Cost Estimate Modelling of PrestressedConcrete Bridge at the Public Worksand Housing Department of Bina MargaEast JavaProvince Indonesia

¹⁾Hadi Pramoedjo, ^{2)#}Miftahul Huda

¹⁾Department of Public Works, Bina Marga East Java ProvinceIndonesia
¹⁾Graduate student of engineering master of University of 17 Agustus 1945 Surabaya
¹⁾Email :aspsurabaya@gmail.com
^{2)#}Department of Civil Engineering, Faculty of Engineering, University of WijayaKusuma Surabaya

^{2)#}Email :huda.uwks@gmail.com

Abstract; This research is a modeling of cost estimation of prestressed bridge project in Public Works and HousingDepartmentof Bina Marga East Java ProvinceIndonesia. The purpose of this research is to get an accurate initial cost estimation taking into account the time series data of project cost budget and the inflation value that prevailed in the previous years. Data collection is taken from the contractor and the Public Works and Housing Department ofBinaMarga East JavaProvinceIndonesia from 2011-2016. Data analysis using Cost Significant Modelling (CSM) and multiple linear regression with the help of SPSS version 22 software. The results concluded that 97,90% of the work affecting the cost of the prestress bridge project consists of : pavement and asphalt work (X3), top material building (X7) and masonry work (X9). The equation model of cost estimation of prestige bridge structure construction with Cost Significant Model is in the form of regression equation, Y = 26,217,681.38 + 2,108 X3 + 1,513 X7 + 1,161 X9. The estimated model accuracy ranges from -10,20% to + 6,75%, with an average of + 8,48% accuracy. The estimation result of this study is better when compared with the estimation using long road parameters used by the Public Works and Housing Department of Bina MargaEast Java Province Indonesia whose accuracy ranges from -38,68% to + 38,05%, with an average accuracy of 14,47%.

Keywords: estimate, cost model, bridge, prestress, CSM.

I. INTRODUCTION

Government project budget planning, particularly in technical offices throughout Indonesia's provinces and districts is often constrained on the required budget size and the lack of information provided on each of the same jobs. The Road Maintenance and Improvement Project at the Public Works and Housing Department of East Java Province is one of the budget spots in the Budget Implementation List (DIPA) in East Java Province Indonesia using unit price contracts. In the budget planning of the project is always made based on experience without any special methods, so it takes certain methods to know and compare what work is influential, how the accuracy of existing budgetary planning costs to reduce the cost overrun of pre-construction calculations and for calculates its Own Estimated Price (HPS) before the work is conducted (Akhsa et al., 2015)[1].

At the planning stage each construction project requires an initial cost estimate. This initial cost estimation is required by the Project Owner to estimate the project owner's budget. Often, when the project is at an early stage, the information to estimate the cost is not too detailed, so the estimation results tend to be less accurate. Therefore, an accurate cost estimation model is needed which can explain most projects based on the least information possible (Falahis et al., 2015)[2]. In general, the accuracy of cost estimates depends on the progress of the project, materials, labor, equipment, direct and indirect costs as well as the expected benefits of the contractor. In the early stages of the project, data and information are still incomplete, so the cost estimation can not be detailed yet. As the planning process, design data will be more detailed and can produce more accurate estimates (Sugiyarto et al., 2016)[3].

In addition, in the early stages of planning, such as at the time of budget planning, estimates are not possible based on quantity calculations of work because the specifications and job descriptions have not been planned. For contractors this is a problem because in general in Indonesia the basic planning of construction work is often done simultaneously with the bidding offer. Therefore it takes time to quickly estimate the price of a construction work. Though the time available to participate in the bidding is very limited. Therefore, the cost estimation model is needed quickly, accurate, effective, reliable, simple and generally accepted (Kaming et al., 2009)[4].

