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IV. TRANSFORMATION MATRIX 

Any point in space can be defined by Cartesian, cylindrical or spherical coordinates. In general, the 
favorable system in our study is the Cartesian coordinate system which allows designating a rotation by the 
Euler angles. 

To obtain the mathematical model representing the behavior of the octocopter,we use two reference 
points: one fixed reference point linked to the land (operator) A( Ԧܺ, ሬܻԦ, Ԧܼ) and another movable B(ݔԦ,ݕԦ,ݖԦ) linked to 
the robot.  

The advantage of the fixed reference mark of the operator is to evaluate the trajectory and the 
movement of the moving frame. 

For the passage between the two landmarks the aeronautical community generally uses the rotation. 
first around the axis ݖԦ, then around the axis ݕԦ,et finally around the axis ݔԦ.  These rotations are respectively 
expressed by three rotation matrices R(ݔԦ,Φ), R(ݕԦ,θ) et R(ݖԦ, Ψ). 

The passage of the fixed mark A( Ԧܺ, ሬܻԦ, Ԧܼ) to the mark B(ݔԦ, ,Ԧݕ  Ԧ) is made through the total rotation matrixݖ
R = R(ݖԦ, Ψ). R(ݕԦ,θ). R(ݔԦ,Φ) , such as: 

R = ܴݐ݋௭ሺߖሻ ൈ ܴݐ݋௬(θ)  ൈ ௫(Φ) =൥ݐ݋ܴ
ߖܿ െ 0 ߖݏ
0    ߖܿ    ߖݏ
0        0       1

൩ ൈ ൥
ߠݏ    0       ߠܿ
0         1      0
െߠܿ    0    ߠݏ

൩ ൈ ൥
1    0           0
 ߔܿ   0 െ ߔݏ
ߔܿ      ߔݏ   0

൩                                (1) 

R=൥
ߖܿߠݏߔݏ         ߠܿߖܿ െ ߖܿߠݏߔܿ           ߔܿߖݏ ൅ ߔݏߖݏ
ߖݏߠݏߔݏ         ߠܿߖݏ ൅ ߖݏߠݏߔܿ         ߔܿߖܿ െ ߖܿߔݏ
െߠܿߔܿ                                      ߠܿߔݏ                        ߠݏ

൩                                                                                   (2) 

 With : c = cos, and s = sin 

The rotational speeds ߗଵ, ,ଶߗ ଷ In the fixed frame are expressed as a function of the rotational speeds Φሶߗ , θሶ , ሶߖ  by 
the following relation :  

ሾ Φ ሶ = ߗ θ ሶ ሶߖ  ሿ ்                                                                                                                                                      (3) 

We note that the hypothesis of the motion in small angles is taken into account, that is to say  that the octocopter 
makes small rotations, which allows to make the following approximations :  

cΦ = cθ = cΨ = 1, et sΦ = sθ = sΨ = 0                                                                                                                  (4) 

For the translation speeds we have:  

The linear speeds ݒ௫
௕, ݒ௬

௕,ݒ௭
௕, In the fixed frame according to the linear speeds ݒ௫

௠,ݒ௬
௠,ݒ௭

௠. In the mobile frame 
are given by: 

ݒ ൌ   ቎

௫ݒ
௕

௬ݒ
௕

௭ݒ
௕

቏ = R ൈ ቎
௫ݒ
௠

௬ݒ
௠

௭ݒ
௠

቏                                                                                                                                          (5) 

V. PHYSICAL EFFECTS ON OCTOCOPTER 

The physical effects that affect the octocopter are: 
A. The weight of the octocopter 
It is given by: 
P = mg                                                                                                                                                                   (6) 
whereas : m is the total mass and g the gravity. 
B. The lift forces 
These are forces which are caused by the rotation of the motors, they are perpendicular to the plane of the 
propellers. These forces are proportional to the square of the rotation’s speed of the motors:  

௜ = ܾ߱௜ܨ
ଶ                                                                                                                                                                 (7) 

With ݅ ൌ ሼ1: 8ሽ is the index of the rotor, and  ܾ is the lift coefficient [kgm/݀ܽݎଶ], It depends on the shape of the 
blades and the density of the air. 

