
A Systematic Literature Review on Feature
Oriented Software Development Paradigm

Kala K.U. #1, M. Nandhini #2
1Research Scholar, 2Assistant Professor

1,2Department of Computer Science, Pondicherry University, Puducherry-14, India
1kalaunni88@gmail.com

2mnandhini2005@yahoo.com

Abstract - Feature-Oriented Software Development (FOSD) is a software development paradigm
focusing on the overall process of software development of large-scale software systems. The main focus
of feature orientation is to divide the software product line systems (SPLs) in terms of features. A feature
represents a product requirement of a stakeholder. From the set of features, various software products
have automatically derived that share some features and differ in another feature based on customer
requirement. The main objective of the work is to identify the state of the art in the overall software
development process using FOSD paradigm. The other focuses are finding the phase of FOSD which need
more focus, based on automation, and identify the quantity and the types of researches on FOSD
techniques to address the software product line development concerns and thus finding the areas
discussed and problems addressed so far in the published papers of FOSD. The review was conducted by
following the Kitchenham’s guidelines for conducting the systematic literature review, with five research
questions and assessed 118 publications from the origin to 2017 from the 5 electronic sources of relevance
to FOSD Research and selected 63 from them for detailed study. FOSD is an emerging trend in software
development based on automation. Our Study analyses each area, in which existing research is focused
and propose the ongoing phases of interest in feature-oriented software development and revealed the
need of further research in this field.

Keywords - Feature Oriented Software Development, Systematic Review, Feature Model, Automatic
software construction, Systematic literature Review.

I. INTRODUCTION

Feature-oriented software development (FOSD) is one of the software product line development paradigms
for the construction, customization, and synthesis of large-scale software systems [1]. The focus of feature
orientation is to arrange and structure the overall product line development process in terms of features and
corresponding artifacts. A feature represents a product characteristic of a stakeholder. In this paradigm, the
decomposition of a software system in terms of features occurs and from that set different software products are
often generated that share main features and differ in other features [1].

The software products can be developed automatically using FOSD paradigm. That automatic development is
the main aim of FOSD. The major phases of FOSD that leads to the automatic generation of software products
are domain engineering and application engineering. In domain engineering, the major processes are domain
analysis (domain scoping and variability modeling) and domain implementation (development of feature
artifacts). In Application engineering feature selection and product derivation is the two processes. The software
product is derived automatically by integrating the artifacts of corresponding features selected.

In methodological stipulations, feature acclimatization tackle features explicit in requirements, design code,
testing and so forth-across the entire wheel of life. It would be tranquil to flesh out software if its features would
be precise and overt in design and code and if software could be generated solely by composing features.
Currently, there is a multitude of different methods, languages, frameworks and tools for FOSD. In order to
develop models and fully automated frame work, a thorough understanding of FOSD, by considering all aspects
of concerns of it.

A. Background

Automated software production is an advanced and trending area of software development. Software products
are so often build by hand that have gotten it down to a Science. Aim of Science of Automated Design (SOAD)
is the beginning of automated production. FOSD is playing a major role in SOAD. FOSD is a software product
line generation technique in software engineering. It provides a newly automated manner for the development,
customization, and synthesizers of large-scale software package systems from a collection of features. A feature
may be a unit of the practicality of software that satisfies a demand, represents a design decision and provides a
possible configuration problem. In alternative words, a feature represents a product characteristic of a
stakeholder. FOSD aims at the separation of concerns in terms of features, even for crosscutting and interacting
features, and provides corresponding abstraction and implementation mechanisms. The main focus of FOSD is

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4213

to decompose a software system as a collection of features and from that set different software products are
often generated that share fundamental features and differ in other features.

The essential properties of FOSD are reuse, structure and variation. Developers structure the system design
and code in terms of features, utilizes features a unit for reuse, and variants is achieved by some features unique
to the specific customer. While discussing about FOSD it is important to clear the concept of feature in detail.
Features can be defined technically by Apel et al. [1] as “a structure that extends and modifies the structure of a
given program in order to satisfy a stakeholder’s requirement, to implement and encapsulate a design decision,
and to offer a configuration option”. The concept of features is emphasized in each phases of the software life
cycle and appropriate concern is needed for the analysis, design, programming techniques, method, tools also in
theory. Features can be defined in different ways using simple abstract words or using technical terms [1]. Each
researcher defines the feature in his view point some of them are summarized in Table I.

Table I. Definition of Features

Author Definition
Kang et al. [2] “a prominent or distinctive user-visible aspect, quality, or characteristic

of a software system or systems”
Kang et al. [3] “a distinctively identifiable functional abstraction that must be

implemented, tested, delivered, and maintained”

Czarnecki and Eisenecker [4]
“a distinguishable characteristic of a concept (e.g., system, component,

and so on) that is relevant to some stakeholder of the concept”

Bosh [5]
“a logical unit of behavior specified by a set of functional and non-

functional requirements”

Chen et al. [6]
“a product characteristic from user or customer views, which essentially

consists of a cohesive set of individual requirements”

Batory et al. [7]
“a product characteristic that is used in distinguishing programs within a

family of related programs”

Classen et al. [8]

“a triplet, f = (R, W, S), where R represents the requirements the feature
satisfies, W the assumptions the feature takes about its environment and S
its specification”

Zave [9] “an optional or incremental unit of functionality”
Batory [10] “an increment of program functionality”

Apel et al. [11]

“a structure that extends and modifies the structure of a given program
in order to satisfy a stakeholder’s requirement, to implement and
encapsulate a design decision, and to offer a configuration option”

The difference between feature and other programming paradigm concepts (object, function and aspect) are
huge. Features differentiate one product from the other by its externally visible characteristics, where as other
programming concepts deals with only internal details of the system. The concept of abstraction is only
understandable to the persons with knowledge of programming paradigms.

B. Problem Statement and Justification

The objective of the study is to explore all the aspects of research in the FOSD paradigm. There is no other
review published regarding FOSD so far. To that end, we conducted a systematic literature review because it is
the best method for identifying and evaluating the studies of a particular domain by make use of a set of
predefined research questions. Our systematic literature review helps to obtain a fair and goal oriented
evaluation of FOSD. In this survey; we give an overview about the roots and the advancements in feature
oriented software development approach focusing on development of efficient and effective software product
lines. So our systematic literature review helps the researchers to catch the information about the state of the art
techniques and practices for FOSD and the research gaps in existing work. Our systematic literature review
points out the strength and weaknesses of existing research based on the review questions and reveal the future
scope of research.

 We use Goal- Question-Metric (GQM) paradigm [3] to define the goal of our systematic review.

Purpose: Study and analyze.
Issue: Feature Oriented software development paradigm.
Object: In software product line development.
Viewpoint: From the view point of researchers.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4214

In this systematic review, we aim at identifying and assessing approaches for implementing FOSD, optional
feature problem, feature defect prediction, feature interaction problem, and find the scope of fully automation in
the era of automatic development of software. Our research questions focus on investigating different aspects of
existing methods and helping to identify the areas for improvement. The audience of this systematic review
includes researchers who would like to obtain an overview of the topic, and practitioners who would like to get
familiar with existing methods in order to apply them in industry.

C. Related Reviews

 In 2009, Apel Swen et al. [1] conducted a literature study on feature oriented software development that is
the one and only one review regarding this topic. In that survey, they compare FOSD with other development
approaches and thus provide the roots and advancements in the field of FOSD. Their systematic summarization
of several promising work in the field of FOSD give the idea of different lines of research and open issues
present at that time. Their prominent aim is to attract more researchers to FOSD community. It has been around
10 years advancements now so we conduct further systematic study on the same topic.