According to the National Estimating Society (USA), Cost estimation is a cost analysis job that involves the cost assessment of activities of past project activities that will be used as materials to develop cost engineering development is basically an activity based on analysis of various aspects to achieve the goals and objectives certain with optimal results (Aptiyasa, 2015)[5]. In Indonesia many cost models are commonly used in the calculation of construction projects. Each cost model has its advantages and disadvantages in determining the estimated initial cost of the project cost budget. The following are the types of estimates based on the development stage of the project, namely: quantity list and unit price, Preliminary Estimate (PE), Semi-Detailed Estimate (SE), Definitive Estimate (DE), Element Cost Analysis (ECA), Quantity Take Off (QTO) and Cost Significant Model (CSM) (Handayani et al., 2015;Azmi&Huda, 2017; Bari, 2012; Vijaya&Shinde)[6][7][8][9]

Cost estimation method with Cost Significant Model was first introduced by Poh and Horner (Azmi& Huda, 2017)[7]. The Cost Significant Model is one of the total construction cost forecasting models based on past bidding data, which relies more on the most significant price in affecting the total project cost as the basis for forecasting, which translates into multiple regression formulation. The Cost Significant Model relies on well-documented findings of previous project data and information with similar types of work. Data and information can be obtained by collecting an archive of previous offers for similar projects that win the tender or the projects that have been implemented (Fikri&Sekarsari, 2015)[10]. This method has been widely used in previous studies to estimate the costs of some construction project activities such as buildings (Sugiyarto et al, 2016)[3], hospitals (Aptiyasa, 2015)[5], irrigation and irrigation channels (Kaming et al., 2009; Akhsa et al , 2015)[4][1], residential (Azmi& Huda, 2017)[7], construction of reinforced concrete and steel bridges (Falahis et al., 2015; Bakar, 2014)[2][10], upgrading of roads (Handayani et al., 2015; Fikri&Sekarsari, 2015)[6][11], maintenance of airport facilities, and others (Soemardi& Reni, 2010; Dewita et al., 2013; Indrawan, 2011) [12][13][14]

This study aims to develop cost estimation model budget in the early stages of project planning quickly, easily with sufficient accurate results and can be used as forecasting in the following years. The research object is road improvement and maintenance project in East Java Province Indonesia. The development method uses the principle of "Cost Significant Model" and multiple linear regression equation. The data are taken from several packages of workers using BoQ (Bill of Quantity) method which has been implemented from 2011 until 2017 by contractor and Public Works Department of East Java Province Indonesia. This study aims to analyze the estimated cost of prestressed bridge construction in East Java Province Indonesia as well as to strengthen the accuracy of project cost estimation in previous studies. The results of this study are expected to provide benefits for the project owner in determining the initial project cost estimation and also useful for contractors who will arrange an offer to participate in the tender.

II. METHODOLOGY

A. Research Concept

This research is a quantitative research because it uses numerical data using budget cost of similar projects at certain time. This study is also a comparative study because it compares the magnitude of the project budget and the influence of the inflation rate in 2011 to 2016. The data population in this study are all bridge prestress projects using girder beams that were done in East Java Province Indonesia from 2011 to year 2016. Sample research is conducted by considering different project sites implemented at intervals in accordance with the limited in the scope of the study. Technique of collecting data using sampling technique with purposive sampling method based on criteria of project name, location, year and work item appropriate with research purpose.

B. Data analysis

Data analysis techniques, initially data grouped by year, location and influence inflation. Then after the results grouped the feasibility of data analysis techniques in this study carried out based on the classical assumption test consisting of the normality test. In the normality test, the data will be considered normal if its probability value is greater than 0.05 which can be seen with the Kolmogorov-Smirnov test statistic

C. Calculation of influence time value

The influence of time value can be calculated due to the reduced value of money due to the inflation factorevery year. Calculation using Future Value (FV) with equation 1, (Faza& Huda, 2017)[7]

Where :

- F: The price value on the specified projection
- P: Price before projected
- i: Inflation factor
- N: Year of projection

D. Determine the cost-significant items

By looking at the description of the research results, the proportion of each cost component (independent variable) to the total cost (dependent variable). The proportion is sorted from the largest to the smallest. Host-significant items are identified as the largest items whose percentage is the same or greater of 80% of total cost. The independent variables identified as cost-significant items will then be analyzed using the SPSS program (Ghozali, 2015)[15].

E. Identify Variables

This study uses total cost of work (Y) as independent variables consisting of dependent variables include: mobilization work (X1), drainage and soil work (X2), pavement and asphalt work (X3), concrete work (X4), work reinforcement (X5), foundation work (X6), top building materials (X7), installation of top building materials (X8), masonry work (X9), and other work (X10).

