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Abstract—Automatic speaker recognition system plays a vital role in verifying identity in many e-
commerce applications as well as in general business interactions, forensics, and law enforcement. Today 
many employees have access to their company’s information system by logging in from home. Also 
Internet services and telephone banking are widely used by private and corporate sectors. Therefore to 
protect one’s resources or information confidentially with simple password is not consistent and secure in 
the technological world of today. There are two major applications of speaker recognition technologies. If 
the speaker claims to be of an assured identity and the voice is used to verify this claim, it is called as 
verification or authentication. On the other hand, identification is the work of determining an unknown 
speaker's identity. This paper depicts the fundamentals of automatic speaker recognition, concerning 
feature extraction and speaker modeling. 
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I. INTRODUCTION 

Automatic Speaker Recognition is the field of study deals with digital signal processing correlated to the 
recognition of the people based on their voice. Every individual are unique in their vocal tract shapes, larynx sizes, 
and other parts of their voice production organs. In addition to these physical differences, each individual speaker 
has his/her characteristic manner of speaking, related to accent, rhythm, intonation style, pronunciation pattern, 
selection of vocabulary [1]. Voice of a person is the most popular biometric identification technique used for 
authenticating and monitoring human using their speech signal. 

The objective of speaker recognition is to decide which speaker is present based on the individual’s utterance. 
Speaker recognition is the procedure of automatically recognizing who is speaking by using the speaker related 
information included in speech waves to verify identities being claimed by people accessing systems. Speaker 
identity is linked with physiological and behavioural characteristics of the speech production system of an 
individual speaker [2]. 

• The physiological module of speaker recognition is the physical shape of the subject’s voice tract. 

• The behavioural module is the physical movement of jaws, tongue and larynx 

II. SPEAKER RECOGNITION 

Speaker recognition comprises activities which attempt to link a speech sample to its speaker through its 
acoustic properties [4]. Speech signal is a multidimensional acoustic wave which deals with information 
regarding characteristics of a speaker, spoken phrase, speaker emotions, additional noise, channel transformations 
etc. Every individual voice is unique personal trait. For indistinguishable voice, the two individuals should have 
alike vocal mechanism and identical coordination of their articulators, which is least feasible. However, some 
amount of difference also occurs in the speech exemplars obtained from the same speaker. This occurrence is due 
to the fact that a speaker cannot accurately imitate the same utterance again and again. Even, the signature of an 
individual also shows complete variation from trails to trials [2][3]. 

 
               

 
 
 
 
 
 
 
 
 
 

Fig.1.Automatic Speaker Recognition System 

Figure 1 shows the components of an automatic speaker recognition system. In speaker recognition the initial 
process is feature extraction. In feature extraction module the raw signals are transformed into feature vectors in 
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which speaker specific properties are emphasized and statistical redundancies is concealed. In the enrollment 
mode, a speaker model is trained using feature vectors of the target speaker. In recognition mode, the feature 
vectors extracted from the unknown person’s utterance of the individual are with the system database and a 
similarity score is generated. Final decision is made by the decision module based on the similarity score. 
Virtually all state-of-the-art speaker recognition systems use a set of background speakers or cohort speakers. 
This is done to enhance the robustness and computational efficiency of the recognizer. In the enrolment phase, 
background speakers are used as the negative examples in the training of a discriminative model [4], or in training 
phase a universal background model from which the target speaker models are adapted. In the recognition phase, 
background speakers are used in the normalization of the speaker match score [5][8] 

A. Classification of Speaker Recognition  

 Speaker recognition can be classified into a number of categories. Figure 2 below provides the various 
classifications of speaker recognition. 

 

 
Fig. 2. Classification of Speaker Recognition 

1. Open Set Vs Closed Set  

 Speaker recognition can be categorized into open set and closed set speaker recognition. This group of 
classification is based on the set of trained speakers available in a system. [5].   

Open Set: An open set system can have any number of trained speakers. The speakers and the number of 
speakers can be anything greater than one in open set. 

Closed Set: A closed set system has only a fixed number of users registered to the system. 

2. Identification vs. Verification  

Automatic speaker composed of identification and verification is often considered to be the most natural and 
economical methods for preventing unauthorized access to physical locations or computer systems [4]. 