D. Review Questions

 The overall research objective of this study is to find and analyze state of the art in FOSD researches based
on the available journals. This objective has been broken down into three high-level research questions (RQs)
which, in turn, will drive the review method. Table II shows the RQs and their motivation.

Table II. Review Questions and Their Motivation.

Research Question Interest and Motivation
RQ1. What is the amount of automation

acquired in each phase of FOSD?
The motivation behind this question is to find the level of

automation in each phase of feature oriented software
development in research focus on developing a fully
automated software framework.

RQ2. Which will be the best approach
for Implementing variability in FOSD?

Consequently, by answering this RQ, we can get
information about: existing implementation approaches and
can measure the criteria to find the best one

RQ3. What are the implementation
techniques for solving feature interaction
problem and optional feature problem?

To identify which are the implementation techniques
proposed in the literature for feature interaction problem,
identifying modeling techniques, analysis, particular
notations and guidelines

RQ4. How refactoring technique is used
in FOSD?

To identify and understand the different refactoring used
in feature oriented software development.

RQ5. How can we derive features from
an application domain?

The main process of FOSD is to analyze the requirements
of the domain and derive corresponding features. The various
methods for deriving feature and feature relationship are
understood by answering this question

RQ6. What are the uses of defects
prediction techniques in features?

Quality assurance is difficult in SPLs because codes of
features may scattered so individual and integration testing
may difficult. If we can predict feature defects quality
assurance will become easy

II. REVIEW APPROACH

The systematic review was designed in accordance with the systematic review procedures and processes
defined by Kitchenham [12,13]. According to Kitchenham [13], there are 10 sections in the structure of a
systematic review: 1. Title; 2. Authorship; 3. Executive summary or abstract; 4.Background; 5. Review
questions; 6. Review Method; 7. Inclusion and exclusion of studies; 8.Results; 9. Discussion; and
10.Conclusion. The first 5 sections have been covered so far. The review method comprises four sections: 1.
Data sources and search strategy; 2. Study selection; 3. Data extraction; and 4. Data synthesis. This section
comprises the review method and the inclusion and exclusion of studies. The results, discussion and conclusion
are presented in the next section
A. Data Sources and Search Strategy

1) Data sources:
In every systematic mapping, the primary studies are identified by using automatic searches on scientific

bibliographies or browsing manually by the acquiring the works from journals and conferences of the target
field. In our systematic mapping, we applied an automatic search that was complemented with manual searches
in the specific venues listed. The aim of this search process was to find as many published papers related to the
research questions as possible using a systematic search strategy.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4215

In order to get the primary basic concepts of feature oriented software development and to gather the
keywords for searching the data sources, we decided to add the book by Sven Apel et al.[16] about Feature
Oriented Software Product Lines because this is the only book that is completely devoted to the study of the
concept of FOSD. Sven Apel and his co-researchers are behind most of the researches happened in this field.
The sources of our studies were: ACM, IEEE, Springer, Wiley Inter Science, and Google Scholar. The quality
of these sources guarantees the quality of the study. The main source of recent papers is from the FOSD
conference held continuously every year from 2009 to 2016.

2) Search strategy:
The papers which are written in English are selected to study. To answer the questions and carry out the

initial search using five steps mentioned in table III using the keywords mentioned in Table IV.

Table III. Data Search Strategy

Steps Explanation
1.Research Scoping We identify the fundamental areas of research from[14] and define the

scope by considering the research questions.
2.Extract Keywords Keywords or strings for searching is extracted from the defined area. The

extracted keywords are shown in table 4.
3.Design Search Expression Describe search expressions based on the scope and keywords
4.Application of Search
Expression

Use the search expressions in the sources listed in the section 2.1.1 to
find the papers already published in our review area

5.Snow ball readings Analyze the reference list of identified papers to further search and thus
we do not miss any researches

Table IV. Search Keywords

Category Area Keywords/Strings

 A

Feature

Oriented
Software
Development

X1- Phases of FOSD process
X2- Domain engineering
X3- Application engineering
X4- Automated software construction
X5- Feature model
X6- Variability implementation techniques
X7- Optional feature problem
X8- Feature interaction problem
X9- Product line refactoring
X10- Refactoring
X11- Feature extraction
X12- Feature defect prediction

 B

Nature of

Study

Y1 – Case study
Y2 – Experiment
Y3 – Surveys
Y4 – Industrial
Y5 – Literature reviews

B. Study Selection (Inclusion and Exclusion of Studies)

From the sources mentioned in previous section, study selection is started by applying the keyword shown in
table 4 using AND or OR logical connectives and then followed the steps as shown in table V based on the
inclusion exclusion criteria. In initial search we got 118 papers and after the study selection process we select 63
papers for the detailed study.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4216

Table V. Study Selection Steps and Inclusion Criteria

Analysis Phase Inclusion Criteria Exclusion Criteria Number of
Papers

1. Initial search  Papers written in English
 Available online
 Contain search keywords and

strings

 Publications not
written in English

 Publications before
1990

118

2.Removing
duplicates

 Different in concepts
 Different in methods
 Different in strategies

 Duplicate Papers
 Similar concepts,

methods and strategies

109

3.Scrutinizing
titles

 Only published in journals,
conferences, workshops and books
 Not an editorial, seminar,

tutorial or discussion

 Not Subject to peer
review

92

4.Analyzing
abstracts

 Experiments, case studies,
literature reviews,
 industrial and surveys

 Methodologically
unsound studies

 Lack of quality

 80

5.Analysing
Introduction and
conclusion

 Main contribution in the areas
of search strings related to review
questions

 Lack of focus on
FOSD

 69

6. Fast reading
focusing on
contributions to
review questions

 Reported significant
contribution
 Originality of work
 Sole focus related to the

theme of this review study

 Publications in
unsystematic manner

 Not contributing to
solving research questions

63

C. Study Quality Assessment

Our research source is only the publications, which maintained high quality levels. So the initial basic quality
is achieved from the initial stage itself. The papers which are selected by applying inclusion exclusion criteria is
passed through some quality assessment questions shown in table VI.The quality criteria for the study is
aggregated and shown in the quality assessment form. The objective is to assess the quality of the paper before
data extraction. The papers which have satisfied the quality criteria are moved to the next section for collecting
more detailed information extraction.

Table VI. Quality Criteria

Item Quality criteria
1 Does study report unambiguous and clear in terms of concepts?
2 Are the findings are based on evidence and arguments?
3 Is the paper well/appropriately referenced?
4 Number of participants?
5 Is Internal validity and external validity achieved?
6 Does the report is unbiased?

D. Data Extraction

After completing the study selection process, we extracted data from the selected papers using the data
extraction form as Table VII. We recorded all the necessary information on each paper got from data extraction
form to gather information on our review questions.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4217

Table VII. Data Extraction Form

Aspects Details
Study ID Paper ID
Title Title of paper
Author Name of authors
Publishers Name of publishing authority
Publishing date Date of publication
Study focus Focus and perspective of paper
Focused Phase of FOSD Which phase of FOSD the study is focused
Contribution to RQ1 The level of automation acquired(if any)
Contribution to RQ2 Variability implementing approach(if any)
Contribution to RQ3 Contribution to feature interaction problem(if any)
Contribution to RQ4 Contribution to solve optional feature problem(if any)
Contribution to RQ5 Contributed refactoring technique(if any)
Contribution to RQ6 Contribution to derive features from the domain(if any)
Study findings Lessons learned from the paper
Knowledge gaps Limitations and scope of future work

E. Data Synthesis

After the study selection and data extraction process, data synthesize is performed for collating and
summarizing the selected study. According to Kitchenham [12, 13], there are two main methods of data
synthesis: Qualitative and Quantitative. We are using a mixed approach here for data synthesize. The extracted
data were represented using quantitative methods and make use of this we did the qualitative synthesize to
answer our questions.