C. The drag force 

The drag force is the coupling between a pressure force and the viscous friction force, in this case there are two 
drag forces acting on the system: 

The drag in the propellers: it acts on the blades, it is proportional to the square of the rotation’s speed of the 
helix, it is given by the relation: 

௛ܶ = ݀߱௜
ଶ                                                              (8) 

D is the coefficient of drag which depends on the manufacture of the propeller. 

D. Moments due to lift forces 
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The translation on the x-axis: This is due to the moment created by the difference between the lift forces of the 
rotors 1, 2, 7, 8 and 3, 4, 5,6 

ଵܨ௬=݈ሺܯ ൅ ଶܨ െ ଷܨ െ ସܨ െ ହܨ െ ଺ܨ ൅ ଻ܨ ൅ ܨ଼ ሻ=݈ܾሺ߱ଵ
ଶ ൅ ߱ଶ

ଶ െ ߱ଷ
ଶ െ ߱ସ

ଶ െ ߱ହ
ଶ െ ߱଺

ଶ ൅ ߱଻
ଶ ൅ ଼߱

ଶሻ               (9) 

݈ is the length of the arm between the rotor and the center of gravity of the octocopter. 

The translation on the y axis is due to the moment created by the difference between the lift forces of the rotors 
1,2,3,4 and 5,6,7,8. This moment is given by the following relation: 

ଵܨ௫ = ݈ሺܯ ൅ ଶܨ ൅ ଷܨ ൅ ସܨ െ ହܨ െ ଺ܨ െ ଻ܨ െ ܨ଼ ሻ = ݈ܾ(߱ଵ
ଶ ൅ ߱ଶ

ଶ ൅ ߱ଷ
ଶ ൅ ߱ସ

ଶ െ ߱ହ
ଶ െ ߱଺

ଶ െ ߱଻
ଶ െ ଼߱

ଶ)           (10) 

E. Moment due to drag forces 

- The rotation around the z axis: it is due to a reactive torque caused by the pairs trained in each helix, this 
moment is given by the following relation: 

௭ = ݀ሺ߱ଵܯ
ଶ ൅ ߱ଶ

ଶ െ ߱ଷ
ଶ െ ߱ସ

ଶ ൅ ߱ହ
ଶ ൅ ߱଺

ଶ െ ߱଻
ଶ െ ଼߱

ଶሻ                                                                                    (11) 

F. Gyroscopic effect 

The gyroscopic effect is defined as the difficulty of modifying the position or the orientation of the 
plane of rotation of a rotating mass. The gyroscopic effect is thus named in reference to the mode of operation of 
the gyroscope, a motion control apparatus used in aviation (from the Greek Györ which means rotation and 
scope, observe). 

Indeed, rotating an object in rotation about a given axis creates a gyroscopic torque which is 
perpendicular to these two axes. The pivoting of the rotors with a certain angle gives rise to gyroscopic torques 
which are the vector product of the kinetic moments of the rotors and of the swing speed vectors. 

They expressed themselves in the references related to the rotors by these relations: 

During a rotation around y, the gyroscopic torque on the x axis is:  

௬ሺ߱ଵߗ௥௢௧ܬ = ௫௚ܯ
ଶ ൅ ߱ଶ

ଶ െ ߱ଷ
ଶ െ ߱ସ

ଶ ൅ ߱ହ
ଶ ൅ ߱଺

ଶ െ ߱଻
ଶ െ ଼߱

ଶሻ                                                                           (12) 

Similarly, we obtain the gyroscopic torque on the y axis during a rotation around y : 

௫ሺെ߱ଵߗ௥௢௧ܬ = ௬௚ܯ
ଶ െ ߱ଶ

ଶ ൅ ߱ଷ
ଶ ൅ ߱ସ

ଶ െ ߱ହ
ଶ െ ߱଺

ଶ ൅ ߱଻
ଶ ൅ ଼߱

ଶሻ                                                                         (13) 

VI. DEVELOPMENT OF THE MATHEMATICAL MODEL ACCORDING TO NEWTON-EULER 

Based on the calculation of variation of the Euler-Lagrange system. Generalized coordinates 
determined  the development of the rotational dynamics of the octocopter. 

q = (Φ, θ, Ψ)                                                                                                                                                         (14) 

Whereas Φ, θ and Ψ Are the Euler angles which represent the octocopter orientation in the moving frame B. 