Speaker identification: Speaker identification is the study of identifying a speaker of a given utterance amongst 
a set of known speakers. The unknown speaker is identified as the speaker whose model best matches the input 
utterance.[6] 

 
Fig. 3. Speaker Identification 

Speaker verification: Speaker verification is the method of accepting or rejecting the identity claim of a 
speaker.  Speaker verification is a more direct and converged effort leading to either acceptance or rejection of the 
claimed identity of a speaker. To be precise, this analysis concludes whether a speaker is the one who he/she 
claims to be [4]. It can be considered as a true-or-false binary decision problem. Basically   referred to as the 
open-set problem, because this task requires distinguishing a claimed speaker’s voice known to the system from a 
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potentially large group of voices unknown to the system. In today’s technological world verification is the basis 
for most speaker recognition applications and the most commercially feasible task [1][5]. 

 
Fig. 4. Speaker Verification 

3. Text-Dependent vs. Text Independent  

Text-Dependent: In text-dependent recognition the test utterance is the same to the text used in the training phase. 
The test speaker has prior knowledge of the system. 

Text-Independent: In, text-independent recognition the test speaker doesn’t have any knowledge about the 
contents of the training phase and can speak anything [8]. 

III. FEATURE EXTRACTION 

 According to speaker recognition, feature extraction is the process of retaining useful relevant 
information of the speech signal by rejecting redundant and irrelevant information .It is a process of analysis of 
speech signal. Various techniques for extracting features for speaker recognition are Mel-Frequency Cepstrum 
Coefficients (MFCC), Linear Prediction Coding (LPC), Linear Predictive Cepstral Coefficients (LPCC) and 
Perceptual Linear Predictive Cepstral Coefficients (PLPC).[9] 

A. Mel Frequency Cepstral Coefficients (MFCC) 

MFCC is one of the most popular feature extraction technique used in speaker identification and verification 
process. It is based on the human peripheral auditory method. According to human perception of the frequency 
contents of sounds for speech signals, it does not track a linear scale. Because of human perception behavior 
which does not follow linear scale that is above 1000 Hz, a log scale above 1000Hz is taken which is called as 
Mel Scale. This Mel scale indicates linearity up to 1000Hz and logarithmic above 1000Hz. Hence for each tone 
of actual frequency, a subjective pitch is measured on different scale called as Mel Scale. Formula to calculate the 
estimated mels for a given frequency f in Hz: 

݈݉݁ ሺ݂ሻ ൌ 2595 ∗ 10ሺ1݈݃  ݂/700ሻ 

The log (mel) spectrum is converted back to time. The end result is called the Mel frequency cepstrum 
coefficients (MFCC). The human ear is responsive to both the static and dynamic characteristic of a signal and 
the MFCC mainly focus on the static characteristics [8][9]. 

B.   Linear Predictive Coding (LPC) 

In Linear Predictive Coding the analysis of the speech signal is achieved by estimation of the formants. 
Effects of formants from the speech signal are removed by LPC, and estimate the intensity and frequency of the 
remaining buzz. This method of removing the formants is known as inverse filtering, and the remaining signal is 
called the Residue. In LPC technique, each sample of the speech signal is conveyed as a linear combination of the 
previous samples [1][11]. This is called a linear predictor and hence it is called as linear predictive coding. 

C.  Linear Predictive Cepstral Coefficients (LPCC)  

LPCC is a popular technique and widely used to extract the features from speech signal.  LPCC 
parameters can effectively describe energy and frequency spectrum for sound frames. The base of explaining 
acoustic signals spectrum, modelling and pattern recognition is set by the result of increasing logarithm which 
restrains the fast change of frequency spectrum, more centralized and superior for short-time character and it is 
because of cepstrum resulting from original spectrum. One of the common short term spectral measurements 
presently used are LPC derived cepstral coefficients (LPCC) and their regression coefficients LPCC shows the 
differences of the biological arrangement of human vocal tract and is computed through iteration from the LPC 
Parameters to the LPC Cepstrum [11]. 

D. Perceptual Linear Predictive Cepstral Coefficients (PLPCC) 

This technique is based on magnitude spectrum of the speech analysis window. MFCC and LPC are cepstral 
techniques and PLPCC is a temporal technique in feature extraction phase. The steps followed to calculate the 
coefficients of the PLPCC are: 
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First, compute the power spectrum of a windowed speech.  