Fig. 1. Paper publications in FOSD community

Table VIII. Selected Studies for Each Review Question

Review Questions Related selected studies
RQ1 S1, S2, S3, S4
RQ2 S4, S23-S57
RQ3 S4, S5,S6, S7,S10
RQ4 S4, S11-S22
RQ5 S4,S5, S63
RQ6 S58, S59, S60, S61, S62

0

2

4

6

8

10

12

14

16

18

FOSD CONFERENCE

NO.OF PAPERS

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4218

A. Resul

 Autom
Automate
FOSD is
manner f
collection
FOSD?”

 Autom
is needed
FOSD th

•D
S
ur
M

lts: RQ1

mated softwar
ed Design (SO
 a software p
for the develo
n of features.
For answerin

 Wha
 How

mated derivati
d to assemble

hat leads to aut

0

2

4

6

8

10

12

14

16

18

Domain
coping, Feat
re

Modelling,...

Domain Analy

re production
OAD) is the b

product line ge
opment, custo
Our first Revi

ng this question

at are the phas
w each phase i

ion of softwar
e and integrat
tomatic gener

t

ysis

•

Fig. 2. Nu

is advanced a
beginning of a
eneration tech

omization, and
iew question i
n we have to a

ses of FOSD?
s automated?

re products is
tion of featur

ration of softw

Fig. 3

NO. OF

•Modelling/U
ML, Formal
Specificatio
..

Domain Des
Specifica

umber of publicat

III. RESULTS

and trending a
automated pro
hnique in soft
d synthesizers
is “What is th
answer the tw

the aim of FO
res for writing

ware products b

3. Phases of FOSD

F PUBLIC

U
l

on.

sign and
ation

tion growth

S

area of softwa
oduction. FOS
tware enginee
s of large-scal
he amount of a
wo sub questio

OSD. That is
g glue or boi
by Swen Ape

D Process

CATION

•Feature
modules,
cts, Anno
ns,Prepro
ors,...

Dom
Implem

are developm
SD is the maj
ering. It provid
le software pa
automation ac
ns?

there is no pr
ilerplate code
l [1] are show

NS

NO. OF PUB

aspe
tatio
cess

main
mentation

ment. Aim of S
or paradigm i
des a newly a
ackage system
quired in each

rogrammer int
e. The major
wn in the figure

LICATIONS

•Feature
selection
misation
position
Checkin

Product
and

Science of
in SOAD.
automated
ms from a
h phase of

tervention
phases of
e 3.

n, Opti
n, Com
, Type

ng, ...

t Configuration
Generation

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4219

1) Domain Analysis:

A key success of FOSD is to select a well defined, well focused and well scoped domain. Czarnecki K and,
Eisenecker[14] defines domain as ” An area of knowledge that is scoped to maximize the satisfaction of the
requirements of its stakeholders, includes a set of concepts and terminology understood by practitioners in that
area and includes the knowledge of how to build software systems in that area.” Commonality and variability
from a domain has to be identified and understood well for the development of reusable core assets for a
software product line. Domain analysis is the requirements engineering phase for a feature oriented product line.

In FOSD, Domain scoping and feature modeling are the main processes of domain analysis. In domain
scoping the description of desired features or specific product variations which the software product line should
be supported is identified and recorded. Domain experts have to study and analyze the targeted domain and
extract useful information from that domain for effective and efficient domain scoping. In domain modeling the
captured information in the scoping process is modeled and documented in terms of commonality and
variability. The feature groups such as mandatory, optional, alternative has to be identified and recorded
carefully.

2) Domain design and specification:

 In this phase, from the documents of variability feature model using feature diagram is developed. A feature
model represents and documented the features and their relationships in a software product line. Andreas
Classen and co-scholars [15] defines “A Feature Diagram is a hierarchical diagram that visually depicts the
features of a Domain in groups of increasing levels of detail”. The great way to summarize the features of a
domain in visual manner is by using feature trees.

Swen Apel [16] defines “A feature diagram is a graphical representation of a feature model as a tree over the
feature set F. Each edge in the tree is defined by exactly one feature constraint, that is, by a declaration of one of
the feature constraint types mandatory, optional, alternative, or or”. The set of cross-tree constraints (requires,
excludes) may also be defined additionally by make use of feature diagram. The corresponding propositional
formula of a feature diagram can be generated by conjoining the feature constraints and the cross-tree
constraints. This will represent the semantics of the whole feature model.

3) Domain Implementation:

In this phase, the identified and modeled features of the domain are implemented in the form of reusable
artifacts. There are mainly two steps for domain implementation. Firstly, suitable implementation strategy has to
be selected according to the domain. There are a lot of strategies are there, which may be language based
(Framework, AOP, FOP, etc) or tool based (build systems, Preprocessors, etc). Secondly, according to the
strategy selected, prepare the design and code to hook implementations.

4) Product Configuration and generation:

It is the final phase of the FOSD. The main activities of this phase are Feature selection, Product derivation,
Product validation and verification. The essential step of individual product customization in product line
engineering is feature selection, in which the multiple features, that may exhibit competing and conflicting
interaction, have to be considered in a well defined manner. Product derivation can do automatically and
manually. In manual task, glue code is written by developers and thus the artifacts corresponding to the selected
features is connected and the gaps are patched for the customized product derivation. Where as in automatic task
a push down approach is used to derive the product, the stake holders select the features and a compositional
engine is called to combine the corresponding artifacts into an executable software product. Product validation
is needed for the customized product which is derived in either way by unit testing mechanisms.

In the area of FOSD, the researchers and practitioners were mostly concerned with Feature implementation,
Refactoring of software product lines, Feature interactions, Analysis of software product line, and Tool support.
Our aim is to classify and summarize the works and searching for finding the scope of future research work in
FOSD.

From the current literature, it is clear that the existing frameworks for Feature Oriented Software Product
Line development (FeatureIDE, pure::variants, BigLever) are automatic except for the processes of domain
scoping and feature selection. Human involvement is necessary for those two phases. During Domain scoping,
domain experts collect information about the targeted domain through requirement analysis techniques of
software engineering. Feature selection is the process of selecting the required features from the set of features
of the product line by the stake holder according to their requirement. So in both requirement analysis of domain
and the human involvement is needed. The requirement engineering in large scale software development process
can result in massive amounts of noisy and semi structured data that must be analyzed and distilled in order to
extract useful requirements.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4220

B. Results: RQ2

Our second review question is “Which will be the best approach for implementing variability in FOSD?” In
order to deal with this question a number of terms have to be explored.

 What is variability?
 What is the classification of implementation strategies?
 What are the quality criteria for evaluating the implementation strategies?

Variability is the ability to change or customize a system. Software product variants are quite similar, but
typically differ in new or additional features. Improving variability in a system implies making it easier to do
certain kinds of changes. The goals of FOSD, such as automated software derivation, efficiently facilitating
reuse, and variation of features in a software product lines, can be achieved only by the systematic
implementation of features. There are around 12 implementation strategies are studied and classified according
to binding time, technology and representations used in those strategies.

