
Absolute Summability Factor |N, pn|k of 
Improper Integrals 

Smita Sonker #1, Alka Munjal #2 
# Department of Mathematics, National Institute of Technology Kurukshetra, Haryana, India 

1 smita.sonker@gmail.com 
2 alkamunjal8@gmail.com 

Abstract— In this paper, we defined the summability for integrals and established a theorem on absolute 
Nörlund summability |N, pn|k factors of improper integral under sufficient conditions. Some auxiliary 
results (well-known) have also been deduced from the main results under suitable conditions. 
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I. INTRODUCTION 

1. Summability factor concerning infinite series: Let 
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The series 
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,lim sn
n



                                                                        (2) 

and                                                                      





 k
nn

n

kn || 1
1

1                                                                 (3) 

2. Summability factor concerning improper integrals: Let f be a real valued continuous function of t in the 

interval [0,∞) and .)()(
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and 
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where )(x  is Cesàro mean of s(x) and given by 
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The Kronecker identity: ),()()( xvxxs   where  
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The condition (5) can be written as  
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 Considering the (N, Pn) and (K, 1, α) summability, Parashar [9] obtained the minimum set of conditions for 
an infinite series to be (K, 1, α) summable. In 1986, Bor [1] found the relationship between two summability 
techniques |C, 1|k and |N̅, pn|k 

 

and in [2], he used the |N̅, pn|k 

 

for generalization of a theorem based on minimal 
set of sufficient conditions for infinite series. In 2016, Sonker and Munjal [10] determined a theorem on 
generalized absolute Cesàro summability with the sufficient conditions for infinite series and in [11], they used 
the concept of triangle matrices for obtaining the minimal set of sufficient conditions of infinite series to be 
bounded. In 2017, Sonker and Munjal [12] found the approximation of the function f ϵ Lip (α, p) using infinite 
matrices of Cesàro submethod and in [13], they obtained boundness conditions of absolute summability factors. 
In this way by using the advanced summability method, we can improve the quality of the filters. 

 Borwein [3] extended many results on ordinary and absolute summability methods of integral. C̨anak [4] 
and Totur [14] worked on the concept of Cesàro summability with a very interesting result for integrals. In the 
same direction, we extended the results of Mazhar [7] with the help of some new generalized conditions and 
absolute Nörlund summability |N, pn|k factor for integrals. 

II. KNOWN RESULTS 

In [6], Kishore has proved the following theorem concerning |C, 1| and |N, pn| summability methods. 

Theorem 1: Let p0 > 0, pn ≥ 0 and pn be a non-increasing sequence. If  na  is summable |C, 1|, then the series  
1)1(  nPa nn

 is summable |N, pn|. 

By concerning absolute Cesàro summability |C, 1|k factors and a positive monotonic non-decreasing function 
),( x Özgen [8] obtained the following results for integrals.      

Theorem 2: Let )( x be a positive monotonic non-decreasing function such that 
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 then the integrals 


0

)( dttf  is said to be summable |C, 1|k, k ≥1. 

III. MAIN RESULTS 

In the present research article, we extended the result of Özgen [8] by using the |C, 1|k summability and some 
other concepts. With the help of functions   and  and Cesàro summability |C, 1|k, we established the following 
theorem. 

Theorem 3: Let p(0) > 0, p(x) ≥ 0 and p(x) be a non-increasing function. Let )(x be a positive non-decreasing 

function and there be two functions )( x  and )( x such that 
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 then the integrals 
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 for k ≥1. 
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Note: The above theorem can be proved by using the concept of example that 


0
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 is 
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dxxxx   and hence the introduction of the function )}( { x is justified. 

Proof:  It may be possible to choose the function )(x  such that 

),(|)(| xx                                                                       (18) 

When )( x   oscillates, )( x  may be chosen such that .|)(||)(| xx    Hence, |,)(|)( xx   so that  
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IV. PROOF OF THE THEOREM 

In order to prove the theorem, we need to consider only the special case in which 
knpN |,|  is |C, 1|k, that is, 

we shall prove that 
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)( dttf
 

is summable |C, 1|k. Our theorem will then follow by means of theorem 1. Let 

 xT )( be the function of nth (C, 1) means of the integral .)(
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The integral is |C, 1|k summable, if
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where )( xT  is given by  
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On differentiating both sides with respect to x, we get  
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Applying Minkowski’s inequality, 
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Applying Hölder’s inequality, we have 

(23)                                                              .      O(1)                           

)(|)(|O(1)                            

)(|)(|O(1)                            

)()()(|)(|O(1)                            

|)(|
|)(|

|)(|
|)(|                            

|)(|
|)(|

                           

|)(||)(||)(|
1

                           

||

|)(||)(|
|)(|

0

00

0

0 00

0

0

1

0

1

0

1
1























 















xas

duuuu

duudxx

dtttxx

dudt
u

uv
tdt

t

tv
x

dtt
t

tv

dttttv
t

dt
t

ttv
tdttTt

x

x

x t kx k

x k

x
kk

x

k

kk
k

x
kk















 

By virtue of the hypotheses of theorem 3, 
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On collecting (20)-(24), we have 
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Hence proof of the theorem is complete. 
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V. COROLLARIES 

Corollary 1: Let p(0) > 0, p(x) ≥ 0 and p(x) be a non-increasing function. Let )( x be a positive non-

decreasing function such that 
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 then the integrals 
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 for k ≥1. 

Corollary 2: Let p(0) > 0, p(x) ≥ 0 and p(x) be a non-increasing function and )( x  be a convex function such 

that dx
x
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for k ≥1. 

Corollary 3: Let p(0) > 0, p(x) ≥ 0 and p(x) be a non-increasing function and )(x  be a convex function such 

that dx
x
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 is convergent. If f is bounded on [R, log n, 1], then ,)(
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is summable |N, pn|. 

Note: The above corollaries can be derived by taking the following assumptions in the main result, 

(i)      For corollary 1, we take ).(|)(| xx    

(ii)     For corollary 2, we take )log()( xx   and )( x  as a convex function. 

(ii)     For corollary 3, we take 1 ),log()(  kxx and )( x as a convex function. 

VI. CONCLUSION. 

The main result of this research article is an attempt to formulate the problem of absolute summability factor 
of integrals which make a more modified filter. Through the investigation, we concluded that the improper 
integral is absolute Nörlund summable under the minimal sufficient conditions. Further, this study has a number 
of direct applications in rectification of signals in FIR filter (Finite impulse response filter) and IIR filter 
(Infinite impulse response filter). In a nut shell, the absolute summability methods are a motivation for the 
researchers, interested in studies of improper integrals. 
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