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Abstract—  SVM is extensively used in pattern recognition because of its capability to classify future 
unseen data and its’ good generalization performance. Several algorithms and models have been 
proposed for pattern recognition that uses SVM for classification. These models proved the efficiency of 
SVM in pattern recognition. Researchers have compared their results for SVM with other traditional 
empirical risk minimization techniques, such as Artificial Neural Network, Decision tree, etc. Comparison 
results show that SVM is superior to these techniques. Also, different variants of SVM are developed for 
enhancing the performance. In this paper, SVM is briefed and some of the pattern recognition 
applications of SVM are surveyed and briefly summarized. 
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I. INTRODUCTION 

Support Vector Machine (SVM) is a classification technique developed by Cortes & Vapnik [4], originally 
designed for binary classification. While traditional methods of pattern recognition try to minimize the empirical 
risk, SVM tries to minimize structural risk [4]. SVM tries to minimize the upper bound of generalization error 
by maximizing the distance between the separating hyperplanes and the data points. It condenses the 
information from the training data that makes classification much faster than the traditional empirical risk 
minimization techniques. Because of its generalization capability even in higher dimension, SVM is used in 
many pattern recognition areas, such as object detection [6],[19-22], handwritten character recognition 
[5],[7],[23], face recognition [8],[12],[15] and speech recognition [2],[9],[10],[13],[24]. In this paper, we have 
briefly summarized about SVM and presented a brief overview of some of the application of SVM in patter 
recognition. 

II. SUPPORT VECTOR MACHINE 

SVM estimates a }1{: nRf  function with the help of training patterns ix  and class labels }1,1{ iy  

where the training patterns are n-dimensional, i.e. }1{),(),...,,(),,( 2211  n

mm Ryxyxyx . Each of the data 

points ix  belong to either of the two classes labelled }1,1{ iy . The goal is to define a hyperplane that 

maximizes the distance between the two class boundaries and divides all the input data into two classes, with all 
points of one class falling on one side of the hyperplane and of the other class falling on the other side. 

A. Linearly Separable Case 

In this case, for all the input data points, there exists at least one hyperplane, that linearly separates the two 
classes and the data points of each class fall into respective class in space. The goal is to find out the hyperplane 
that maximizes the distance between the two class boundaries. The data points of each class closest to a 
hyperplane are called Support Vectors. Fig .1 depicts Linear SVM for separable case. Let us define, 

1.  bxw i , if 1iy  

1.  bxw i , if 1iy  

for mi ,...,2,1 . 

The above set of equations can be generalized as, 

 1).(  bxwy ii  (1) 

The equation for a separating hyperplane ),( bw  can be derived as 

0.  bxw  

The distance between the two marginal hyperplanes is 

 

||||

2

w
d   

(2) 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Parashjyoti Borah et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i3/170903S008 Vol 9 No 3S July 2017 43



Hence, the optimum separating hyperplane can be considered as the solution to the problem of maximizing 
||||/1 w  subject to constraint (1), which, for mathematical convention, can be formalized as, 

min ww t

2

1  

 ,tosubject 1).(  bxwy ii , mi ,..,2,1  (3) 

Instead of solving equation (3) in primal form, one can solve its dual form by using Lagrange’s Multiplier [16] 
and apply the Karush-Kuhn-Tucker (KKT) conditions. 

 
Fig. 1. SVM for linearly separable case 

B. Linearly Non-Separable Case 

But, in real-life data, the data points are not linearly separable in most of the cases. Though, a maximal 
margin hyperplane that minimizes misclassification error can be determined by introducing a positive slack 
variable i  in constraint (3).  

iii bxwy  1).( , mi ,....,2,1  

The variable i  exceeds unity in case of an error. i i  is the upper bound for total of misclassification error. 

Hence, the objective function in (3) becomes, 

min  i

t Cww 
2

1
 

 ,tosubject iii bxwy  1).( , mi ,....,2,1  (4) 

Here, C  is a parameter chosen by the user. Solving the above problem of equation (4) gives the Generalized 
Optimum Separating Hyperplane. Fig.2 illustrates SVM for linearly no-separable case. 

C. Non Linear Kernels 

In most of the practical cases, linear separation of input data points gets too restrictive. The input space is 
those cases is mapped to a higher dimensional feature space using a kernel function where the feature vectors 
can be linearly separated by a hyperplane. 

In order to accomplish separability, the input data are non-linearly mapped into a higher dimensional feature 
space such as Pn RR  : , where nP  . Fig. 3 depicts the mapping of input data sample into feature space by 
using  transformation. The training is then performed on the data obtained from the dot product )().( ji xx  . 