Table IX. Implementation Strategies Classification[16]

Classic/Advanced &
Implementation

Strategies

Representation Binding Time Technology
Annotation Composition Compile

time
Load
time

Language
based

Tool
based

Classic-Parameters   
Classic-Design Patterns    
Classic-Frameworks    
Classic-Components     
Classic-Version control   
Classic-Build Systems   
Classic-Preprocessors   
Advanced-Feature

Oriented Programming
    

Advanced-Delta
Oriented Programming

    

Advanced-Context
Oriented Programming

    

Advanced-Aspect
Oriented Programming

    

Advanced-Virtual
Separation of concerns

  

Swen Apel [16] proposed six quality criteria for evaluating these 12 software product-line implementation

techniques. Implementation strategies and the specific quality criteria is shown in table X.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4221

Table X. Quality Criteria for Implementation Strategy [16]

Implementation
Strategies

Quality Criteria
Low

preplanning
effort

Feature
traceability

Separation
of
concerns

Information
hiding

Granularity Uniformity

Feature
Oriented
Programming

    

Delta Oriented
Programming

     

Context
Oriented
Programming

    

Aspect Oriented
Programming

    

Virtual
Separation of
concerns

    

Parameters    
Design Patterns    
Frameworks    
Components   
Version control   
Build Systems  
Preprocessors   

C. Results: RQ3

Our third question deals with features and their interactions and corresponding problems. Features have to be
interacted to achieve the requirement and predefined functionality of the software product, by exchanging
information. This interaction helps to refine and utilize other feature behavior and thus accomplish a specific
task by cooperation of the features. But when one feature influences the behavior of other features in an
unintended way, it is call inadvertent feature interaction problem or simply feature interaction problem. These
feature interaction problems have to be detected, managed and resolved to attain the specific goals of the
interactions between the features.

An example of unintended feature interaction problem is between the call waiting and forwarding features of
a telephony system [17]; when both features are activated simultaneously, the system will collapsed and reach in
an unfavorable state while it receives a call on a busy line. Reisner et al. [18] reveals that higher order
interactions of features are also exists in practice. In this more than two features are interacted and
interconnected and thus it is difficult to find unfavorable conditions even though it is a rare case.

For solving feature interaction problem first we have to identify the feature interactions. Now in every
product line engineering features are developed independently this will make identifying and detecting
interactions among features is a challenging task. Proper and systematic requirement engineering in the domain
analysis is the only solution to detect feature interactions [19, 20]. Heymans [21] proposed “formal methods can
be successfully applied on core models of software product line, but scale them to be able to analyze source
code instead of requirements models or manually abstracted models remains an open problem in feature
interaction detection.”

Apel et al.[16] defines “ Optional feature problem is the mismatch between intended variability and the actual
variability provided by the implementation, due to coordinate code. It occurs when two or more optional
features interact and the presence of coordination code reduces the intended variability of the product line.” The
implementation strategies [16] are

 Change in feature model: “Instead of a proper implementation, exclude problematic feature
combinations from the feature model”.
 Multiple Implementations: “To account for configurations with and without coordination

code, features are implemented separately for each combination”.
 Moving Code: “Coordination code is moved to one of the interacting features or to a shared

required feature”.
 Conditional Compilation: “Using a preprocessor, the coordination code annotated and only

complied if both features are present”.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4222

 Optional Weaving: “Coordination code is implemented as implicitly optional, using
mechanisms inspired by aspect weaving”.
 Distinct module for coordination code: “A distinct module separates coordination code from

feature code; the module is automatically included when both features are included”.

Apel et.al [16] compares these feature interaction strategies based on the quality criteria such as code quality,
binary size and performance, variability, and implementation effort.

Table XI. Implementation Approaches for the Feature Interaction Problem

Implementation Strategy Quality Criteria
Code quality Binary size and

performance
Variability Implementation

Effort
Change in feature model   
Multiple Implementations:  

Moving Code   

Conditional Compilation   
Optional Weaving ? ?  
Distinct module for
coordination code

  

We are not able to find a generally preferable strategy for feature interaction problem solving. The multiple
implementation strategy is not a good idea. Depending on the need and domain characteristics the developer has
to select one among the remaining. Optional weaving is an emerging technique for this purpose.

D. Results: RQ4

 Our fourth question deals with refactoring techniques. Refactoring is an important activity in software
development, maintenance, and evolution. Apel et al[16] says the origin of refactoring as “ Refactoring are
typically traced to the dissertation of Opdyke [22] and have been popularized by the seminal book of Fowler
[23]. Fowler [23] defines refactoring as “Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves its internal structure”.

Refactoring technique is used to eliminate code smells and thus enhancing program comprehension. The well
known code smells in software product line such as long methods, large classes, and duplicate codes can be
eliminated by applying traditional Object Oriented refactoring techniques. Alves et al [24] extends the
traditional refactoring techniques for feature oriented software product lines. In their technique they first focused
on the changes to feature model and later the implementation artifacts. Lastly problem to solution space is also
being considered for refactoring.

The main focus of product line refactoring is on FOSD paradigm. It may affect the feature model and domain
artifacts of Feature oriented software product line. The different types of refactoring techniques proposed by
different authors for FOSD is summarized and defined in Table XII.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4223

Table XII. Refactoring Techniques and Examples

Author/Introduc
er

Refactoring
technique

Definition Examples

Schulz et al.[25] variability
preserving
refactoring

“A product line refactoring
that does not change the set of
valid products and corresponding
feature selections and preserves
the observable behavior of all
products.”

 Move feature
 Rename feature
 Extract shared

feature
 Change binding

time
Schulz[S26] variability

enhancing
refactoring

“A product line refactoring
that does not change the set of
valid products and corresponding
feature selections and preserves
the observable behavior of all
products. It may introduce
additional products”

 Extract
feature

Thum et al.[27] Product
preserving
refactoring

“A product line refactoring
that does not change the set of
valid products and corresponding
feature selections and preserves
the observable behavior of all
products. It may add and remove
products outside the given set”

 Delete
feature
 Merge

feature

The concept of feature refactoring and extraction is introduced by Liu et al [28],based on formal algebraic
model to deal with interacting and overlapping features. The refactoring model developed by Kastner et el[29]
deal with how the transformation between annotation abd composition based feature implementations take
place, with the help of refactorings. Apel et al.[30] introduces pseudo commutatively , suggests a better
refactoring is possible in AspectJ.

Kastner et al[31] reported the experience with feature extraction in Berkeley DB using AspectJ and
granularity implications of feature implementations with Berkeley DB. Rosenmuller et al.[32] refactored the C
version of Berkeley DB using FeatureC++.

E. Results: RQ5

Our fifth review question is concerned with the requirement engineering process for application domain in
order to identify the features and their relationships to satisfy the requirement of every stakeholders of that
domain. The requirement engineering in software product line development has to deal with large volume of
semi structured and unstructured data, so proper requirement engineering is needed to extract useful information
from these noisy data. Human intensive tasks such as requirement elicitation, analysis and management are the
base of feature extraction from the application domain of the software product line. Domain scoping and
analysis plays a major role in feature extraction.

Like every other software development technique, requirement engineering is a manual task by analyzing the
application domain is needed in FOSD paradigm too. In FOSD experts analyze the SRS document and derive
the features corresponding to each requirement in the domain and find the relationship among them and
represent them in a feature model. “A feature diagram is a graphical AND/OR hierarchy of features, captures
structural or conceptual relationships among features”. The feature diagram is a structured tree diagram based
on specialization generalization concept. The mandatory", "optional", "alternative" and "or" feature groups can
easily represented using feature models with tree structure in a way that nodes represent features and the arcs
represent variability. To specify which feature is needed in a variant, the following rules in Table 13 are applied.
If selecting a parent feature in a variant.

