 0,15-0,4 0,5-0,8 ≤0,035 ≤0,035 0,9-1,2 0,15-0,3 
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The dimensions of the test tubes determined on the basis of the planned drilling depth of l = 3d are given in 
Table V. 

TABLE V.  Dimensions of the Test Tubes 

Twist drill l (mm) Test tube diameter (mm) Test tube thickness (mm) 

DIN 338 Ø 3,00 9 

Ø 60 

15 

DIN 338 Ø 5,00 15 20 

DIN 338 Ø 8,00 24 30 

The experiment was conducted on the EMCO MILL 250 milling machine with the possibility of achieving a 
maximum speed of the main spindle of 10 000 rpm with the axis velocity range of 0-10 m/min, the possibility of 
achieving a maximum torque of 41 Nm, and EMCO WinNC numerical control with SIEMENS Sinumerik 
810/840D software. 

To determine the size of the twist drill flank wear an optical device GÜHRING PG 100 was used for 
measuring the geometric elements of twist drills with the possibility of digital reading of the measured values. 

Measurement of the axial drilling force during the operation was conducted by KISTLER measuring chain 
for measuring axial force and torque with a measuring range up to 20 kN. 

The mean arithmetic deviation values of the machined surface roughness profile was determined by using the 
measuring instrument SURTRONIC 25 produced by TAYLOR HOBSON with a measuring range up to 300 μm. 

V. EXPERIMENT RESULTS 

Having performed the experiment by drilling holes with depth l = 3d for different parameters of the 
machining operation (nominal diameter, speed, feed and the angle of installation of the workpiece), the values of 
the axial drilling force F3 (N) and the mean arithmetic deviation of the surface roughness profile Ra (μm) for 
different twist drills wear levels have been obtained. The values obtained are given in Table VI. 

TABLE VI.  Experiment Resuts 

No. 
d 

(mm) 
n 

(o/min) 
f (mm/rev) ε (o) 

VB = 0 mm VB = 0,02d VB = 0,04d 

F3 (N) Ra (μm) F3 (N) Ra (μm) F3 (N) Ra (μm) 

1. 3 300 0,03 0 243,21 0,306 348,88 0,675 410,28 0,960 

2. 3 500 0,05 3 329,62 0,411 445,86 1,23 517,12 1,41 

3. 3 800 0,10 5 724,04 2,61 775,32 3,25 874,82 3,71 

4. 5 300 0,05 5 724,67 0,702 737,62 0,825 989,43 1,53 

5. 5 500 0,10 0 1059,7 2,58 1271,49 2,88 1296,40 3,25 

6. 5 800 0,03 3 407,76 1,54 412,21 1,81 416,65 2,07 

7. 8 300 0,10 3 1817,08 3,08 1842,61 3,24 2028,99 3,85 

8. 8 500 0,03 5 710,80 1,88 1017,82 2,99 1040,07 4,00 

9. 8 800 0,05 0 832,14 2,86 867,66 3,29 965,86 4,46 

VI. MODELS DEVELOPMENT 

The experimental results for VB = 0,02d were used along with the values of the parameters b0, ..., b5 obtained 
by means of the least squares method to form a model of multiple linear regression (MLRM): 

3543210 FbbsbnbdbbR̂a   . 

The parameters of the model with standard regression error s, the coefficient of determination R2, the adjusted 

coefficient of determination 2R and the standard parameter error 
jbS (j = 1, ..., 5) are given in Table VII. 
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TABLE VII.  Multiple Linear Regression Model Parameters with Axial Drilling Force for TD NB Variant Drilling in the Test Tubes 28 
HRC Hardness 

Model parameter Parameter value jbS  
jb

j
j S

b
t   s 

0,515631635 

b0 -1,247352303 - - 
R2 

b1 -0,06714737 0,083646497 -0,802751737 

b2 0,003859932 0,000836465 4,614576426 0,918200815 

b3 -6,79879202 5,838378579 -1,164500028 
2R  b4 -0,002993561 0,083646497 -0,035788237 

b5 0,002572038 0,000382718 6,720446502 0,781868839 

Given that all the values tt j   for the significance level p = 0,001, the estimation of the dependent variable 

Ra based on the variables d, n, f, ε and F3 makes sense. 

