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Abstract—The objective of this research was to determinate the moisture and oil thermal diffusivity 
coefficients in the breadfruit vacuum frying in control, blanched and coated samples. Mass transfer 
coefficients were determined from the graphs of dimensional temperature and moisture content ratios vs. 
time, and the specific oil absorption rate was calculated using a first-order kinetic model.It was observed 
that the diffusion coefficient increased with increasing temperatures for all treatments.For coated 
samples, the specific oil absorption rate increased with temperature. In this study, it was reported that the 
treatment that reported the greatest diffusion Ea was pectin-coated. 
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I. INTRODUCTION 

The bread tree (Artocarpus altilis) is a species belonging to the genus Artocarpus, within the tribe of 
Artocarpeae, from the Moraceae family with hundreds of varieties of trees distributed from Southeast Asia to 
Polynesia, through Oceania.The anthropic action has distributed the species throughout all tropical areas of the 
region, especially the Antilles[1].This is a fruit that is generally consumed on the San Andres Island in fried or 
cooked form. It is part of the tourist gastronomy of this archipelago since it is offered to the visitors as an 
accompaniment to the typical dishes. It is a fruit with a high carbohydrate content (27.82%) and a high 
percentage of moisture (75%).  

Food products contain high moisture content, which is partially or totally eliminated during dehydration. 
Drying and frying of food materials involves internal and external heat and mass transfer processes. The relative 
importance of these resistances varies significantly in the different dehydration processes[2].The governance 
equations of a transport model describe the physical phenomena that occur within the domain of the solution. 
The interaction of the solution domain with the external environment is expressed by the boundary conditions. 
Therefore, various thermal food processes can be modelled using the same set of steering equations, butvarying 
the boundary conditions (e.g. frying and drying with hot air). Therefore, it is extremely important to have 
appropriate contour conditions that are representative for accurate prediction [3]. 

Moisture diffusivity is identified by adjusting the calculated experimental moisture contents, using an 
appropriate Fick model with specific boundary conditions representing the water transport in the food system 
studied[4]. This is an important physical transport property that is useful in the engineering analysis of basic 
food processing operations such as drying and frying. Diffusion phenomena are extremely complex, theoretical 
prediction of moisture diffusivity is difficult due to the structure and content of water and variable chemistry of 
each foodstuff. Therefore, it is necessary to obtain these data through experimental procedures[5]. 

Cranck[6], gives an excellent overview of mass transfer models based on Fick's diffusion differential 
equation through experimental data. It is common practice to describe full mass transfer with the same equation 
used for diffusion and to take the correction for all secondary types of mass transfer by simply replacing the 
diffusion coefficient with an effective diffusion coefficient[7].Demirkolet al.,[8] published their researches on 
the determination of moisture diffusivity of a biscuit baked at different temperatures in the oven. Fick's second 
equation was solved analytically with a finite convection mass transfer resistance on the surface. From the 
slopes of the experimental drying curves, they calculated the diffusivity of humidity.These researchers 
concluded that the effective diffusivity of biscuit moisture increased with progress in cooking time, and as the 
temperature increased. Simal et al., [9] also applied an Arrhenius equation to determine the variation of kiwi 
fruit diffusion coefficient as a function of temperature during drying. Diffusion coefficients values changed from 
3×10-10 (at 30°C) to 17.21 × 10-10 m2s-1 (at 90°C). 
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The simultaneous transfer of heat and mass during immersion frying promotes a series of chemical changes 
such as water loss, crust formation, starch gelatinization, aromatization and colour change through Maillard 
reactions, hydrolysis or oxidation, oil absorption and oil polymerization[10].On the other hand, oil absorption is 
one of the most important parameters of the quality of fried foods, which is incompatible with recent trends 
towards healthier foods and low-fat products[11]. Based on the above mechanisms, several strategies have been 
developed to reduce oil absorption. Pre-frying treatments such as hot air drying have been used. 

One promising technology that has proven its potential for producing low-fat snacks is vacuum frying. 
Vacuum frying is a frying process, which is carried out in a closed system, under pressures well below 
atmospheric levels (preferably below 7000Pa), which makes it possible to substantially reduce the boiling point 
of the water, and therefore the frying temperature. 

In recent years, several procedures have been proposed to reduce the amount of oil absorbed in French fries. 
Rubnov and Sagu[12] added fructose for a restructured potato product that resulted in a change in surface 
properties, with a reduction in oil absorbed after frying. Also the immersion of potato slices in NaCl solutions 
reduced the absorption of oil by 15% in potato chips after frying.Vacuum frying can also be an option to obtain 
breadfruit with low oil content by modifying the desired texture and flavour characteristics, since the surface 
properties of the fruit are more important for fat absorption, the application of suitable coatings is a promising 
route to reduce the oil content[13].There are many options available to reduce fat absorption by applying starch-
based coatings or edible films. For example, Williams and Mittal[14] used Gellam gum for layer samples so that 
the resulting film reduced oil absorption during frying. In view of the above, the objective of this research was 
to determine the moisture and oil thermal diffusivity coefficients in vacuum breadfruit frying under pre-
treatment conditions. 