Table XIII. Rules for Selecting a Feature from a Feature Group

Group Features included Rule expression

Mandatory All its mandatory child features n from n

Optional Any number of optional features m from n, 0 < = m<=n

Alternative Exactly one feature must be selected 1 from n

Or At least one feature must be selected m from n, m>1

The representation of four different feature groups are shown in fig. 4.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4224

There
FODA is
Oriented
The proc
product l
the succe

Featur
requirem

F. Resul

Defect
change (c
such mod
metrics f
metrics t
metrics a

Tan et
case stud
Among o
allow mo
further in
programs
character
achieve a
consecuti
number o

is no standard
s commonly u

Domain Ana
cesses involve
line , and iii) m
ess of the proc

re extraction i
ment engineerin

lts: RQ6

t prediction m
commit) level
dels can be u
for defect pre
o understand

are preferable.

t al. [S34] inv
dy on a propr
others, to add
ore bugs to be
nvestigations.
s from source
rizing defects
an average F-
ive software p
of defects in u

d procedure i
used for featur
alysis [FODA]
d in this are i)
modeling the

cess are i) Con

is not at all a
ng.

models can red
l [34] and sho

used at the fea
ediction in a l
when and wh
 We follow th

vestigate defec
rietary Cisco

dress the probl
e detected. Al
. Wang et al
e code. The g
 and improvi
-measure of 0
products in a

upcoming prod

Fig. 4

s for applying
re oriented do
] to identify a
) analyzing of
features of th

ntext analysis

Fig. 5.

an automated

duce QA costs
ow that they c
ature level. R
large number
hy each kind m
his advice.

ct prediction b
system and a

lem of imbala
though a bette
l. [35] propo
goal is to go b
ing defect pre
0.641 on 13 sy
an SPL. They
ducts, but not

. Notation of feat

g the above m
omain analysis
and model fea
f the domain o
he product line
ii) Domain m

. Example feature

process it req

s. Many studie
can achieve sa
ahman et al.
of releases fr

may be suitab

based on chan
analyze the r
anced data, th
er performanc
se using dee
beyond traditi
ediction in w
ystems. Jeon
study histori
for individual

ture models

mentioned rule
s and modelin
atures. The foc
of the product
e. The three m

modeling iii) A

e model

quires human

es investigate
atisfactory res
[33] investiga

from many sy
ble for a predi

nge classificat
reasons for an
hey add a gap
ce is achieved
ep learning to
ional attribute
ithin- and cro
et al. [36] pr
cal trends in
l features.

es but the grap
ng. Kang et al
cus of FODA
line, ii) analy

major phases i
Architecture m

interaction fo

such models
sults. Howeve
ate the efficac

ystems. They
ction model,

tion (commit
ny low perfor
p between trai
d, the precisio
o learn seman
es and use sem
oss-project de
ropose a defec
bug-tracking

phical represe
l. [2] proposed

is on domain
yzing the featu
in FODA whi

modeling.

or domain ana

at the file [33
er, it is still un
cy of code an
compare both
suggesting tha

level). They p
rmance of the
ining and test
n is still low,
ntic represent
mantic inform
efect predictio
ct-prediction m
systems to p

entation of
d Feature-
n analysis.
ures of the
ich guides

alysis and

] or code-
nknown if
nd process
h kinds of
at process

perform a
e method.
ting set to
requiring

tations of
mation for
ons. They
model for

predict the

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4225

Rodrigo Queiroz et al.[37] propose a defect prediction model to identify defective features using machine
learning techniques, aiming at improving the cost-effectiveness of QA activities for features in SPLs. If
effective, feature defect predictions could (i) help developers to select (or prioritize) samples of features that are
prone to defects and should be tested more thoroughly; (ii) increase the detection of defects scattered across
implementation artifacts, as these will likely have a low impact on the prediction model if using traditional file-
based prediction; and (iii) improve the actual QA (e.g., code reviews) when features are used for communicating
and coordinating within and across teams.

IV. DISCUSSION

A. Dimensions

In this study we found that almost every paper is published in ACM and IEEE. FOSD community is
conducting a continuous attempt to empower FOSD in every year from 2009 to now. They are dealing with
every aspects of FOSD. The major areas of FOSD research are

 Programming language and tool support for FOSD
 Domain engineering and/or application engineering
 Software product lines and program families
 Feature and variation modeling
 Formal methods and theory for FOSD
 Type systems and formal semantics of FOSD languages
 Feature composition, interaction, and refactoring
 Multi-dimensional separation of concerns and aspect-oriented software development
 Generative programming and automatic programming
 Design patterns, frameworks, and components
 Model-driven development and service-oriented architecture
 Variability-aware analysis (e.g., type checking, testing, data flow analysis, and

verification)
 Versioning, evolution, and maintenance
 Components, services, and models
 Variability-aware analysis
 Feature interaction, modeling, composition, and refactoring
 Versioning, evolution, and maintenance
 Components, services, and models
 Build systems and feature-to-code mappings
 Program comprehension
 Empirical studies of all these topics

B. Principal Findings

Our review is only focused on the review questions; we didn’t research further to find the other dimensions of
the research. Our first question deals with automation of software development using FOSD paradigm. It is
found that information processing by humans is going only on feature analysis and extraction phase of domain
engineering and feature selection phase of application engineering. Our second question deals with, various
variability implementation techniques for implementing FOSD. The main focus of FOSD is commonality,
variability and reuse. In our study we found 12 implementation techniques and their strength and weakness
based on the quality criteria. Feature interaction and optional feature problem are the most concerned problems
when dealing with features and their relationships. The techniques for solving these also considered and
answered with third review question. The scope and use of refactoring in FOSD is also discussed in this review.
Our final question deals with feature extraction from an application domain. We found that the future scope of
research must deal with this area because it is still based on the contemporary requirement engineering process
of software engineering and thus expert knowledge is needed.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4226

C. Threats to Validity

We feel that our review study have the following threats to validity.

Table XIV. Classification of Validity Threats

Validity Threats Description
Construct validity This is primarily related with obtaining the relevant information by defining the

research scope. At this stage, the biggest challenge is to decide the inclusion and
exclusion criteria for selecting the papers. To address this issue, we considered all the
systematic review reports related to software engineering.

External validity The findings of this review cannot be generalized because the results are based on
a specific set of keywords and the research repositories that have been used for the
data collection. Therefore, our results could be limited and cannot be applied to every
organizational setup.

Results validity Our results deal with only the review questions and the selected papers only. It
provides the future research focus only on the selected area.

Internal validity We only searched in online libraries and further snowballing is also performed.
Conclusion validity Our study focused with review questions and to ensure the correctness of the

extracted data, the protocol was developed to define the data extraction strategy and
format.

V. CONCLUSION AND FUTURE WORK

In this paper we reported a systematic literature review in the field of FOSD. The purpose of this study is to
find the state of the art on this software development paradigm. For this we designed a review protocol, which
covers 63 papers selected from 118 available research papers on the topic. Our focus is to answer the review
questions and thus cover the sub areas of FOSD. The first question deals with the automation achieved through
different phases of FOSD. Although software development automation is the main aim of FOSD, we couldn’t
able to say it is fully automated now. Human interaction and expertise is needed in both domain and application
engineering in the form of feature extraction requirement engineering and feature selection requirement
engineering. Here it is clear that full automation is still an open problem for researchers of this area.