After the formation of the multiple linear regression model, a transformed multiple nonlinear regression 
model is formed as follows: 

3543210 FlogblogbslogbnlogbdlogbblogR̂log a   . 

The parameters of the transformed model with standard regression error s, the coefficient of determination R2, 

the adjusted coefficient of determination 2R and the standard parameter error 
jbS (j = 1, ..., 5) are given in 

Table VIII. 

TABLE VIII.  Transformed Regression Model Parameters with Axial Drilling Force for TD NB Variant Drilling in the Test Tubes 28 HRC 
Hardness 

Model parameter Parameter value jbS  
jb

j
j S

b
t   s 

0,106950387 

log b0 -6,509728393 - - 
R2 

b1 -0,334062021 0,204943271 -1,630021905 

b2 1,046248025 0,204943271 5,105061606 0,943310952 

b3 -0,322109369 0,166372743 -1,936070551 
2R  b4 -0,000393794 0,007885879 -0,049936587 

b5 1,320569484 0,158404252 8,33670475 0,848829204 

Transformation of the obtained model resulted in the multiple nonlinear regression model (MNRM) with 
axial drilling force for twist drill drilling operation in 28 HRC hardness test tubes: 

54321
30
bbbbb

a FsndbR̂   . 

Formation of the model based on artificial neural networks (ANNM) with multiple inputs (nominal diameter 
of the twist drill, the speed, the feed, the angle of installation of the workpiece, and axial force) and one output 
(the mean arithmetic deviation of surface roughness) was conducted using the Backpropagation artificial neural 
network with two hidden layers with sigmoidal transfer functions and a linear transfer function in the output 
layer. 

Training, validation and testing of the neural network was performed with input combinations of the 
machining process parameters and the axial drilling force obtained for twist drills flank wear values of VB = 0 
mm and VB = 0,04d. The least errors in training, validation and testing were achieved by a neuron network of 15 
neurons in the first hidden layer, 10 neurons in the second hidden layer (Fig. 3), and the learning function 
LEARNGDM. 
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Fig. 3.  Architecture of trained artificial neural network 

Based on all input combinations and values of the axial drilling force obtained for the twist drills wear values 
of VB = 0,02d the trained artificial neural network was simulated. Comparative results of the experiment, 
regression models and the results obtained by simulating the trained artificial neural network are given in Table 
IX. 

TABLE IX.  Comparative Analysis of the Experiment Results and Models with Axial Drilling Force for TD NB Variant Drilling in the Test 
Tubes 28 HRC Hardness 

No. Ra (μm) 
Ra (μm) – Model results Model error (%) 

MLRM MNRM ANNM MLRM MNRM ANNM 

1. 0,675 0,402553725 0,594873774 0,70322 40,362411 11,870552 4,180740741 

2. 1,23 1,279019702 1,180354138 1,047 3,9853417 4,03624891 14,87804878 

3. 3,25 2,938455912 3,2050161 3,0198 9,585972 1,38411998 7,083076923 

4. 0,825 1,117169202 1,133513045 0,7506 35,414449 37,3955206 9,018181818 

5. 2,88 2,937317373 3,203898677 3,1618 1,9901866 11,2464818 9,784722222 

6. 1,81 2,352131193 1,729480948 1,7266 29,952 4,44856643 4,607734807 

7. 3,24 3,423850341 2,59668921 3,1769 5,6743932 19,8552713 1,947530864 

8. 2,99 2,544374144 2,981757721 3,8302 14,903875 0,2756615 28,10033445 

9. 3,29 3,195128408 3,379469916 3,2673 2,883635 2,71945034 0,689969605 

Model mean error (%) 16,083585 10,359097 8,921148912 

VII. CONCLUSION 

Besides its dependence on the input parameters of the machining operations, the quality of the machined 
surface, which is most often monitored through the mean arithmetic deviation of the surface roughness profile, 
depends on the machining tool wear level which can be indirectly monitored by measuring the parameters 
correlated with the tool wearing (the force, the torque, the acoustic emission level). 

Development of multiple regression models and the model based on artificial neural networks, which 
establish the connection between the input parameters of the machining process and the tool wear on one side 
and the machined surface quality on the other by using indirect parameters, enables prediction of the machined 
surface quality during machining process based on the information about the parameters in correlation with the 
tool wear. 

Comparative analysis of the developed prediction models leads to the conclusion that the model based on 
artificial neural networks gives the best results. 
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