Second, for sampling frequency of 8 kHz perform grouping of the results to 23 critical bands using bark scaling.  

Third, to simulate the power law of hearing, carry out loudness equalization and cube root compression.  

Fourthly, perform inverse Fast Fourier Transform (IFFT).  

Fifth, one is execute LP analysis by Levinson- Durbin algorithm.  

And final step is to convert LP coefficients into cepstral coefficients  

The relationship between frequency in Bark and frequency in Hz is specified as in[12] 

f ሺbarkሻ  ൌ  6 ∗ arcsin hሺfሺHzሻ/600ሻ 
IV. SPEAKER MODELING 

In Speaker modelling two types of models are extensively used in recognition systems:  

 Stochastic models 
 Template models 

The stochastic model exploits the advantage of probability theory. This is achieved by speech production 
process as a parametric random process. It assumes that the parameters of the essential stochastic process can be 
estimated accurately, in a definite manner. In parametric methods assumption is made about generation of feature 
vectors but the non-parametric methods are free from several assumptions about data generation. The template 
model (non-parametric method) attempts to generate a model for speech production process for a particular user 
in a non-parametric manner. This is done using sequences of feature vectors extracted from multiple utterances of 
the same word by the same person. Template models used to dictate early work in speaker recognition because it 
facilitates without making any prediction about how the feature vectors are being created. Hence the template 
model is naturally more reasonable. However, recent work in stochastic models has exposed them to be more 
flexible, thus allowing for generation of better models for speaker recognition process. The state-of-the-art in 
feature matching techniques used in speaker recognition includes Gaussian Mixture Modelling (GMM), Dynamic 
Time Warping (DTW) and Vector Quantization (VQ) and ANN. 

In a speaker recognition system, the process of representing each speaker in an efficient and unique   
approach is known as vector quantization. It is the process of mapping vectors from a large vector space to a 
finite number of regions in that gap. Each region is abbreviated a cluster and represented by its centre called a 
code word. A codebook is a collection of all code words. Hence for multiple users there should be multiple 
codebooks each representing the corresponding speaker. The data is thus significantly compressed and accurately 
represented [13]. Without quantization of the feature vectors, computational complexity of a system would be 
very large as there would be large number of feature vectors. In a speaker recognition system, feature vectors are 
usually contained in vector space, which are obtained from the feature extraction described above. When vector 
quantization process goes to achievement, only remnants are a few representative vectors, and these vectors are 
collectively known as the speaker’s codebook. The codebook then hand out as template for the speaker, and is 
involved when testing a speaker in the system [14][11]. 

A. Vector Quantization 

Vector quantization are template based models for text-independent and text-dependent speaker recognition 
A speaker recognition system must be capable to estimate probability distributions of the computed feature 
vectors. Storing every single vector that is generated from the training mode is impractical, since these 
distributions are distinct over a high-dimensional space. It is often easier to start by quantizing each feature vector 
to one of a moderately small number of template vectors, with a process called vector quantization. The technique 
of VQ deals with extracting a small number of representative feature vectors. It is the efficient means of 
characterizing the speaker specific features [12]. 

The training features are clustered to generate a codebook for each speaker [13]. In the recognition stage, the 
tested speaker is compared to the codebook of each speaker and the distance is measured to identify the speaker. 
The problem of speaker recognition belongs to a much broader topic in scientific engineering called pattern 
recognition. The main goal of pattern recognition is to organize objects of interest into one of a number of classes. 
The objects of interest are broadly called patterns and sequences of acoustic vectors are extracted from an input 
speech using the techniques of vector quantization. The classes refer to individual speakers. Since the 
classification procedure applied on extracted features, it is also designated as feature matching [13]. 

