
Bottom up Fuzzy Parsers: Fuzzy Simple
LR, Fuzzy Canonical LR and Fuzzy LALR

Parsers for Parsing Natural language
Suvarna G Kanakaraddi1, Suvarna S Nandyal2

1Dept of Computer Science & Engineering, BVBCET Hubli, Karnataka , India,
2Dept of Computer Science & Engineering, PDA College of Engineering, Kalaburgi, Karnataka, India

1suvarna_gk@bvb.edu,
2suvarna_nandyal@yahoo.com

Abstract - Humans convey the information through natural language. It is a prevailing tool used by
peoples in daily life. Natural Language Processing (NLP) involves methods for analyzing the words
through many levels of linguistic analysis. Language exhibits mainly two functionalities. First
functionality stipulates syntax and second functionality specifies semantics of the language. The
development of Fuzzy parsers for performing syntax analysis of the Natural Language (NL) is described
in this paper. Conventional Bottom up parsing algorithms such as Simple Left to Right (SLR), Canonical
Left to Right(CLR) and Look Ahead Left to Right(LALR) parsers are enhanced by applying Fuzzy
Logic (FL). Left to Right (LR) syntax analysis technique is a constructive method for parsing context free
languages.

Keywords: FSLR, FCALR, FLALR, LR, NL, NLP

I. INTRODUCTION

Natural language understanding (NLU) is a part of Natural Language Processing. NLU is an elementary
problem in NLP in conditions of its theoretical and pragmatic significance. Currently much improvement is
made at many levels of NLP tasks, which provides great opportunity for deeper natural language understanding.
Language must perform at least two functions. In first function, it should identify the sentence structure of the
language. In second function, it should indicate the semantics of the language. Compilers for the programming
language should identify the rules of the language specification. Compilers should translate the given input into
an object language program style and it should be consistent with semantic pattern of the language. If the input
consists of syntax errors, compiler should identify the occurrence of fault and also it should show the location of
the error. To perform these functions every compiler has a technique within it called a parser.

Fuzzy Context Free Grammar can be used to identify the language rules of a programming language. If the
sentence structure is designed cautiously, then much of the semantics of the language will narrate about the rules
of the grammar. There are many different types of parsers. In this paper enhanced bottom up parser is described.
These parsers are proficient and well suited for use in compilers for programming languages. For huge
collection of context free grammars Left to Right(LR) parsers can be automatically generated. Main objective
of this approach is to construct LR parsers from certain context-free grammars, even some uncertainties.

A vital characteristic of the parser generation algorithm is the automatic detection of ambiguities and hard to
parse constructs in the language pattern. LR parser algorithm is driven by a parser table, a data structure which
contains the syntax of the computer language is being parsed. LR parser processes most of the programming
languages with the help of parser table. The parser table is constructed by an approach known as parser
generator. Authors have enhanced LR parser algorithms by using Fuzzy Context Free Grammar (FCFG).

II. METHODOLOGY

Conventional parsing methods are Enhances by fuzzy constructs. Here English language sentence is given as an
input and syntactic correctness is tested using fuzzy bottom up parsers. Fuzzy parser model is represented in
Fig.1 .This section describes the construction of fuzzy context free grammar for the parsers.

 Input Output

Fig. 1 Fuzzy Parser Model

A. Fuzzy Context Free Grammar (FCFG):

Consider commonly used Production rules for construction of English language sentences are as follows [1],[3]

1) SNP VP (1.0) 2) S aux NP VP (1.0)

3) NPart n (0.2) 4) NPpron (0.2)

Fuzzy LR Parser

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Suvarna G Kanakaraddi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i3/170903S064 Vol 9 No 3S July 2017 417

5) NP n (0.1) 6) NP NP PP (0.2)

 7) NP propn (0.1) 8) NP NOM (0.2)

 9) NOMadj n (1.0) 10) VPv (0.1)

 11) VPv NP (0.1) 12) VP v VP (0.1)

 13) VP v NP VP (0.2) 14) VP v ADJP (0.1)

 15) VP TO VP (0.2) 16) VP v NP PP (0.1)

 17) VP v PP (0.1) 18) PPprep NP (1.0)

 19) ADJPadj (0.5) 20) ADJPadj VP (0.5)

 21) TO to (1.0)

Using these production rules bottom up Left to Right parser tables are constructed. Table holds the information
regarding action and go to functions. Actions performed are shift and Reduce. Go to table depicts the state
number. In action table shift and reduce functions with its fuzzy membership values are shown.