F. Model Analysis

The relationship between the dependent variable and the independent variable is analyzed based on the correlation coefficient and the determination coefficient. The resulting correlation coefficient (r) is used to describe the strength of the relationship between the dependent variable and the independent variable. The correlation coefficient that approaches 1, both in the positive and negative directions, indicates that the relationship between the dependent variable is stronger. In addition, the accuracy of the regression model can be seen based on the coefficient of determination (R) which is getting closer to 1, meaning more accurate. To determine the feasibility to be used in estimating the value of the dependent variable, the regression model needs to be tested by F test and t test. The regression model is considered to be eligible if the probability of t is less than the 0.05 significance.

G. Multiple linear regression analysis.

Multiple linear regression analysis is a regression analysis to describe a problem (dependent variable) that is influenced by more than one factor (independent variable). The purpose of multiple linear regression analysis is to measure the intensity of the relationship between two or more variables and make predictions of the estimated value of Y over X (Ghozali, 2015)[15]. Multiple linear regression model is formulated as follows:

 $Y = a_0 + a_1X_1 + a_2X_2 + a_3X_3 + a_4X_4 + a_5X_5 + a_6X_6 + a_7X_7 + a_8X_8 + a_9X_9 + a_{10}X_{10}....(2)$

Where :

Y = dependent variable

 X_1 through X_{11} = Independent variable

a0 to a11 = coefficient of the regression equation

H. Model Accuracy Analysis

Poh and Horner (Faza& Huda, 2017)[7] stated that the model test is done by dividing the estimated cost based on the regression model with the Cost Model Factor (CMF). CMF is the ratio between model estimation cost and actual cost. Accuracy is indicated by the percentage of margin between the estimated price and the actual price. The equations used to calculate accuracy are:

Accuracy = $\frac{\overline{EV - AV}}{AV}$(3)

Where :

EV = estimated bill value

AV = actual bill value

III. RESULTS AND DISCUSSION

A. Research Data

The research data used is secondary data in the form of time-historical data of unit price of the prestress bridge project. The data is obtained from 6 Bill of Quantity of Prestressed concrete bridge construction work pack held by Public Works Department of Bina Marga of East Java Province from fiscal year 2011 to 2016. The data is budget cost without Value Added Tax (VAT)). Recapitulation of the six work packages is shown in Table 1.

Table 1 shows that the cost of constructing a bridge for each project package differs according to the length of the bridge. While the width of the bridge is considered the same as the standards determined by government regulations. For data uniformity, the existing data is adjusted to the cost per meter of bridge length. Each variable cost is divided by the length of the bridge and the results are shown in Table 2.

	Description	Details of Bridge Cost / Year (x Rp 1000)					
Vor	Description	2016	2015	2014	2013	2012	2011
var	Bridge Data	Bridge 1	Bridge 2	Bridge 3	Bridge 4	Bridge 5	Bridge 6
	Area (m2)	50	21	40	23,6	38	34
Y	Total Budget	11.351.384	2.416.128	6.397.518	5.248.284	3.960.100	3.226.797
X1	Mobilization	100.000	24.165	75.625	314.095	21.095	21.550
X2	Drainage and soil	29.996	97.993	140.845	414.190	142.282	74.477
X ₃	Pavement and asphalt	668.988	281.451	578.463	822.492	710.304	388.777
X4	Concrete	1.278.252	283.518	499.054	249.763	364.473	300.286
X5	Reinforcement	334.344	365.098	839.438	439.874	689.279	456.828
X ₆	Foundation	1.668.348	144.582	413.880	411.115	334.306	458.665
X ₇	Top building materials	3.780.000	525.000	2.400.000	1.487.044	950.000	806.728
X ₈	Install top building materials	716.345	165.298	402.282	440.241	213.982	499.204
X9	Masonry work	2.411.978	518.285	950.749	606.611	471.049	163.873
X ₁₀	Others	101.164	17.738	97.182	62.859	63.331	56.408