Codebook Formation  

Figure 5 shows a conceptual diagram to demonstrate the recognition process. In the figure, only two speakers 
and two dimensions of the acoustic space are shown. The circles refer to the acoustic vectors from speaker 1 and 
triangles denotes speaker 2. In the training phase, a speaker-specific VQ codebook is created for each known 
speaker by clustering his/her training acoustic vectors. The centroids are shown in the figure by circles and 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 S.Sujiya et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i3/170903513 Vol 9 No 3 Jun-Jul 2017 1595



triangles for speaker 1 and 2, respectively. The distance from a vector to the nearby codeword of a codebook is 
called a Vector Quantization distortion. In the recognition phase, an input utterance of an unknown voice is 
vector-quantized using each trained codebook and the total VQ distortion is calculated. The speaker 
corresponding to Vector Quantization codebook with smallest total distortion is recognized [13][14]. 

 
Figure 5: Codebook Formulation 

B. Dynamic Time Warping  

Dynamic time warping is basically template based models uses principle of dynamic programming 
[principle of optimality].This is used to compute overall distortion between the two speech templates. Comparing 
the template with incoming speech might be achieved via a pair-wise comparison of the feature vectors in each. 
The problem with this approach is that if constant windowpane spacing is used, the length of the input and stored 
sequences is unlikely to be the identical. Moreover, in case of word, there will be dissimilarity in the length of 
individual phonemes. The matching process needs to balance for length differences by considering the non-linear 
nature of the length differences within the words. This is achieved by dynamic time warping algorithm, this 
algorithm is used to find optimal alignment between two sequences of feature vectors, which allows for stretched 
and compressed sections of the sequence [7]. The two sequences of observations are positioned on the sides of a 
grid with the unknown sequence on down the grid and the stored template up on the left of the grid. Both 
sequences start position on the bottom left of the grid. Inside each cell we can establish a distance measure 
comparing the corresponding elements of the two sequences [14][15]. 

C. Gaussian Mixture Model (GMM) 

GMM is a parametric method best used to model speaker identities due to the fact that Gaussian 
components have the capability of representing some general speaker dependent spectral shapes. The Gaussian 
mixture model (GMM) is the most popular models for text-independent and text dependent speaker recognition, 
respectively. According to the training paradigm, models can also be categorized into generative model and 
discriminative model. The generative models such as GMM and VQ estimate the feature distribution within 
each speaker. The discriminative models such as artificial neural networks (ANNs) and support vector machines 
(SVMs. A Gaussian Mixture Model (GMM) is a parametric probability density function signifies as a weighted 
sum of Gaussian component densities. GMMs are generally utilized as a parametric model of the probability 
distribution of continuous measurements in a biometric system, such as vocal-tract interrelated spectral features in 
a speaker recognition system. GMM parameters are projected from training data by iterative Expectation-
Maximization (EM) algorithm or Maximum A Posteriori (MAP) estimation from a well-trained prior 
model[8][15][16]. 

A Gaussian mixture model is a weighted sum of M component Gaussian densities is represented by the 
equation 

 

pሺx|λሻ  ൌ  X M୧ ൌ 1 w୧ gሺx|μ୧ , Σ୧ሻ                                                                (1) 
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where x denotes D-dimensional continuous-valued data vector (i.e. measurement or features), wi , i = 1, . . . , 
M, are the mixture weights, and g(x|µi , Σi), i = 1, . . . , M, are the component Gaussian densities. Every 
component density is a D-variate Gaussian function of the form 

gሺx|μ ୧, Σ୧ሻ  ൌ 1 ሺ2πሻD/2|Σ୧| 1/2 exp –  1/2 ሺx    െ  μ୧ሻ ′ Σ  െ 1 i ሺx  െ  μ୧ሻ      (2)  

with mean vector µi and covariance matrix Σi . The mixture weights convince the constraint that PM i=1 wi = 1. 
The complete Gaussian mixture model is parameterized by the mean vectors, covariance matrices and mixture 
weights from all factor densities. These parameters are collectively represented by the notation, 

                    λ  ൌ   ሼw୧ , μ୧ , Σ୧ሽ i  ൌ  1, . . . , M.                                                     (3) 

GMMs are often used in biometric systems, especially in speaker recognition systems, due to their capability 
of representing a large class of sample distributions. One of the powerful attributes of the GMM is its ability to 
form even approximations to arbitrarily shaped densities. The classical uni-modal Gaussian model denotes feature 
distributions by a position (mean vector) and a elliptic shape (covariance matrix) and a vector quantizer (VQ) or 
nearest neighbor model represents a distribution by a discrete set of characteristic templates [12][13][14]. 