The difference between the kinetic energy T (caused by the angular velocities and the linear translation 
velocities) and the potential energy V denotes the Lagrangian  : 

 (15)                                                                                                                                                            ܸ - ܶ = ܮ

The Euler-Lagrange equation is used to obtain the rotation dynamics of the octocopter. The kinetic energy of the 
octocopter is expressed by the following equation: 

ܶ= 
ଵ

ଶ
௫ሺΦെܫ Ψ sinሺθሻሻଶ ൅

ଵ

ଶ
௬ሺθܫ cosሺΦሻ ൅Ψ sinሺΦሻcos ሺθሻሻଶ ൅

ଵ

ଶ
௭ሺθܫ sinሺΦሻ െ Ψ cosሺΦሻcosሺθሻሻଶ           (16) 

The potential energy is expressed in the fixed reference E by: 

׬݃ = ܸ .݉݀ݔ ሺെ݃ sinሺθሻሻ ൅ ׬ .݉݀ݕ ሺ݃ sinሺΦሻ cosሺθሻሻ ൅ ׬ .݉݀ݖ ሺ݃ cosሺΦሻ cosሺθሻሻ                                    (17) 

The Euler-Lagrange equation becomes: 

Г௜ = 
ௗ

ௗ௧
ቀ
డ௅

డ௤೔
ቁ െ ቀ

డ௅

డ௤೔
ቁ                                                                                                                                          (18) 

  Г௜ The extreme forces and ݍ௜(i =Φ, θ,Ψ) The generalized coordinates. 

For rolling:  
ௗ

ௗ௧
ቀ
డ௅

డΦ
ቁ െ

డ௅

డΦ
௫߱௫ܫ  =  െ ൫ܫ௬ െ ௭൯߱௬߱௭ܫ ൅ ׬ .ሻݕሺ݉݀ݕ ሺെ݃ cosΦ cos θሻ ൅ ׬ .ሻݖሺ݉݀ݖ ሺ݃ sinΦ cos θሻ             (19) 

For pitching: 
ௗ

ௗ௧
ቀ
డ௅

డθ
ቁ െ

డ௅

డθ
=െsinΦ ሺ ߱௭ܫ௭ െ ߱௫߱௬(ܫ௫ െ ௬ሻሻܫ ൅ cosΦ ሺ߱௬ܫ௬ െ ߱௫߱௭ሺܫ௭ െ  ௫ሻሻܫ

                         ൅׬ .ሻݔሺ݉݀ݔ ሺെ݃ cos θሻ െ ׬ .ሻݕሺ݉݀ݕ ሺ݃ sinΦ sin θሻ െ ׬ .ሻݖሺ݉݀ݖ ሺെ݃ cosΦ sin θሻ        ( 20) 

And finally for the lace: 
ௗ

ௗ௧
ቀ
డ௅

డΨ
ቁ െ

డ௅

డΨ
 = െsin θሺ߱௫ܫ௫ െ ߱௬߱௭ሺܫ௬ െ ௭ሻሻܫ ൅ sinΦ cos θ ሺ߱௬ܫ௬ െ ߱௫߱௭ሺܫ௫ െ ௭ሻሻ ൅cosΦܫ cos θ ሺ߱௭ܫ௭ െ

߱௫߱௬ሺܫ௫ െ  ௬ሻሻ                                                                                                                                                  (21)ܫ
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Considering the hypothesis of small angles which the velocities of the angles of Euler (Φሶ , θሶ ,Ψሶ ሻ are identical to 
the angular velocities in the movable reference frame (߱௫,߱௬, ߱௭), the equations of motion become: 

ቐ

ГΦ ൌ ௫߱௫ܫ ൅ ሺܫ௭ െ ௬ሻ߱௬߱௭ܫ
Гθ ൌ ௬߱௬ܫ ൅ ሺܫ௫ െ ௭ሻ߱௫߱௭ܫ
ГΨ ൌ ௭߱௭ܫ ൅ ሺܫ௬ െ ௫ሻ߱௫߱௬ܫ

                                                                                                                                   ሺ22ሻ 

By equalization the equation’s system (9) with (22) and by isolating the accelerations, we obtain: 