TABLE 1.Preliminary Budget Data of Bridge 2011-2016

Source: Secondary data

TABLE 2.Budget Data of Bridge per M2, 2011-2016

	Decorintion	Details of Bridge Cost per m2 / Year (x Rp 1000)					
Vor	Description	2016	2015	2014	2013	2012	2011
var	Bridge Data	Bridge 1	Bridge 2	Bridge 3	Bridge 4	Bridge 5	Bridge 6
	Area (m2)	50	21	40	23,6	38	34
Y	Total Budget	227.028	115.054	159.938	222.385	104.213	94.906
X1	Mobilization	2.000	1.151	1.891	13.309	555	633
X2	Drainage and soil	5.840	4.666	3.521	17.550	3.744	2.191
X3	Pavement and asphalt	13.380	13.402	14.462	34.851	18.692	11.435
X_4	Concrete	25.565	13.500	12.478	10.583	9.591	8.832
X_5	Reinforcement	6.687	17.052	20.986	18.639	18.139	13.436
X ₆	Foundation	33.367	6.885	10.347	17.420	8.798	13.490
X ₇	Top building materials	75.000	25.000	60.000	63.010	25.000	23.727
X ₈	Install top building materials	14.327	7.871	10.057	18.654	5.631	14.682
X9	Masonry work	48.239	24.680	23.769	25.704	12.396	4.820
X ₁₀	Others	2.023	845	2.430	2.664	1.667	1.659

Source: Secondary data

B. Calculation of influence of time value

Calculation of the effect of time value due to inflation, each variable can be calculated by calculating the index of each bridge price per meter variable length multiplied by the inflation value in 2011 to 2016. Data magnitude value inflation in the province of East Java-Indonesia starting in 2011 -2016 (BPS, 2017)[14] can be seen in Table 3. Then the influence of time value on the index of permeter square work unit price can be seen in Table 4.

No	Year	Inflation (%)
1	2011	4,09
2	2012	4,50
3	2013	7,59
4	2014	7,77
5	2015	3,08
6	2016	2,74

TABLE 3.Inflation in East Java Province, 2011-2016

Source: Statistics Indonesia East Java Province (2017)[16]

	Decorintion	Details of Bridge Cost per m2 / Year (x Rp 1000)					
Vor	Description	2016	2015	2014	2013	2012	2011
var	Bridge Data	Bridge 1	Bridge 2	Bridge 3	Bridge 4	Bridge 5	Bridge 6
	Area (m2)	50	21	40	23,6	38	34
Y	Total Budget	259.114	141.281	196.397	285.368	139.198	126.766
X_1	Mobilization	2.283	1.413	2.322	17.078	741	847
X2	Drainage and soil	6.665	5.730	4.324	22.520	5.001	2.926
X3	Pavement and asphalt	15.271	16.458	17.758	44.722	24.967	15.273
X_4	Concrete	29.178	16.578	15.320	13.581	12.811	11.797
X_5	Reinforcement	7.632	20.939	25.770	23.918	24.228	17.947
X_6	Foundation	38.083	8.454	12.706	22.354	11.751	18.019
X_7	Top building materials	86.285	30.699	73.678	80.856	33.393	31.693
X ₈	Install top building materials	16.352	9.666	12.350	23.938	7.521	19.611
X9	Masonry work	55.057	30.306	29.187	32.984	16.557	6.438
X ₁₀	Others	2.309	1.037	2.983	3.418	2.226	2.216

TABLE 4.Inflation Calculation at Bridge Budget Year 2011-2016

Source: Secondary data

C. Determining the Cost Significant Model

Determination of Cost Significant Items by first calculating the mean and standard deviation values of each item variable as shown in Table 5. Then sort the job cost variables from the largest to the smallest value to get the percentage of each work item. Cost Significant Items are identified as the largest items whose percentage is = 80%

Variable	Description	Mean (Rp)	Std.DeviasiRp)	%
Y	Total Budget	191.353	67.609	100,00
X_1	Mobilization	4.114	6.387	2,15
X_2	Drainage and soil	7.861	7.293	4,11
X_3	Pavement and asphalt	22.408	11.518	11,71
X_4	Concrete	16.544	6.425	8,65
X_5	Reinforcement	20.072	6.702	10,49
X_6	Foundation	18.561	10.757	9,70
X_7	Top building materials	56.100	26.794	29,32
X_8	Install top building materials	14.906	6.234	7,79
X9	Masonry work	28.421	16.483	14,85
X ₁₀	Others	2.364	812	1,24

TABLE 5.Calculation of Mean and Standard Deviation (x Rp 1000)