Although,   is not known a priori and the dot product of the mapping functions )().( ji xx  is very expensive 

and complex. Using the Mercer's theorem [1] for positive definite functions )().( ji xx  can be replaced by a 

symmetric kernel function ),( ji xxk as follows, 

))().((),( jiji xxxxk   

As it can be seen that it is not necessary to know the mapping function   in order to calculate the feature 
vectors. Knowing only the input data and the kernel function is enough to calculate the training data. Some 
popular kernel functions are stated below.[3] 
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1. Polynomial kernel, d

i

t

i xxxxk )1(),(   

2. Gaussian kernel, )2/||||exp(),( 22 ii xxxxk   where 0 is a parameter. 

3. Multi-layer perceptron (sigmoid), )tanh(),( 10   i

t

i xxxxk , where 0 and 1 are user defined 

values and mi ,....,2,1 . 

 
Fig. 2. SVM for linearly non-separable case 

 
Fig. 3. Mapping of input space to feature space in linearly non-separable case 

III. APPLICATIONS OF SUPPORT VECTOR MACHINE 

SVMs are extensively used for pattern recognition. Researchers have proposed and developed many methods 
and techniques to solve pattern recognition problems using SVM. In this section, some existing methods of 
pattern classification are roughly categorized based on their purpose. 

A. Object Detection And Recognition 

Object detection is the technique that deals with detection of objects of certain class (eg. animals, trees, 
vehicles, etc.) in an image or a video. SVM comes handy in automatic detection of object of such classes when 
trained with proper training data. One such method was proposed and developed by Nakajima et al. [19]. They 
have defined a multi-class classification problem for people recognition and pose estimation. Authors have used 
pair-wise and DDAG multi-class SVMs with linear kernel. They have experimented on 640 images, taken 40 
images for each of four different people selected. Each person was taken images with four different poses. For 
people and pose recognition, two features (colour histogram and local shape) were selected and are tested with. 
Results showed that he local shape feature outperformed the colour histogram feature. 

Roobaert and Van Hulle [22] developed a model for recognizing 3D objects using SVMs. Their experiment 
was based on the COIL object database that contains 7200 images of 100 objects and each object with 72 
different views. They have summarized their results with different number of training views taken and they 
found that with less than 18 training views taken, the performance of the model decreases. Pontil and Verri’s [20] 
work is similar to [22]. They also have used COIL object database for their experiment. They have used linear 
SVMs for aspect-based 3D object recognition from a single view. Unlike [22], their experiment was performed 
without feature extraction, data reduction and pose estimation. Hence, the testing images contained noise, 
occlusion and pixel shifts. However, their result has shown a very good performance.  

Pittore et al [21] proposed a system to detect the presence of moving people. They have represented the event 
by using a SVM for regression, and recognized trajectory of visual dynamic events from an image sequence by 
SVM classifier. Authors named their developed system as VIDERE (VIsual Dynamic Event REcogniton). Gao 
et al. [6] proposed an SVM based algorithm that tries to detect moving vehicles from shadows using shadow and 
head-lights elimination technique. The considered the problem to a simple two-class classification scenario. 
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B. Handwritten Character Recognition 

In handwritten character recognition a computer receives input data from sources such as paper documents, 
photographs, touch-screens and other devices and interprets them as characters or letters or words of a language. 
SVM found to be very effective as compared to other learning algorithms in recognizing handwritten characters. 
A major problem in handwritten character recognition is its huge variability and distortions of pattern. Choisy 
and Belaid [5] proposed model to recognize French bank cheque words. For local view NSPH-HMM and for 
global view SVM were used by the authors.  

Gorgevik et al. [7] used SVMs for handwritten digits recognition. They tested their model with single SVM 
classifier, and with two different SVM classifiers whose results were combined together using rule-based 
reasoning. Their experimental results shows, single SVM classifier is more efficient over rule-based reasoning 
in recognizing handwritten digits. Teow et al. [23] have proposed a digit recognition system that uses a linear 
SVM classifier by extracting features that are biologically plausible, linearly separable and semantically clear. 