II. MATERIALS AND METHODS 

A. Raw material 

Breadfruits (Artocarpus communis) and palm oil were purchased at a local supermarket in the city of 
Cartagena de Indias (Colombia). The fruits were selected taking into account the size and that they did not 
present damages by manipulation. The fruits were washed and disinfected, then cut into a flat sheet with 
dimensions of (0.025 × 0.003 × 0.03m) for further analysis. 

B. Pre-treatments 

After the preparation of the fruits, they were divided into three blocks; the first block was blanched in water 
for 2 minutes at 95 ° C in a water bath WNB (Germany) with a capacity of 7 L, connected to a power supply of 
220 V and dimensions of 240 × 210 × 140 mm , which has digital temperature and time control. Immediately 
afterwards the samples were cooled in water at room temperature for 20s to prevent softening. The second block 
was coated with 1.2 % w v-1 pectin in a solution of distilled water, stirred and heated to 60 °C to homogenize 
this polymer. The third block was the control, to which no pre-treatment was performed. 

C. Vacuum frying conditions 

The breadfruit slices were fried in a GastrovacTM Vacuum Cooking and Impregnation System (International 
Cooking Concepts, Barcelona, Spain) with the measures: 0.04 × 0.026 × 0.046 m, maximum capacity of 10.5 L 
and voltage 220 V. The maximum vacuum pressure used in the equipment was 30 kPa. Frying temperatures of 
120 °C, 130 °C and 140 °C were used. The frying times were in the range of 30s to 300s, established by 
preliminary tests. The ratio of the product/oil was 1:10 w v-1. First, the oil was heated to the desired temperature, 
the breadfruit slices samples were placed in a stainless steel basket, the lid was closed and the vacuum pump 
was activated. When the equipment reached maximum pressure, the basket was immersed in the hot oil. Once 
the desired frying time was reached, the basket was raised and the pump was left on for 15s, then the vacuum 
was broken and the equipment was turned off to remove the samples. Breadfruit slices were placed in a basket 
of metal mesh and placed in a desiccator for 10 min, once the frying was finished, the respective analyses were 
performed. 

D. Moisture and oil content analysis 

The moisture content of the breadfruit was made by drying at 105 ± 1 °C to constant weight, the 
determination of the oil content was performed by Soxhlet extraction[15]. All assays were performed in 
triplicate. 

E. Determination of diffusivity coefficient 

The second law of the Fick diffusion equation was used to adjust the experimental frying data for the 
determination of moisture diffusivity coefficients [16], Eq. 1. 

 
(1) 
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The diffusion solution (Eq. 1) for the plate geometry is solved by the Eq. 2 

8 1

2 1
2 1  

(2) 

The slope was determined by plotting ln (X - X∞) / (X - X∞) against time according to Eq. (3) 

4
 

(3) 

F. Diffusion activation energy calculus  

The dependence of the moisture diffusivity as a function of temperature is generally described by an 
Arrhenius-type relationship, Eq. 4. 

273.15
 

(4) 

Where D0 is the pre-exponential factor of the Arrhenius equation in m2 s-1, Ea is the activation energy in kJ 
mol-1, R is the universal gas constant in kJ mol-1K-1, and T is the temperature in °C. 

G. Oil-uptake kinetics 

A first-order kinetic model proposed by Krokida et al., [17] was used, where k represents the specific oil 
absorptionrate, Oeq is the equilibrium oil content. At t = 0, the oil content is zero, and at greater times, the oil 
content becomes the equilibrium value. 

1 exp   (5) 

The ratio of the variation of the oil content in equilibrium with the frying temperature T was used to describe 
an Arrhenius type relationship having the form: 

/  (6) 

Where Ea is the activation energy, R is the gas constant and A is the pre-exponential factor associated with 
the shock factor in terms of absolute reaction rates. 

H. Statistical analysis 

An analysis of the variance (ANOVA) was performed by means of. Statgraphics (Statgraphics Centurion 
Version 16.1.15, Chicago, EE. UU) was used for data analysis[18]. The level of statistical significance was 5%. 
All experiments were performed in triplicate. 