Source: Results of SPSS Analysis

Based on Table 6 then work items are sorted by the largest percentage value as follows:

1.	Top building materials (X7)	= 29,32%
2.	Masonry work (X9)	= 14,85%
3.	Pavement & Asphalt (X3)	= 11,71%
4.	Reinforcement (X5)	= 10,49%
5.	Foundation (X6)	= 9,70%
6.	Concrete (X4)	= 8,65%
		Total= 84,72%

D. Normality Analysis

Since the sample size is less than or equal to 50 then the data normality test using Shapirow Wilk method. The test is conducted based on the comparison of probability value with significance value ($\alpha = 0.05$). The data requirement is called normal if probability or p> 0.05 or (p> α) (Ulwan, 2017)[17]. The summary of normality test results based on Shapirow Wilk value can be seen in Table 6.

Variable	Description	Significant	Remark
Y	Total budget	0.715	Normal
X3	Pavement & Asphalt	0.127	Normal
X4	Concrete	0.837	Normal
X5	Reinforcement	0.994	Normal
X6	Foundation	0.765	Normal
X7	Top building materials	0.756	Normal
X9	Masonry work	0.810	Normal

TABLE 6.Normality Test Based on Kolmogorov Value - Smirnov

Source: Results of SPSS Analysis

E. Multiple linear regression analysis

Regression analysis using six variables in Table 6 above is done to get the most influential variable to the cost. Based on the results of partial regression analysis on each independent variable using SPSS program obtained the most powerful regression and used for this research that is for the Top Building Materials (X7). It states that the relationship between cost (Y) and Top Building materials (X7) is very strong and positively correlated, which means the increase and decrease in the value of Top Building materials (X7) will be followed by the increase and decrease in cost (Y). The significance value p = 0.044 < 0.05 indicates that the Top Building materials (X7) most significantly affects the cost (Y) at the 5% confidence level. From the calculation result using SPSS program got the result shown in Table 7

TABLE 7.Summary of Model Influence (Model Summary)

	mate
1 0,990 0,979 0,948 15.379.657,10	

Source: Results of SPSS Analysis

From table 8 the model summary got the standard number error of the estimate = $Rp \ 15.379.657 < standard$ deviation = $Rp \ 67.608.733$. This suggests that the regression model is feasible to use. Furthermore, based on the result of SPSS analysis, the regression model equation for prestressed bridge pricing in East Java Indonesia can be made by considering the regression equation constant values shown in Table 8.

Model		Unstandardized Coefficients B	Standardized Coefficients Beta	Т	Sig.
1	(constant)	26.217.681,380		1,390	0,299
	X7	1,513	0,600	3,299	0,081
	X9	1,161	0,283	1,654	0,240
	X 3	2,108	0,359	3,064	0,092

TABLE 8. Coefficient of Regression Equation

Source: Results of SPSS Analysis

Table 8.explains that the value of B constant = 26.217.681,380; B X7 = 1,513; B X9 = 1.161 and B X3 = 2,108 so that regression equation can be made as follows:

 $Y = 26,217,681,380 + 2,108 X_3 + 1,513 X_7 + 1,161 X_9....(4)$

Where :

- Y = The cost of building a prestressed bridge beam per m bridge length
- X_3 = Pavement and asphalt cost per m of bridge length
- X7 = Cost of Procurement of top building materials per m length of bridge
- X9 = Cost of Couple pair per m length of bridge
- F. Cost Model Model Testing (CMF)

In this study the cost of model estimation is calculated by entering the unit price of the independent variables X7, X9 and X3 per m, into equation (4). The result of cost estimation with Cost Significant Model is obtained by dividing model estimation cost with Cost Model Factor (CMF). CMF is the average ratio of the estimated cost model to the actual cost. Next the calculation of Cost Model Factor (CMF) can be seen in Table 9.