The second and third question deals with variability implementation and feature interaction problems
respectively. Many techniques are available for these purposes even though there is no general preferable
standard technique for that and each strategy is on an emerging stage. Feature oriented Programming is good but
has little experience in practice only used as an academic tool. The developers can choose a strategy according
to their expertise and domain. The fourth question deals with the uses of refactoring and feature in this field.
Actually refactoring techniques of Object Oriented paradigm is extended to feature oriented software product
line development for overcoming the pitfalls.

Based on our fifth question some practical difficulty of domain requirement engineering, feature extraction
and modeling are also discussed. The sixth question is concerned with the effective use of feature defect
prediction technique for the betterment of FOSD because it is based on features. As mentioned in each section,
all areas of software development are not fully explored by the researchers yet. If someone approaching FOSD
with a research focus the scope is very huge because it is an emerging technique. Each area reveals a research
focus for the researchers. With proper research and development FOSD has the capability to change total
concept of software engineering.

ACKNOWLEDGEMENT

This Systematic Review is performed as an initiation to the Ph.D work on the topic FOSD. There is no
funding source(s) involved in this research.

APPENDICES

A. Selected Studies

[S1] Sven Apel, Christian K¨astner , An Overview of Feature-Oriented Software development, Journal of
Object Technology, Vol. 8, No. 5, 2009

[S2] Czarnecki K., Eisenecker U, Generative programming: methods, Tools and applications, ACM
Press/Addison-Wesly, 2010

[S3] Andreas Classen, Patrick Heymans, Robin Laney, Bashar Nuseibeh, Thein Than Tun. On the
Structure of Problem Variability – From Feature Diagrams to Problem Frames, 2007

[S4] Sven Apel, Don Batory, Cristian Kastener, Gunter Saake, Feature Oriented Software Product Lines:
Concepts and Implementation. Springer 2013

[S5] M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec, Feature interaction: A critical review and
considered forecast. Computer Networks, 41(1):115–141, 2003

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4227

[S6] Reisner E, Song C, Ma K-K, Foster JS, Porter A., Using symbolic evaluation to understand behavior in
configurable software systems, In: Proc. Int’l Conf. Software Engineering (ICSE), ACM Press, pp
445–454, 2010

[S7] Calder M, Kolberg M, Magill EH, Reiff-Marganiec S, Feature interaction: A critical review and
considered forecast. Comput Netw 41(1):115–141, 2003

[S8] Nhlabatsi A, Laney R, Nuseibeh B , Feature interaction: The security threat from within software
systems. Prog inform 5:75–89, 2008

[S9] Heymans P , Formal methods for the masses. In: Proc. Int’l Software Product Line Conference (SPLC),
ACM Press, p 4, 2012

[S10] Kästner C, Apel S, Rahman SS, Rosenmüller M, Batory D, Saake G , On the impact of the optional
feature problem: Analysis and case studies. In: Proc. Int’l Software Product Line Conference (SPLC),
ACM Press, pp 181–190, 2009

[S11] Opdyke WF., Refactoring object-oriented frameworks. Ph.D. thesis, University of Illinois at Urbana-
Champaign, 1992

[S12] Fowler M Refactoring: Improving the design of existing code. Addison-Wesley, 1999
[S13] Alves V, Gheyi R, Massoni T, Kulesza U, Borba P, Lucena C ,Refactoring product lines. In: Proc. Int’l

Conf. Generative Programming and Component Engineering (GPCE). ACM
Press, pp 201–210, 2006

[S14] Schulze S, Thüm T, Kuhlemann M, Saake G, Variant-preserving refactoring in feature oriented
software product lines. In: Proc. Int’l Workshop on Variability Modeling of Software-intensive
Systems (VaMoS), ACM Press, pp 73–81, 2012

[S15] Schulze S, Analysis and removal of code clones in software product lines, Ph.D. thesis, School of
Computer Science, University of Magdeburg, 2013

[S16] Savolainen J, Bosch J, Kuusela J, Männistö T, Default values for improved product line management,
In: Proc. Int’l Software Product Line Conference (SPLC), Carnegie MellonUniversity, pp 51–60, 2009

[S17] Thüm T, Batory D, Kästner C, Reasoning about edits to feature models. In: Proc. Int’l Conf. Software
Engineering (ICSE). IEEE Computer Society, pp 254–264, 2009

[S18] Liu J, Batory D, Lengauer C, Feature oriented refactoring of legacy applications. In: Proc. Int’l Conf.
Software Engineering (ICSE), ACM Press, pp 112–121, 2006

[S19] Siegmund N, Kästner C, Rosenmüller M, Heidenreich F, Apel S, Saake G ,Bridging the gap between
variability in client application and database schema. In: Proc. GI-Fachtagung Datenbanksysteme für
Business, Technologie und Web (BTW). Lecture Notes in Informatics,vol. P-144. Gesellschaft für
Informatik (GI), pp 297–306, 2009a

[S20] Kuhlemann M, Batory D, Apel S, Refactoring feature modules. In: Proceedings of the International
Conference on Software Reuse (ICSR), Springer, pp 106–115, 2009a

[S21] Kästner C, Aspect-oriented refactoring of Berkeley DB. Master’s thesis, School of Computer Science,
University of Magdeburg, 2007

[S22] Rosenmüller M, Apel S, Leich T, Saake G, Tailor-made data management for embedded systems: A
case study on Berkeley DB. Data Knowl Eng (DKE) 68(12):1493–1512, 2009a

[S23] Reisner E, Song C, Ma K-K, Foster JS, Porter A Using symbolic evaluation to understand behavior in
configurable software systems, ACM Press, pp 445-454,2010

[S24] Rabkin A, Katz R, Static extraction of program configuration options. In: Proc. Int’l Conf. Software
Engineering (ICSE), IEEE Computer Society, pp 131–140, 2011

[S25] Muthig D, Patzke T, Generic implementation of product line components, In: Proc. Int’l Conf. Object-
Oriented and Internet-based Technologies, Concepts, and Applications for a Networked World
(Net.ObjectDays), Lecture Notes in Computer Science, vol. 2591. Springer, pp 313–329, 2002

[S26] Czarnecki K, Eisenecker U, Generative programming: Methods, tools, and applications ACM
Press/Addison-Wesley, 2000

[S27] Gamma E, Beck K, Contributing to eclipse: Principles, patterns, and plug-in. Wesley, 2003
[S28] Staples M, Hill D, Experiences adopting software product line development without a product line

architecture, In: Proc. Asia-Pacific Software Engineering Conf. (APSEC). IEEE Computer Society, pp
176–183, 2004

[S29] Adams B, De Schutter K, Tromp H, De Meuter W, Design recovery and maintenance of build systems.
In: Proc. Int’l Conf. Software Maintenance (ICSM). IEEE Computer Society, pp 114–123,2007

[S30] Adams B, De Schutter K, Tromp H, De Meuter W, The evolution of the Linux build system.
Electronic Communications of the EASST, 8,2008a

[S31] Dietrich C, Tartler R, Schröder-Preikschat W, Lohmann D, A robust approach for variability extraction
from the Linux build system. In: Proc. Int’l Software Product Line Conference (SPLC). ACM Press, pp
21–30, 2012a

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4228

[S32] Lohmann D, Scheler F, Tartler R, Spinczyk O, Schröder-Preikschat W , A quantitative analysis of
aspects in the eCos kernel. In: Proc. Int’l EuroSys Conference (EuroSys). ACM Press, pp 191–
204,2006a

[S33] M, Badros G, Notkin D, An empirical analysis of C preprocessor use. IEEE Trans Softw Eng (TSE)
28(12):1146–1170, 2002