B. Fuzzy Simple Left to Right (FSLR) Algorithm

FSLR is a Left to Right bottom up parser which uses a follow set to remove conflicts from its action table. It has
fewer conflict states than LR (0) parser. The parser construction for FSLR is nearly identical to an LR (0) parser
except that generation of reduce actions depends on the follow set.

Algorithm for Construction of FSLR parser table [1]

Consider an augmented grammar G’.

Construct parsing table functions for FSLR such as ACTION and GOTO for the given grammar G’.

METHOD:

1. Construct collection of canonical item sets, C = (I0, I1,………..In) for the grammar G’ .

2. State i is build from Ii the actions of parsing for state i are determined as follows,

a) If [A α .a β] is in Ii and GOTO(Ii, a) = Ij, then set ACTION [i,a] to “shift j/membership
value” .Here a must be a terminal.

b) If [A α .] is in Ii, then set ACTION [i , a] to “reduce A α “ for all a in FOLLOW(A);
here A may not be S’.

c) If [S’ S.] is in Ii, then set ACTION [i, $] to “accept”

3. The goto transitions of state i are created for all non terminals A by using the rule : If GOTO(Ii,A) = Ij ,
then GOTO[i, A] = j .

4. Entries which are not defined by rules 2 and 3 are made error.

5. The first state of the parser is constructed using set of items containing [S’ .S]

FSLR-Action and GO TO Table

FSLR action and Go to table are constructed from First, Follow and the computed item sets. Here the table is
constructed from Fuzzy Context Free Grammar. Further this table is utilized to perform syntax analysis of
English sentence.

C. Algorithm for construction of Fuzzy Canonical Left to Right Parser table [2]

Augmented grammar G’ is given as an input.

Fuzzy Canonical Left to Right Parser table functions ACTION and GOTO are computed for the G’.

METHOD:

1. Collection of canonical item sets P= (I0,I1,………..In) of LR(1) computed for G’ .

2. State i is computed using Ii. The parsing actions of state i are designed as follows,

a) If [Q α .a β] is in Ii and GOTO(Ii, a) = Ij, then ACTION [i,a] is set to “shift j/membership value” .Here a
must be a terminal.

b) If [Q α .] is in Ii, then ACTION [i , a] is set to “reduce Q α “ for all a in FOLLOW(Q); here Q may not
be S’.

c) If [S’ S.] is in Ii, then ACTION [i, $] is said to “accept” .

If any contradictory actions occur from the above rules, then the grammar is not LR(1) . The algorithm fails to
produce a parser for this case.

3. The goto transitions for state i are determined for all non terminals using the rule : If GOTO (Ii, Q) = Ij ,
then GOTO [i, Q] = j .

4. Entries not defined by rules 2 and 3 are made error.

λi

λi

λi

λi

λi

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Suvarna G Kanakaraddi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i3/170903S064 Vol 9 No 3S July 2017 418

5. The initial state of the parser is constructed from set of items containing [S’ .S, $]

D. Constructing an FLALR Parsing table [2]

An augmented grammar G’ is considered as an input.

FLALR Parsing table functions ACTION and GOTO are computed for G’.

METHOD:

1. Construct collection of item sets S = (P0,P1,………..Pn) of LR(1) Items for G’ .

2. For each core present among the set of LR (1) items, find all sets having that core, and replace these sets
by their union.

3. Let S’ = {Q0, Q1, …..Qm} be the resulting sets of LR (1) items. The parsing actions for state i are
determined from Ji in the same approach as in Canonical LR algorithm. If there is a parsing action
conflict, the algorithm fails to produce a parser, and the grammar is said not to be an LALR (1).

4. The GOTO table is constructed as follows. If J is the union of one or many sets of LR(1) items, that is, J
= P1 ∩ P2 ∩ ………∩ Pk , then the cores of GOTO (P1,X), GOTO(P2, X), ………..,GOTO(Pk, X) are
the same, since P1,P2,….,Pk all have the same core. Let K be the union of all sets of items having the
same core as GOTO (P1,X). Then GOTO (Q,X) = K .