C. Face Recognition 

Face recognition is a well-established field of research that deals with identifying or verifying a person from a 
digital image or a video frame from a video source. Many face recognition systems using SVM with very high 
performance, were developed till date. Among them, Guo et al. [8] proposed a multi-class SVM classifier for 
face recognition. They have also compared the results of their model with Nearest Center (NC), Hidden Markov 
Model (HMM), Conventional Neural Network (CNN), and Nearest Feature Line (NFL). The input dataset was 
first normalized using PCA. Then the normalized data were input to the SVM classifier. The SVM classifier 
outperformed the others with an error rate of 3% on ORL face database. In another model, Kim et al. [15] 
explored spatial relationship among potential eye, nose and mouth objects for face recognition using a modified 
SVM local correlation kernel. They compared their proposed kernel with existing kernels. It showed better 
performance as compared to the others with an error rate of 2% when tested on ORL database.  

A component-based method was proposed by Heisele et al. [12] and its performance was compared with two 
global methods for face recognition by one-to-others SVMs. Huang et al. [13] proposed a model that generated a 
large number of synthetic face images for training of the system. The 3D models were rendered to train the 
system under various poses and illumination. In their component-based system, a single feature vector was 
formed by extracting and combining the facial components, which was then classified by the SVMs. The 
component-based method was compared to two global methods, which showed that component-based method 
performed better than the global methods. 

D. Speaker Recognition And Speech Recognition 

Discriminative classifiers and generative model classifiers are the two most popular techniques in speaker and 
speech recognition. SVMs are generally used in discriminative classifiers. SVMs were used by Bengio and 
Mariethoz [2] for speaker verification. They performed their experiments on different datasets. Instead of the 
classical thresholding rules, SVMs decide whether to accept or reject. Wan and Campbell [24] proposed a new 
technique in which they have normalized the traditional polynomial kernel and used with SVMs for speech 
recognition. 

Some researchers applied SVM to visual speech recognition [9], [10]. Visual speech recognition recognizes 
speech from lip-reading of the speaker. In visual speech recognition, a particular sound uttered by the speaker is 
described by a generic facial image, called a viseme. Each viseme is described by SVM. SVMs were used as 
nodes by vitterbi algorithm for modelling the temporal character speech. Performance was evaluated by 
experimenting on audio-visual data Tulip 1, to solve the task of recognizing the first four digits in English [9], 
[10]. 

E. Some Other Applications 

There are many other applications of SVM in pattern recognition problems. Nonlinear SVM was used by 
Moghaddam and Yang [17], [25] for gender classification. They have used FERET face dataset for their 
experiment. The training set of FERET dataset contains 1496 images (793 males and 713 females) and the test 
set contains 259 images (133 males and 126 females). They have used five –fold cross-validation technique for 
training and testing of each classifier using the face images. SVM outperformed some existing traditional 
classifiers with an error rate of 3.4%. 

Gutta et al. [11] used SVM to classify face poses. FERET database was used for their experiment. 
Experimental results showed 100% accuracy. Huang et al. [14] also performed face pose detection using SVM. 
They classified face poses into three categories. Yao et al. [26] used multi-class SVM for fingerprint 
classification. Combining flat and structured representation of the features of fingerprints was used to train the 
SVMs. Results showed good performance of the model. Also, SVMs are widely used in detecting intrusions to a 
network or a host computer. In a model, proposed by S. Mukkamala [18], SVM light was used for designing 
intrusion detection system. Also, in comparison of SVM to ANN, SVM is found to be more efficient than ANN 
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in terms of training time and detection time. Experiment was performed on benchmark DARPA dataset and 
authors have claimed above 99% accuracy for both the systems. 

IV. CONCLUSION 

In this paper, we have presented briefly about SVM and discussed some applications of SVM in pattern 
recognition problems. Because of its excellent generalization performance SVMs are extensively used to solve 
various pattern recognition problems. Some of the applications are presented in this paper. Initially, SVM was 
applied for two-class classification problems. But, to obtain more specificity in results, SVMs are enhanced and 
used for multi-class classification problems as well. In some cases, different variants of the original SVM are 
also applied to yield better performance. 

To prove superiority of SVM in pattern recognition problem, some authors have compared performance of 
SVM with other traditional empirical risk minimization techniques. In those cases, SVM outperformed those 
techniques in terms of training and testing time efficiency and classification accuracy due to having structural 
risk minimization principle. Some researchers have experimented SVM with different kernels and compared 
their performance. With proper selection of the kernel and balanced training data along with relevant feature 
selection, SVMs yield excellent result. SVMs are widely used in other classification problems also and proven 
to deliver excellent performance. It is an ongoing active field of research and lots of dimensions are yet to be 
unfolded. Although SVM performs excellent for classification problems but still it can be improved by some 
better techniques to find out the optimum parameters. Other future work can be proposed online learning based 
algorithm for real-life applications. 
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