ە
ۖ
۔

ۖ
ۓ
Φሷ ௫ܫ ൌ ௥௢௧௢௥θሶܬ ሺ߱ଵ

ଶ൅߱ଶ
ଶ൅߱ହ

ଶ൅߱଺
ଶെ߱ଷ

ଶെ߱ସ
ଶെ߱଻

ଶെ଼߱
ଶሻ ൅ ሺܫ௬ െ ௭ሻθሶΨሶܫ ൅ܾ݈ሺ߱ଵ

ଶ ൅ ߱ଶ
ଶ൅߱ଷ

ଶ൅߱ସ
ଶെ߱ହ

ଶെ߱଺
ଶെ߱଻

ଶെ଼߱
ଶሻ

θሷ ௬ܫ ൌ ௥௢௧௢௥Φሶܬ ሺെ߱ଵ
ଶെ߱ଶ

ଶെ߱ହ
ଶെ߱଺

ଶ൅߱ଷ
ଶ൅߱ସ

ଶ൅߱଻
ଶ൅଼߱

ଶሻ ൅ ሺܫ௭ െ ௫ሻΦሶܫ Ψሶ

൅ܾ݈ሺെ߱ଵ
ଶ െ ߱ଶ

ଶ ൅ ߱ଷ
ଶ ൅ ߱ସ

ଶ ൅ ߱ହ
ଶ ൅ ߱଺

ଶ െ ߱଻
ଶ െ ଼߱

ଶሻ

Ψሷ ௭ܫ ൌ ݀ሺ߱ଵ
ଶ ൅ ߱ଶ

ଶ െ ߱ଷ
ଶ െ ߱ସ

ଶ ൅ ߱ହ
ଶ ൅ ߱଺

ଶ െ ߱଻
ଶ െ ଼߱

ଶሻ ൅ ൫ܫ௫ െ ௬൯θሶΦሶܫ

ሺ23ሻ 

This model is based on the assumption of small angles. 

VII MODELING ACCORDING TO NEWTON-EULER 

The equation (22) is used to describe the dynamics of rotation, while the Newton-Euler equation is used to 
describe the dynamics of translation. 

m Ԧܽ = ሬܲԦ ൅ ∑ Ԧ௜௜ܨ                                                                                                                                                   (24) 

Avec ሬܲԦ le poids, ∑ Ԧ௜௜ܨ  représente la somme des portances. Par l’utilisation de l’hypothèse de portance :  

∑ Ԧ௜௜ܨ ൌ ܾሺߗଵ
ଶ ൅ ଶߗ

ଶ ൅ ଷߗ
ଶ ൅ ସߗ

ଶ ൅ ହߗ
ଶ ൅ ଺ߗ

ଶ ൅ ଻ߗ
ଶ ൅ ଼ߗ

ଶሻݖԦ ൌ ∑ ሺܨ௜, Ԧሻ௜ݖ                                                            (25) 

Then we can write : 

m൭
Xሷ

Yሷ

Zሷ
൱

ሺ௑ሬԦ ௒ሬԦ ௓Ԧሻ

ൌ ݉݃ ቆ
0
0
െ1

ቇ

ሺ௑ሬԦ ௒ሬԦ ௓Ԧሻ

൅ ∑ Ԧ௜ܨ ቌ

ܿሺΨሻݏሺθሻܿሺΦሻ ൅ ሻߔሺݏሺΨሻݏ
ሺθሻܿሺΦሻݏሺΨሻݏ െ ܿሺΨሻݏሺߔሻ

ܿሺθሻܿሺΦሻ
ቍ

ሺ௑ሬԦ ௒ሬԦ ௓Ԧሻ

௜                             (26) 

This dynamic model is adopted by several authors 

The translation model is obtained by developing the equation: 

ە
ۖ
۔

ۖ
Xሷۓ ൌ  

ሺୡ୭ୱΨ ୱ୧୬ θ ୡ୭ୱΦାୱ୧୬Ψ ୱ୧୬Φሻ

௠
∑ ௜௜ܨ

Yሷ ൌ
ሺୱ୧୬Ψ ୱ୧୬ θ ୡ୭ୱΦିୡ୭ୱΨ ୱ୧୬Φሻ

௠
∑ ௜௜ܨ

Zሷ ൌ െ݃ ൅
ሺୡ୭ୱ θ ୡ୭ୱΦሻ

௠
∑ ௜௜ܨ

                                                                                                                (27) 