III. RESULTS AND DISCUSSIONS 

Fig. 1-3 shows the dimensionless ratio of moisture concentration vs. time, obtained during vacuum breadfruit 
frying. The slopes of the linear sections of these graphs were obtained by means of linear regression analysis. In 
control, blanched and pectin-coated samples, it was observed that as the frying temperature increased, the 
moisture content decreased. It is also detailed that the moisture loss rate of food increased with time and frying 
temperature. It was also evidenced that the sample coated and processed at higher temperatures showed higher 
moisture content, similar to that reported by Guzmán et al.,[19] in fried potatoes coated with pectin. 

 
Fig. 1. Linear section of the dimensionless relation moisture vs. time in coating samples. 
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Fig 2. Linear section of the dimensionless relation Moisture vs. Time in blanched samples. 

 
Fig 3. Linear sectionof the adimensionless relation Moisture vs. Timein control samples. 

Table 1 reports the moisture diffusivity coefficient and the diffusion activation energy at different frying 
temperatures. It is observed that the diffusion coefficient augmented with increasing temperatures for all 
treatments. It is also shown that at temperatures of 140 °C the diffusion coefficient of the control samples was 
higher than in the blanched samples, but lower than the pectin-coated samples. This can be explained because 
the water loss rate was higher in the control fruit, but does not indicate that it was the treatment that lost more 
moisture. That is, there was a phase in which the moisture rate came out with greater speed than the other 
samples. Alviset al., [20]stated that rate of moisture lossis greater with the increase in oil temperature, as well as 
the effective diffusivity, since at higher temperature, higher porosity and consequently greater water diffusivity 
occur. 
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Table 1. Diffusion coefficient and activation energy of Breadfruit 

Pre-treatment Oil Temperature (°C) Da(m
2s-1) Ea (kJ mol-1) 

Control 120 2.7356E-07 4.14 

130 4.1947E-07 

140 4.9242E-07 

Coating 120 2.3709E-07 14.05 

130 2.736E-07 

140 2.9180E-07 

Scalding 120 2.6444E-07 4.49 

130 2.7356E-07 

140 2.8268E-07 

Among the moisture transporting properties of the moisture diffusivity in a product, frying is the one that 
controls, since it defines the velocity of diffusion of liquid or steam in the product and also the velocity of 
evaporation and condensation. It has been found considerably that the moisture of various foods has varied due 
to the complex structure of the polymers in them (starch and protein) and their interaction with water[21]. 
Average values obtained for Deff in the study by Alviset al., [20] in sweet potato frying (Ipomoea Batatas Lam), 
at the respective temperatures of 150, 170 and 190 °C, the diffusion coefficients were of 9.19 × 10-7m2s-1, 
10.7×10-7 and 13.9×10-7m2s-1 for uncoated samples and 9.52×10-7m2s-1, 12.3×10-7m2s-1and 15.3×10-7m2s-1 for 
coated samples, being similar to those performed in this study. 

In research conducted it has been found that the effective moisture diffusivity in the industrial cake dough 
system during baking of a cake was 9.9 × 10-11m2s-1- 3.8 × 10-8m2s-1 for the temperature of products from 33.1 to 
126 °C [22], different from those reported in this study. But very similar to those reported by Dincer and 
Yildiz[23] for sausages, fried at 180 °C (1.31 × 10-7m2s-1). Differences can be attributed to the nature of the 
product, the process and the methods of determination used. 

During the cooking of a cake made by Baik and Marcotte[22], the moisture diffusivity increased 
exponentially with temperature. Typically, moisture diffusivity in a solid material increases with porosity and 
moisture content. The samples of low porosity increased as the moisture content increased; while those of the 
samples of average porosity rose and fell with the increase of the moisture content. In this case, it is generally 
accepted that the water diffusivity in a porous medium is directly proportional to the porosity which decreases as 
the water content decreases. For convection drying of peach slices reported by Zhu and Shen, [24], 
Deffvaluesvaried in the range of 5.60 × 10-10m2s-1to 1.33 × 10-9m2s-1 at 60-80 °C with 0.003 m thickness and 
0.946 ms-1 rate, in the range of 6.66 × 10-10m2s-1 to 1.1350 × 10-9m2s-1 between 0.423 m s-1-1.120 m s-1 air 
velocity 0.003 m thickness and 70 ° C. 

A. Activation energy of the moisture diffusion 

The activation energy (Ea) was calculated by linear regression analysis on a semi-logarithmic graph between 
the moisture diffusivity and the inverse of the absolute temperature. The activation energy is a measure of the 
Deff temperature sensitivity. It is the energy necessary to initiate the diffusion of moisture inside the food. It has 
been found that Ea is independent of moisture content. In this study it was observed that the treatment that 
reported higher Ea was applied to pectin coating. In general, products having high sugar or pectin content, 
compact tissue structures and small specific surface area may have higher activation energy than those having 
low sugar or pectin content, porous structures and large surface area [16].  