T 7		Cost of Bridge per m2 (x Rp 1000)					
var	Description	Bridge 1	Bridge 2	Bridge 3	Bridge 4	Bridge 5	Bridge 6
X3	Pavement and asphalt	15.271	16.458	17.758	44.722	24.967	15.273
X ₇	Top building materials	86.285	30.699	73.678	80.856	33.392	31.693
X9	Masonry works	55.057	30.306	29.187	32.984	16.557	6.438
Y	Cost Estimate per M '	252.878	152.543	209012	281.120	148.594	113.839
	Actual Cost per M '	259.114	141.281	196.397	285.368	139.198	126.766
	CMF	0,976	1,009	1,064	0,985	1,068	0,898

TABLE 9.Summary of CMF Calculation Results

Source: Results of Analysis

The result of the Cost Significant Model estimation obtained from the calculation is compared to the actual cost of the project being reviewed. The level of accuracy is to calculate the difference between the Cost Significant Model estimation and the implementation cost, divided by the implementation cost (%). In comparison, calculated also the method of accuracy that has been used is the method of road length parameters to the cost of implementation. The comparative estimation model of prestress bridge works can be seen in Table 10.

		Total Cost	Cost Signifi	can Model	Conventio	nal Method
No	Bridge	(x Rp1000)	Cost Estimation	Acuration	Cost Estimation	Acuration
1	Bridge 1	12.955.693	12,643,893	-2.41%	8,750,000	-32.46%
2	Bridge 2	2.966.905	2,993,415	0.89%	3,675,000	23.87%
3	Bridge 3	7.855.888	8,360,487	6.42%	7,000,000	-10.89%
4	Bridge 4	6.734.687	6,634,439	-1.49%	4,130,000	-38.68%
5	Bridge 5	5.289.508	5,646,591	6.75%	6,650,000	25.72%
6	Bridge 6	4.310.034	3,870,517	-10.20%	5,950,000	38.05%
			Maximum	6,75 %		38.05%
			Minimum	-10,20 %		-38.68%
			Average	8,475 %		0.93%

TABLE10.Comparison of Bridge Cost Estimation Model

Source: Results of Analysis

IV.CONCLUSION

From this research can be concluded as follows:

- 1. Procurement of top building materials ,masonry work, pavement work and asphalt, are three jobs that significantly influence 97.9% of the overall cost of prestressed bridge construction in East Java Province Indonesia.
- 2. Model of cost estimation of prestress bridge construction with "Cost Significant Model" is: $Y = 26.217.681.38 + 2.108 X_3 + 1.513 X_7 + 1.161 X_9$
- 3. Accuracy model of cost estimation of prestress bridge construction with method "Cost Significant Model" is ranged from -10,20% until + 6,75% with average accuracy 8,475%.
- 4. Estimates with the "Cost Significant Model" resulted in better estimates when compared to estimates using long road parameters that have been used in the Department of Public Works of Bina Marga East Java Province whose accuracy ranges from -38.68% to + 38.05 % with average accuracy +0,93 %

V. REFERENCES

- Akhsa, E. Azmeri. Hafnidar.Model EstimasiBiayaPekerjaanRehabilitasidanPeningkatanJaringanIrigasiMenggunakan "Cost Significant Model" (StudiKasus : DinasPengairanKabupaten Aceh Tenggara. JurnalTeknikSIpilPascaSarjanaUniversitasSyiah Kuala. Vol.4, No.4, pp.83-93. 2015.
- [2] Falahis, V.D. Sugiyarto. Laksito, B. Cost Significant Model SebagaiDasarPemodelanEStimasiBiayaKonstruksiJembatanBetonBertulang.e-JurnalMatrikTeknikSipil. Desember 2015. pp. 957-964. 2015
- [3] Sugiyarto. Muali, A.Hartono, W. EstimasiBiayaKonstruksiBangunanGedungDenganMetode Cost Significant Model StudiKasusProyekLanjutan Pembangunan Gedung Di UniversitasSebelasMaret Surakarta. JurnalMatriksTeknikSipil . pp. 498-504. Juni 2016.
- [4] Kaming, P. F. Ervianto, W.I. Kushartini, Pengembangan Cost Significant Model UntukEstimasiBiayaProyekPengairan. Konferensi Nasional TeknikSipil 3 (KoNTekS 3), UniversitasAtmajaya. Jakarta. 2009.
- [5] Aptiyasa, P. A. A.Cost Model KonseptualUntukBangunanGedungRumahSakit.Tesis Magister TeknikSipil (S-2), Program PascaSarjanaUniversitasAtmajaya Yogyakarta. 2016.
- [6] Handayani, F.S. Sugiyarto. Panuwun, R.T. KomponenBiaya yang MempengaruhiEstimasiBiayaPeningkatanJalanProvinsi..e-JurnalMatrikTeknikSipil. September 2015. pp. 903-907.2015.