D. Artificial Neural Networks  

The Artificial Intelligence approach is a fusion of the acoustic phonetic approach and pattern recognition 
approach.  It exploits the ideas and concepts of Acoustic phonetic and pattern recognition methods. Knowledge 
based approach uses the information concerning linguistic, phonetic and spectrogram. The main benefits of 
ANN include their discriminant-training power, a flexible architecture that permits simple use of contextual 
information, and weaker hypothesis about the statistical distributions. The main drawback are that their optimal 
structure has to be selected by trial-and-error procedures, the need to partition the available train data in training 
and cross-validation sets, and the fact that the temporal structure of speech signals remains complicated to 
handle. It can be used as binary classifiers for speaker verification systems to separate the speaker and the non 
speaker classes. It is also used multi-category classifiers for speaker identification purposes [6], [8], [10].  

TABLE I.  Speech Corpus for speaker recognition [18][19]. 

Name of the speech corpus No of Speakers 

TIMIT speech corpus 630 speakers (438 male and 192 female) 
SIVA speech corpus(Italian speech corpus) 840 speakers 
POLYVAR Speech Corpus 143 speakers (85 male and 58 female) 
POLYCOST Speech Corpus 133 speakers (74 male and 59 female) 
KING Speech Corpus 51 male speakers 

YOHO Speech Corpus 138 speakers (106 male and 32 female) 
SWITCHBOARD Speech Corpus Switchboard I consists of 543 speakers and Switchboard 

II consists of 657 speakers 
NIST 2001 SRE Speech Corpus 174 speakers (74 male and 100 female) 

NIST 2002 SRE Speech Corpus 330 speakers (139 male and 191 female) 

NIST 2004 SRE Speech Corpus  616 speakers (248 male and 368 female) 
TSID Speech Corpus 35 speakers (four female, 31 male), 

Speaker Recognition Corpus (OGI) 100 speakers consisting of 47 male and 53 female 
speakers 

ANDOSL 129 speakers 67 female and 62 male, 
Digit-SPL males and 19 females, 

V. SUMMARY 

This paper represents an overview of automatic speaker recognition. The recognition accuracy of speaker 
recognition systems under controlled conditions is high. In feature extraction, high level features highlights 
behavioral characteristics of speakers, such as prosody (pitch, duration, and energy) (phonetic information 
pronunciation, emotion, stress, idiolect word usage conversational patterns, or other acoustic events. These 
differences in the speaking habits result from the manner in which people have learned to use their speech 
mechanism, but at the same time the sociolinguistic background, the education and the socio-economic 
environment plays a vital role in these differences. The main problem, as reported in different studies of this 
kind of systems is it’s essential for more information for both training and testing phases if compared to low-
level feature systems and are also easily forged. However, in practical scenario many negative factors are 
encountered including mismatched handsets for training and testing, limited training data, unbalanced text, 
background noise and non-cooperative users. The well standard techniques of robust feature extraction, feature 
normalization, model-domain compensation and score normalization methods are required for speaker 
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recognition. The technology advancement as denoted  by NIST evaluations in the recent years has addressed 
several technical challenges such as text/language dependency, channel effects, speech durations, and cross-talk  
However, many research problems remain to be addressed and should be improved in human-related error 
sources like emotion variability, misspoken phrases, poorly recorded/noisy samples, insufficient number of 
comparable words, Extreme emotional states (e.g. stress or duress) Change in physical state of the speaker, 
Channel mismatch or mismatch in recording, different pronunciation speed speaker’s health aging etc., should 
be carefully analyzed before implementing speaker recognition system. 

VI. CONCLUSION 

In today’s technological world security places a great setback for confidential information. Speaker 
recognition is a multi-disciplinary branch of biometrics which can be used for speaker Identification and 
Verification for protecting confidential information. Therefore, in order to prevent un-authorized access there is a 
need to develop a voice based recognition system which provides a solution for financial transaction and personal 
data privacy that would reduce the high-tech computer theft. In this review paper various feature extraction 
techniques and modelling techniques used in speaker recognition is discussed which can be extended in future for 
developing a real time application towards speaker identification and verification system for securing confidential 
data. 
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