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Abstract – This paper presents the application of the LMS adaptive filter for the short-term wind 
power prediction, generated by a wind energy conversion system based on historical wind speed and wind 
power data, for a period of 24 hours with a step of one second. To compare the predicted power with that 
measured for a specific period. There are two steps in the process of predicting of wind power. In the first 
step, the raw data collected by the laboratory computer system. This step prepares the validated data to 
be used to construct an estimated model. In the second step, the LMS adaptive filter is applied to 
construct a model to predict wind power. 
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I. INTRODUCTION 

The world's primary reserves of polluting primary energy (oil, natural gas, coal, uranium) sooner or later it will 
be exhausted, while the very industrialization of the last decades its demand for electricity is always increasing. 
This has pushed countries towards the use of nuclear power plants to meet its energy needs. This energy source 
has the distinct advantage of not causing air pollution unlike thermal power plants, but the risk of nuclear 
accidents, waste treatment and burial are real problems that make this energy unattractive to the future 
generations. 

Faced with this problem several countries have turned to renewable energies. Indeed, a real global challenge is 
taken seriously today, as well on the policy of reducing greenhouse gas emissions. These sources of renewable 
energy include wind energy and the one with the highest energy potential. 

It is clear that Morocco is seriously engaged in this challenge with the installation of several photovoltaic 
power stations and wind farms whose objective is to achieve a 50% renewable energy production of national 
production by 2030 , Which also motivated us to direct our research work on renewable energies, specifically 
wind energy. 

The main problem of wind power is that the primary energy (the wind) is not controllable. This means that the 
power output of the wind turbines will vary according to the wind speed. It is therefore necessary to implement 
solutions in order to allow the manager to limit the impact of these productions on electric network [1]. 

Therefore, the objective of this work is to implement an efficient prediction method based on adaptive filters to 
provide an estimate of the output power of a wind turbine for prediction horizons not exceeding the hour. This 
will enable the manager in the future to optimize the management of his electricity network by facilitating the 
integration of the wind resource [2]. 

II. PROBLEM 

One of the main factors contributing to slowing down the integration of wind energy into energy distribution 
networks is the variation of the power produced. Indeed, the energy production of a wind power plant depends on 
weather conditions that vary randomly. It is therefore impossible to control the power produced by the wind 
turbines [3].  Operators of the grid power which must meet the energy demand need to make forecasts of 
distribution of  electric energy several days in advance in order to maintain the electric network balanced at all 
times. In this context, developing tools capable of predicting the output power of wind turbines several hours 
ahead is a key solution, to enable this source of energy to be more easily integrated into grid energy distribution. 
This solution could also help to increase its economic value, which is affected by its variation. Several 
mathematical methods are used in wind power prediction, such as the autoregressive moving average process, 
adaptive filters, artificial neural networks and methods based on meteorological forecasts digital. The latter 
methods use of autoregressive models based on the use of time-indexed data history called time series. The 
analysis of the wind speed series shows that we are dealing with a stochastic process. Indeed, these wind 
measurements are presented as a sequence of random variables indexed by time [4]. 
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B. Data description and analysis: 

The study is executed on a turbine of a 3 Kw; it is a three bladed horizontal axis model. The following table 
presents the wind turbine data. Table I present de wind turbine data. 

TABLE I.  The wind turbine data 

Signification Symbol Value 
Blade Radius R  3 m 

Base wind speed V  12 m/s 

Power coefficient pC  0.48 

Optimal relative wind speed   8.1 

Moment of inertia J  0.3125 kg/m² 

The data of wind speed (m/s) and output power (w). Are monitored by sensors installed at the tower. All the 
acquired data is averaged over a one-second period for turbine power curve measurement. The following table 
describes the data history of wind speed and electrical power. 

TABLE II.  Data description 

Data group Start time End time No. of Data points Description 
A 23/03/2016 23:59 24/032016 12:00 6725 Training data set 

B 23/03/2016 12:01 24/03/2016 23:59 6724 Testing data set 

The figure (4) presents a plot of data wind speed and output power. 

 
Fig.4. Group data of power and wind speed. 

 
Fig.5. Plot of power data points. 

Figure (5) shows the appearance of several points for which the power of the wind turbine has a negative or 
zero value. These data correspond to the stops of the turbine. 
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VIII. SIMULATION RESULTS 

The suggested solution was simulated using (Matlab / Simulink). Figure (6) shows the predicted power curve 
and the reference; while Figure (7) shows the same results but within a reduced range to clearly see the margin 
error between the reference and the measurement. The adaptation step used here is 00000003.0 . 

 

Fig.6. Wind turbine output power variation of predicted and data power with 00000003.0 . 

 

Fig.7. Zoom of wind turbine output power variation of predicted and data power with 00000003.0 . 

So we can see correctly that the predicted curve follows the reference with an acceptable margin of error. The 
results of the following simulations also show the predicted power and the reference, but this time with a greater 
adaptation step than the first one 000003.0 . 

 

Fig.8. Wind turbine output power variation of predicted and data power with 00003.0 . 
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Fig.9. Zoom of wind turbine output power variation of predicted and data power with 00003.0 . 

From Figures (8) and (9) it can be seen that when the adaptation step has been changed to a larger one. The 
algorithm converges more rapidly compared with the one that has a smaller step, but the residual error is greater.  

IX. CONCLUSION 

The first part of this work is devoted to the presentation of the LMS algorithm and its application to the 
prediction of the power curve of a wind turbine. While the second part presents the platform of renewable 
energies of the Moroccan School of engineering Sciences and the description of the historical data. Finally, 
simulation results show correctly that the predicted curve follows the reference with an acceptable margin of 
error and it can be seen that when the adaptation step has been changed to a larger one. The algorithm converges 
more rapidly compared with the one that has a smaller step, but the residual error is greater. 
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