The complete model according to Euler-Lagrange and Newton-Euler represents the dynamics of the octocopter 
is given by the following equations: 

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ ሷܺ ൌ

ሺcosΨ sin θ cosΦ൅ sinΨ  Φሻ ݊݅ݏ

݉
෍ ௜ܨ

௜
                                                                   

ሷܻ ൌ
ሺsinΨ sinΦ cos θെ cosΨ sinΦሻ

݉
෍ ௜ܨ

௜
                                                                     

ሷܼ ൌ
cos θ cosΦ

݉
෍ ௜ܨ

௜
                                                                                                              

Φሷ ௫ܫ ൌ ௥௢௧௢௥θሶܬ ሺ߱ଵ
ଶ൅߱ଶ

ଶ൅߱ହ
ଶ൅߱଺

ଶെ߱ଷ
ଶെ߱ସ

ଶെ߱଻
ଶെ଼߱

ଶሻ ൅ ሺܫ௬ െ ௭ሻθሶΨሶܫ ൅ܾ݈ሺ߱ଵ
ଶ ൅ ߱ଶ

ଶ൅߱ଷ
ଶ൅߱ସ

ଶെ߱ହ
ଶെ߱଺

ଶെ߱଻
ଶെ଼߱

ଶሻ  

θሷ ௬ܫ ൌ ௥௢௧௢௥Φሶܬ ሺെ߱ଵ
ଶെ߱ଶ

ଶെ߱ହ
ଶെ߱଺

ଶ൅߱ଷ
ଶ൅߱ସ

ଶ൅߱଻
ଶ൅଼߱

ଶሻ ൅ ሺܫ௭ െ ௫ሻΦሶܫ Ψሶ        

൅ܾ݈ሺെ߱ଵ
ଶ െ ߱ଶ

ଶ ൅ ߱ଷ
ଶ ൅ ߱ସ

ଶ ൅ ߱ହ
ଶ ൅ ߱଺

ଶ െ ߱଻
ଶ െ ଼߱

ଶሻ   
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ሺ28ሻ 

We notice that the model presents strong nonlinearities and a great coupling between the control inputs, also 
between the angles because of the gyroscopic effects and between the dynamics of rotation and the dynamics of 
translation. 

On pose : ߗത௥ ൌ െ߱ଵ
ଶ െ ߱ଶ

ଶ ൅ ߱ଷ
ଶ ൅ ߱ସ

ଶ ൅ ߱ହ
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ଶ െ ଼߱

ଶ                                                                        (29) 

Onsequently, the complete dynamic model which governs the octocopter is known according to the following 
equations.  
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X ORGANIGRAM OF THE COMMAND 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Fig5:Organigram of the command 

XI THE PROTOTYPE REALIZES 

 

 

 

 

 

 

 

 

 

 

Fig 6: The realized prototype 
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XII. CONCLUSION 

In order to become familiar with recent new technologies and with the growth of UAV interest, the 
growth of landing and takeoff  airplanes (VTOL), The multorotors have known a great popularity in these last 
years and for the purpose of obtaining a degree in Electrical Engineering Master, we have chosen to accomplish 
a realization of a drone of eight engines to use it for " the agricultural fields such as spreading and fields’s 
protection  of diseases, despite the difficulties we have been facing as the less information needed to achieve our 
choice, we were able to accomplish our objective in realizing a drone of eight engines  

First, we had to order the eight (8) engines of our drone, then we had met some problems during our 
project among them the non-synchronization of the drivers (ESC), for that we had to calibrate and modify our 
program according to the necessity for having a maximum synchronization. Despite this we always had a small 
margin of non-synchronization that could not be eliminated. 

For getting good stability we have worked on the PID regulator (proportional, integral, derivative) with the test / 
error method which is long in its calculations but as it ensures both the errors made on the mechanical structure 
and the distribution of the weight, also the turbulent effects like the wind. 
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