Nasiriet al., [25] reported an activation energy obtained from the Arrhenius representation for effective 
moisture diffusivity ranging from 18.42kJ mol-1 to 23.84 kJ mol-1, for shrimp samples coated with flour paste 
during frying, similar to the sample coated in this study. The activation energy is an indication of the energy 
required to remove moisture from the inside to the outside of the dried product. This phenomenon may be due to 
the fact that the components, tissue structures and the specific surface area of the product have a significant 
effect on Ea. In addition, previous treatments can either change the physical properties of the sample cell 
structure or remove the wax layer on the surface of products that prevent the transport of moisture during 
drying, also have a significant effect on the activation energy of the products [16]. 

B. Kinetic parameters of oil-uptake 

In Table 2 the parameters of specific oil absorption rate, activation energy and equilibrium oil content are 
observed. It is observed that as the frying temperature increases the equilibrium oil content is reduced in all 
treatments. In addition, the blanched sample reported the lowest oil content during all frying temperatures. It is 
also evident that the k of the control sample decreased at higher temperatures, different from the blanched 
treatments, which the specific rate decreased with increasing temperature. 
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On the other hand, some authors reported that scalding at low temperatures (e.g. 55 - 70 °C) before frying 
activates pectinesterase enzyme (PME) and the resulting reactions decrease porosity and thus reduce oil 
absorption. For the case of the coated samples, this parameter was increased with the temperature. Dueik and 
Bouchon[26] found that vacuum carrots and potato chips absorb about 50% less oil than potato chips at 
atmospheric pressure, while vacuum fried apple chips reduce oil absorption by 25%, but a considerable amount 
of oil is still being absorbed. It has been reported that starch gelatinization reduces oil absorption during frying 
[27].  

Studies by Krokidaet al.,[17] stated that the values of the equilibrium oil content are higher for the smaller 
sample size. As regards the oil content rate constant, it decreases with the temperature increase, this is more 
tending towards higher thickness values. Several factors that affect oil absorption during frying are oil quality, 
composition, frying temperature, time and shape of the product, initial moisture content, initial interfacial 
tension, porosity and bark foods. During frying of snacks based on the chickpea flour, the moisture content of 
the fried product decreased and the oil content increased rapidly [28]. 

Table 2. Parameters of the kinetic model of Krokida 

Treatment T (°C) Oeq k (s-1) ActivationEnergy 
(kJ mol-1) 

Control 120 0.34 0.001 -24.78 
 130 0.31 0.001 

140 0.23 0.0009 

Blanching 120 0.25 0.0015 -49.47 
 130 0.18 0.0006 

140 0.12 0.0003 

Coating 120 0.29 0.0005 -28.12 

130 0.23 0.0007 

140 0.19 0.0007 

In the case of pre-treated potato frying, Moyano and Pedreschi [29], for all cases and for both models studied, 
the specific rate K and K1 increased with the frying temperature, whereas the oil content of Oeq and O1eq 
decreased with temperature. According to the results reported by Alvarez et al.,[30], found that during scalding 
and using high temperatures and short times (e.g., 97 °C, 2 min) before frying potato strips, resulted in a higher 
oil content than in fresh strips, which is undesirable for the acceptance of the product by the consumer. Debnath 
et al. [29] stated that, generally, the Oeq values increased considerably as the frying temperature decreased for 
the three pre-treatments studied. The mass transfer coefficient of oil varied from (0.056 to 0.082 s-1) and 
increased with the frying temperature of snacks prepared with chickpea flour and modified starch. Regarding the 
activation energy, the control sample presented higher energy than the other treatments. In this study gave 
negative results, i.e. this indicates that the rate of oil absorption decreased with increasing temperature.  

Moyano and Pedreschi[29] stated that the higher frying temperatures lower the oil content and it can be seen 
that the effect of temperature at equilibrium or maximum value of oil content is much more sensitive in the case 
of control chips with an activation energy of -10234J mol-1. The dried slices were the least temperature-sensitive 
at an activation energy of -2485J mol-1, while the bleached was -5999J mol-1. 

IV. CONCLUSIONS 

The equilibrium oil content was reduced as the temperature increased in all the studied cases, and was lower 
in the scaled samples. In all treatments the control, scalded and pectin coated samples, the moisture content 
decreased with increasing temperature. In contrast the diffusion coefficient was increasing with respect to the 
temperature. It was evidenced that the specific rate of oil absorption of the control sample decreased at higher 
temperatures, different from the blanched treatments, which the specific rate decreased with increasing 
temperature. In this study it was observed that the treatment that reported higher Ea diffusion was applied to 
coating with pectin. On the other hand the oil absorption Ea gave negative results. 
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