[S34] Liebig J, Kästner C, Apel S, Analyzing the discipline of preprocessor annotations in 30million lines of
C code, In: Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD). ACM Press, pp 191–
202, 2011

[S35] Apel S, Kästner C, Lengauer C, Language-independent and automated software composition: The
FeatureHouse experience, IEEE Trans Software Eng (TSE) 39(1):63–79, 2013a

[S36] Lopez-Herrejon R, Batory D, Cook W. Evaluating support for features in advanced modularization
technologies. In: Proc. Int’l Conf. Generative and Component-Based Software Engineering (ECOOP).
Lecture notes in computer science, vol. 3586. Springer, pp 169–194, 2005

[S37] Kästner C, Apel S, Thüm T, Saake G, Type checking annotation-based product lines.ACM Trans Softw
Eng Methodol (TOSEM) 21(3):14:1–14:39,2012a

[S38] Hunleth F, Cytron RK, Footprint and feature management using aspect-oriented programming
techniques, In: Proc. Conf. Languages, Compilers and Tools For Embedded systems (LCTES), ACM
Press, pp 38–45, 2002

[S39] Apel S, Leich T, Saake G, Aspectual feature modules, IEEE Trans Software Eng (TSE)34(2):162–180,
2008b

[S40] Sato Y, Chiba S, Tatsubori M, A selective, just-in-time aspect weaver, In: Proc. Int’l conf. Generative
Programming and Component Engineering (GPCE). Lecture Notes in Computer Science, vol. 2830.
Springer, pp 189–208, 2003

[S41] Popovici A, Alonso G, Gross T, Just-in-time aspects: Efficient dynamic weaving for Java. In: Proc.
Int’l Conf. Aspect-Oriented Software Development (AOSD), ACM Press, pp 100–109, 2003

[S42] Lopez-Herrejon R, Understanding feature modularity. Ph.D. thesis, Department of Computer Sciences,
The University of Texas at Austin, 2006

[S43] Lafferty D, Cahill V, Language-independent aspect-oriented programming, In. Proc. Int’l Conf. Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), ACM Press, pp 1–12, 2003

[S44] Boxleitner S, Apel S, Kästner C, Language-independent quantification and weaving for feature
composition. In: Proc. Int’l Symp. Software Composition (SC). Lecture Notes in Computer Science,
vol. 5634. Springer, pp 45–54, 2009

[S45] Filman R, Friedman D, Aspect-oriented programming is quantification and obliviousness, In: Aspect-
Oriented Software Development, Addison-Wesley, pp 21–35, 2005

[S59] Lieberherr KJ, Lorenz DH, Ovlinger J, Aspectual collaborations—Combining modules and aspects.
Comput J 46(5):542–565, 2003

[S46] Aldrich J, Open modules: Modular reasoning about advice, In: Proc. Europ. Conf. Object Oriented
Programming (ECOOP), Lecture Notes in Computer Science, vol. 3586. Springer, pp 144–168, 2005

[S47] Sullivan K, Griswold W, Song Y, Cai Y, Shonle M, Tewari N, Rajan H , Information hiding interfaces
for aspect-oriented design, In: Proc. Int’l Symp. Foundations of Software Engineering (FSE), ACM
Press, pp 166–175, 2005

[S48] Dantas D, Walker D, Harmless advice. In: Proc. Int’l Symp. Principles of Programming Languages
(POPL), ACM Press, pp 383–396, 2006

[S49] Steimann F, Pawlitzki T, The paradoxical success of aspect-oriented programming. In: Proc. Int’l
Conf. Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), ACM Press,
pp 481–497, 2006

[S50] Störzer M, Koppen C, PCDiff: Attacking the fragile pointcut problem, abstract, In: European
Interactive Workshop on Aspects in Software, 2004

[S51] Steimann F, Pawlitzki T, Apel S, Kästner C, Types and modularity for implicit invocation with implicit
announcement, ACM Trans Software Eng Methodol (TOSEM) 20(1):1:1–1:43, 2010

[S52] Schaefer I, Bettini L, Damiani F, Tanzarella N, Delta-oriented programming of software product lines,
In: Proc. Int’l Software Product Line Conference (SPLC), Springer, pp 77–91, 2010

[S53] Kuhlemann M, Batory D, Apel S, Refactoring feature modules. In: Proceedings of the International
Conference on Software Reuse (ICSR), Springer, pp 106–115, 2009a

[S54] Hirschfeld R, Costanza P, Nierstrasz O, Context-oriented programming, J Object Technology (JOT)
7(3):125–151, 2008

[S55] Rosenmüller M, Siegmund N, Apel S, Saake G, Flexible feature binding in software product lines.
Autom. Software Eng 18(2):163–197, 2011

[S56] Appeltauer M, Hirschfeld R, Haupt M, Masuhara H, ContextJ: Context-oriented programming with
Java, Comput Softw 28(1), 272–292, 2011

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4229

[S57] Kästner C, Virtual separation of concerns. Ph.D. thesis, School of Computer Science, University of
Magdeburg, 2010

[S58] F. Rahman and P. Devanbu. How, and Why, Process Metrics Are Better. In ICSE, 2013
[S59] M. Tan, L. Tan, S. Dara, and C. Mayeux Online Defect Prediction for Imbalanced Data, In ICSE,

2015.
[S60] S. Wang, T. Liu, and L. Tan, Automatically Learning Semantic Features for Defect Prediction, In

ICSE, 2016.
[S61] C. Jeon, C. Byun, N. Kim, and H., In. An entropy based method for defect prediction in software

product lines. International Journal of Multimedia and Ubiquitous Engineering, 9(3):375–377, 2014.
[S62] Rodrigo Queiroz, Thorsten Berger, Krzysztof Czarnecki, Towards Predicting Feature Defects in

Software Product Lines, ACM 2016
[S63] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, Feature-Oriented Domain Analysis (FODA)

Feasibility Study. Technical Report CMU/SEI-90- TR-21, Software Engineering Institute, Carnegie
Mellon University, 1990

B. References:
[1] Sven Apel, Christian K¨astner , An Overview of Feature-Oriented Software Development, Journal of Object Technology, Vol. 8, No.

5, 2009
[2] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature Oriented Domain Analysis (FODA) Feasibility Study. Technical Report

CMU/SEI-90- TR-21, Software Engineering Institute, Carnegie Mellon University, 1990
[3] K. Kang, S. Kim, J. Lee, K. Kim, G. Kim, E. Shin, FORM: A Feature Oriented Reuse Method with Domain-Specific Reference

Architectures, Annals of Software Engineering, 5(1):143–168, 1998
[4] K. Czarnecki, U. Eisenecker, Generative Programming: Methods, Tools, and Applications, Addison-Wesley, 2000.
[5] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach, ACM Press / Addison-Wesley,

2000.
[6] K. Chen, W. Zhang, H. Zhao, H. Mei, An Approach to Constructing Feature Models Based on Requirements Clustering, In

Proceedings of the International Conference on Requirements Engineering (RE), pages 31–40. IEEE CS Press, 2005
[7] D. Batory, J. Sarvela, A. Rauschmayer, Scaling Step-Wise Refinement. IEEE Transactions on Software Engineering (TSE), 30(6),

355–371, 2004.
[8] A. Classen, P. Heymans, P. Schobbens, What’s in a Feature: A Requirements Engineering Perspective, In Proceedings of the

International Conference on Fundamental Approaches to Software Engineering (FASE), volume 4961 of Lecture Notes in Computer
Science, pages 16–30. Springer, 2008.