III. RESULT ANALYSIS

The following results shows the input sentence and permutations generated and also shows the degree of
fuzziness for the parsed input. Finally it shows the completely parsed sentence with maximum fuzziness. Fig 2.
Shows the input given for the FSLR parser.

Fig 2. FSLR Input

The following Fig 3. Shows the permutations generated and parsing status showing the degree of fuzziness of
the input sentence and also shows the completely parsed sentence.

Fig 3. Permutations of FSLR input

Here English sentence input is parsed using Fuzzy Canonical Left to Right (FCLR) parser. In this approach
initially the grammar rules are defined and action and go to table is constructed, using this table parsing is done
for the given input sentence. Result has been explained in Fig 4. Shows completely parsed sentence with its
associated fuzzy value.

λi

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Suvarna G Kanakaraddi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i3/170903S064 Vol 9 No 3S July 2017 419

Fig4. Parsing result

Following Fig 5 shows the permutations generated for the input sentence.

Fig 5 Permutations of FCLR input

Number of states generated in FSLR for the chosen FCFG are 29 and for FCLR are 53. States generated in
FCLR are more compare to FSLR. In FLALR the states which are identical in FCLR are merged in one state
and the table is created for action and go to. Here FLALR table is having 29 states which is same as FSLR.
Number of states generated in both the approaches are same. Among all these approaches FLALR provides
better result. Fuzzy max min technique is applied to know the degree of fuzziness of each word.

IV. CONCLUSION

An enhanced parsing technique such as Fuzzy Simple Left to Right (FSLR), Fuzzy Canonical LR (FCLR) And
Fuzzy Look Ahead Left to Right (FLALR) parsers are discussed in this paper. Here FCFG is designed for
parsing Natural language. These algorithms are implemented in ‘C’ Programming Language. Considering
English language sentence as an input, permutations are generated. For the generated permutations these Fuzzy
LR algorithms are applied. Finally Fuzzy max-min technique is applied to get the degree of fuzziness. Results
are discussed in this paper. Our research work involves design and implementation of fuzzy parsers over
conventional parser is that it gives degree of fuzziness and syntactic correctness for partially parsed sentences
but in conventional parsers the sentences parsed completely are only accepted and rejected completely if it is
partially parsed. Syntax analysis assists to get better identification rates significantly. We conclude that among
these algorithms FLALR gives improved result and minimizes the states compare to FCLR. Main limitation of
FCLR algorithm is number of states generated are more compare to FSLR algorithm.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Suvarna G Kanakaraddi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i3/170903S064 Vol 9 No 3S July 2017 420

REFERENCES
[1] Suvarna G kanakaraddi ,V Ramaswamy “Natural Language Parsing using Fuzzy Simple LR (FSLR) Parser”, 2014 IEEE International

Advance Computing Conference (IACC), Goargao, pp1337-1341
[2] Alfred V Aho, “Compilers Principles, Techniques, and Tools”, Pearson Education, pp.191-217.
[3] John N Mordeson, “Fuzzy Automata and Languages”, Chapman & Hall/CRC Crc Press company, Washington D.C, pp. 127-137.

AUTHOR PROFILE

Suvarna G Kanakaraddi : Bachelor degree in computer science and Masters degree in Computer science from
VTU Belgaum,Karnataka, india. Pursuing research in Artificial Intelligence in VTU Belgaum. Working as
Associate professor in Computer Science and Engineering. Areas of interest include Data mining, Cloud
Computing , Storage technology. Computer Networks. Working as SPOC for EMC Bangalore.

Suvarna S Nandyal : Bachelor degree in computer science and Masters degree in Computer science from VTU
Belgaum,Karnataka, India. Completed Ph.D in Image Processing domain , from JNTU Hyderabad. Working as
Professor and Head in Computer Science and Engineering and Research center Head for Computer Science &
Engineering. Areas of interest include Image Processing, Data mining, Cloud Computing, and Computer
Networks.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Suvarna G Kanakaraddi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i3/170903S064 Vol 9 No 3S July 2017 421