- [7] Azmi, A.F & Huda, Miftahul. The Application of Cost Significant Model on The Estimated Cost of Residential Project on Surabaya, Gresik and Sidoarjo. Proceedings of The 2017 International Conference on Technology and ApplicationsSurabaya, Indonesia, July 29, pp. 89-94. 2017
- [8] Bari, Nor Azmi Ahmad. Exploring The Types of Construction Cost Modelling for Industrialised Building System (IBS) Projects in Malaysia. Universiti Putra Malaysia.2012
- [9] Vijaya, Wable and Shinde, S.M. Ranking and Clustering of Software Cost Estimation Models, International Journal of Science and Research.: Volume 3 Issue 7 Paper ID: 020141125. 2014
- [10] Bakar, A. EstimasiBiayaDenganMenggunakan Cost Significant Model PadaPekerjaanJembatanRangka Baja di ProyekPembangunan JalanLintasSelatan ProvinsiJawaTimur. JurnalTeknikSipilUntag Surabaya 1. Vol.7, No. 1, pp. 1-10. 2014.
- [11] Fikri, R.M Sekarsari, J. AnalisisEstimasiBiayaProyekPeningkatanJalanBeton di Kabupaten Tangerang DenganMetode Cost Significant Model. Seminar Nasional TeknikSipilTahun 2015-UMS. Solo. 2015
- [12] Soemardi, B. W. dan Reni G. Kusumawardani, StudiPraktekEstimasiBiayaTidakLangsungPadaProyekKonstruksi, Konferensi Nasional TeknikSipil 4, 2010
- [13] Dewita, R. Putera, Adnyana, I.G.A. Supara, I.G.P. Model BiayaPemeliharaanFasilitasPada Bandar UdaraNgurah Rai Bali. JurnalSpektran. Vol.1, No.2, pp. 7-15. 2013
- [14] Indrawan, Gede Sony. EstimasiBiayaPemeliharaanJalanDengan Cost Significant Model StudiKasusPemeliharaanJalanKabupaten Di KabupatenJembrana. Tesis (S-2): TeknikSipilUniversitasUdayana. Denpasar. 2011.
- [15] Ghozali, I. "Analisis Multivariate Program SPSS 22" :BadanPenerbitUniversitasDiponegoro Semarang. 2015
- [16] Biro PusatStatistik Indonesia. Data InflasiJawaTimur.Diaksespadahttp://klatenkab.go.id/web/ content/daftarrumah.Padatanggal 25 Mei 2017, Pk 09.00WIB. 2017
- [17] Ulwan .UjiNormalitasmenggunakan SPSS.Diaksespada<u>http://portalstatistik.blogspot.com/2014/02/uji-normalitas-dengan-menggunakan-spss.html</u>.Padatanggal 19 September 2017, Pk. 20.00 WIB. 2017

AUTHOR PROFILE

HadiParamoedjo, Born in Ponorogo, East Java Province on February 6, 1968.Graduated from Civil Engineering Department of Narotama University Surabaya 2003.As a student of Master of Civil Engineering University of 17 Agustus 1945 Surabaya in 2015-2017.As Government employeesDepartment of Public Works and Housing Bina Marga East Java Province started in 2006-now. He now serves as Chairman of the Technical Implementation Unit (UPT) of BojonegoroDistrictDepartment of Public Works and Housing Bina Marga of East Java Province Indonesia.

[#]Miftahul Huda, as a lecturer in the Departement of Civil Engineering, Faculty of Engineering, University of WijayaKusuma Surabaya (UWKS) Indonesia and as a researcher in the field of construction project management. Graduating in Civil Engineering (construction) of InstitutTeknologiSepuluhNopember (ITS) Surabaya - Indonesia (1985), Master of magister management (construction project management) in 1995 at the InstitutTeknologiSepuluhNopember (ITS) Surabaya-Indonesia.Doctor of Economic (Project Management), 17 Agustus 1945 University (UNTAG) Surabaya Indonesia 2009.Doctor of Civil Engineering, Diponegoro University (UNDIP) Semarang Indonesia 2015.