[9] P. Zave, An Experiment in Feature Engineering. In Programming Methodology, pages 353–377. Springer-Verlag, 2003.
[10] D. Batory, Feature Models, Grammars, and Propositional Formulas, In Proceedings of the International Software Product Line

Conference (SPLC), volume 3714 of Lecture Notes in Computer Science, pages 7–20. Springer-Verlag, 2005.
[11] S. Apel, C. Lengauer, B. M¨oller, C. K¨astner, An Algebra for Features and Feature Composition. In Proceedings of the International

Conference on Algebraic Methodology and Software Technology (AMAST), volume 5140 of Lecture Notes in Computer Science,
pages 36–50. Springer-Verlag, 2008

[12] B. Kitchenham, Procedures for performing systematic reviews, Keele, UK, Keele University, vol. 33, no. 2004, pp. 1-26, 2004.
[13] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman, Systematic literature reviews in software engineering–a

systematic literature review, Information and software technology, vol. 51, no. 1, pp. 7-15, 2009.
[14] Czarnecki K., Eisenecker U, Generative programming: methods, Tools and applications, ACM Press/Addison-Wesly, 2010
[15] Andreas Classen, Patrick Heymans, Robin Laney, Bashar Nuseibeh, Thein Than Tun. On the Structure of Problem Variability – From

Feature Diagrams to Problem Frames, 2007
[16] Sven Apel, Don Batory, Cristian Kastener, Gunter Saake, Feature Oriented Software Product Lines: Concepts and Implementation,

Springer 2013
[17] M. Calder, M. Kolberg, E. Magill, S. Reiff-Marganiec, Feature interaction: A critical review and considered forecast. Computer

Networks, 41(1):115–141, 2003
[18] Reisner E, Song C, Ma K-K, Foster JS, Porter A, Using symbolic evaluation to understand behavior in configurable software systems.

In: Proc. Int’l Conf. Software Engineering (ICSE), ACM Press, pp 445–454, 2010
[19] Calder M, Kolberg M, Magill EH, Reiff-Marganiec S , Feature interaction, A critical review and considered forecast, Comput Netw

41(1):115–141, 2003
[20] Nhlabatsi A, Laney R, Nuseibeh B , Feature interaction: The security threat from within software systems, Prog inform 5:75–89, 2008
[21] Heymans P, Formal methods for the masses. In: Proc. Int’l Software Product Line Conference (SPLC), ACM Press, p 4, 2012
[22] Opdyke WF, Refactoring object-oriented frameworks. Ph.D. thesis, University of Illinois at Urbana-Champaign, 1992
[23] Fowler M, Refactoring: Improving the design of existing code. Addison-Wesley, 1999
[24] Alves V, Gheyi R, Massoni T, Kulesza U, Borba P, Lucena C, Refactoring product lines, In: Proc. Int’l Conf. Generative

Programming and Component Engineering (GPCE). ACM Press, pp 201–210, 2006
[25] Schulze S, Thüm T, Kuhlemann M, Saake G , Variant-preserving refactoring in feature oriented software product lines, In: Proc. Int’l

Workshop on Variability Modeling of Software-intensive Systems (VaMoS), ACM Press, pp 73–81, 2012
[26] Schulze S, Analysis and removal of code clones in software product lines. Ph.D. thesis, School of Computer Science, University of

Magdeburg, 2013
[27] Thüm T, Batory D, Kästner C, Reasoning about edits to feature models, In: Proc. Int’l Conf. Software Engineering (ICSE), IEEE

Computer Society, pp 254–264, 2009
[28] Liu J, Batory D, Lengauer C , Feature oriented refactoring of legacy applications, In: Proc. Int’l Conf. Software Engineering (ICSE),

ACM Press, pp 112–121, 2006
[29] Siegmund N, Kästner C, Rosenmüller M, Heidenreich F, Apel S, Saake G ,Bridging the gap between variability in client application

and database schema. In: Proc. GI-Fachtagung Datenbanksysteme für Business, Technologie und Web (BTW), Lecture Notes in
Informatics, vol. P-144. Gesellschaft für Informatik (GI), pp 297–306, 2009a

[30] Kuhlemann M, Batory D, Apel S , Refactoring feature modules, In: Proceedings of the International Conference on Software Reuse
(ICSR), Springer, pp 106–115, 2009a

[31] Kästner C, Aspect-oriented refactoring of Berkeley DB. Master’s thesis, School of Computer Science, University of Magdeburg, 2007

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4230

[32] Rosen
Know

[33] F. Rah
[34] M. Ta
[35] S. Wa
[36] C. Jeo

Multi
[37] Rodri

also she
Combina
Recomm

nmüller M, Apel
wl Eng (DKE) 68(
hman, P. Devanb
an, L. Tan, S. Dar
ang, T. Liu, L. Ta
on, C. Byun, N.
imedia and Ubiqu
igo Queiroz, Thor

Mr
200
qua
pur
Un
Sof
tea

Dr
199
and
cur
Un
inte

has published
atorial Proble

mendation Syst

S, Leich T, Saak
(12):1493–1512,
bu. How, and Wh
ra, and C. Mayeu
an, Automatically
Kim, H. In. An

uitous Engineerin
rsten Berger, Krz

rs Kala K. U
08 and Master
alified UGC
rsuing Ph.D i

niversity , Ind
ftware Develo
ching experie

M. Nandhin
97 from Bhara
d pursued M.
rrently workin
niversity, Indi
ernational jou
d 3 books an
em Optimiza
tems. She has

ke G , Tailor-mad
2009a

hy, Process Metric
ux, Online Defect
y Learning Seman
entropy based m

ng, 9(3):375–377,
zysztof Czarnecki

AUT

U. pursued Bac
r of Computer
NET in com

in Software E
dia since 20
opment, Data
nce.

ni pursued Ba
athidasan Uni
Phil from Al

ng as Assistan
a since 2012

urnals and con
nd one book c
ation, Artifici

20 years of te

e data manageme

cs Are Better. In I
t Prediction for Im
ntic Features for D

method for defect
, 2014.
i, Towards Predic

THOR PROF

chelor of Scie
r Applications

mputer scienc
Engineering,
016. Her ma
a Mining and

achelor of Sci
versity, Tami
agappa Unive
nt Professor in
.She has pub
nferences inc
chapter. His m
ial Intelligen
eaching exper

ent for embedded

ICSE, 2013.
mbalanced Data. I
Defect Prediction
prediction in so

cting Feature Def

FILE

ence in from U
s from Univer
ce and applic
Department o
ain research

d Recommend

ience in year
lnadu, India. S
ersity and Ph
n Department

blished more
cluding IEEE
main research
nce, Software
ience and 4 ye

d systems: A case

In ICSE, 2015.
n. In ICSE, 2016
ftware product li

fects in Software

University of c
rsity of Calicu
cations in Jul
of Computer
work focuses

dation System

1994 and Ma
She has qualif

h.D from Bhar
t of Compute
than 80 resea
and it’s also

h work focuse
e Engineerin
ears of Resear

e study on Berkele

ines. Internationa

Product Lines, A

calicut, Kerala
ut in year 2012
ly 2016 and
r Science, Po
s on Feature

ms. She has 3

aster of Scienc
fied UGC NE
rathiar Unive

er Science, Po
arch papers i
 available on
es on Soft Co

ng, Data Min
rch Experienc

ey DB. Data

al Journal of

ACM 2016

a, India in
2. She has

currently
ondicherry

Oriented
3 years of

ce in year
ET in 1998
ersity, and
ondicherry
n reputed

nline. And
omputing,
ning and

ce.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Kala K.U. et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i6/170906084 Vol 9 No 6 Dec 2017-Jan 2018 4231

