
Design of Building Automatic Global 
Concept Indexer for Ontology Alignment 

Ranjna Jain #1, Neelam Duhan #2, A.K.Sharma *3 
# Department of Computer Engineering, YMCA University of Science & technology, Faridabad, India 

* Department of Computer Science & Engineering, BSAITM, Faridabad, India 
1 ranjna.gupta@gmail.com 

2 neelam.duhan@gmail.com 

Abstract— Users of current World Wide Web (WWW) themselves have to involve in refining their search 
queries in order to find the exact answers because current WWW is web of documents representing only  
text, audio, video, images and metadata information (unstructured data) not conceptual information. 
Computers are used to present those documents only and not for retrieving the desired results which 
ultimately overburdens the users task. Therefore, to deal with this issue, Tim Berner Lee inventor of 
WWW envisioned semantic web which prioritizes data than documents and uses ontologies to manage the 
data. Ontologies have been realized as the key technology to shaping and exploiting information for the 
effective management of knowledge by establishing a common vocabulary for community members to 
interlink, combine, and communicate knowledge. But, due to the availability large number of ontologies 
of same domain, integrating data using ontology has become a big challenge. Therefore, there is a need to 
unify desperate ontologies belonging to same domain to bridge the gap between conceptualization of the 
same domain. To deal with this challenge, a framework is being proposed in this paper which works to 
unify the desperate ontologies by a merging technique. Ontology merging process collects the ontologies 
of the same domain, unifies their entities (class, property) and forms a global ontology. The empirical 
result shows the construction of global concept indexer which collects unique concepts by applying 
matching operation between concepts taken from desperate ontologies.  
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I. INTRODUCTION 

Despite of the huge development in the techniques and tools for making current web more expressive, it is 
merely an information-publishing medium directed towards human consumption. In the web, computers are 
used as the information space; their ability is not exploited yet. Moreover, Current tools are not that much 
expressive to provide direct solutions against user’s requirements. Users have to search for a number of web 
documents for finding the required solution corresponding to their queries. A lot of research is going on to deal 
with this problem and one of the solutions is data integration but because of data heterogeneity on the web, this 
task has become a big challenge. 

Tim-Berner-Lee envisioned semantic web [1] as an extension of the current web in which information is given 
well-defined meaning, better enabling computers and people to work in cooperation. Its primary concern is to 
have data on the Web defined and linked in a way that machines can also understand its meaning. Thus 
machines can also be used for automation, integration and reuse of data across various applications. In order to 
make computer understand the meaning of the content, semantic web uses the concept of ontology which is 
specialized in formalizing information of a domain at the conceptual level. 

Ontology [2] is considered as the backbone of the semantic web. It is an explicit specification of a domain 
which gives a formal defined meaning to the terms used in annotation associated with data. Ontologies have 
been realized as the key knowledge representation technology for shaping and exploiting information for the 
effective management and evolution of semantic web.  

The main purpose behind the concept of ontology is to create common vocabulary for a domain that different 
applications belonging to that domain can share. But, despite of availability of a number of ontologies on the 
web, developers prefer to develop their ontologies from the scratch and due to this practice; different concepts 
pertaining to the same term exist leading to the problem during ontology management. 

This paper proposes the terminological of global concept indexer which will be used as a module in ontology 
alignment approach. It unifies concepts which are syntactically and semantically similar in a concise manner 
and thus resolves the problem that was discussed above. In the next section a survey on existing solutions for 
ontology management is done. Section 3 explains the proposed method in detail and in Section 4; empirical 
work has been presented to demonstrate the proposed method. Section 5 concludes the paper with some light on 
future work.  
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II. RELATED WORK 

Ontology has become very popular in computer science due to establishment of explicit formal vocabulary 
which is playing a vital role in dealing with heterogeneity. As a result of this developers have started designing 
ontologies using different tools and languages; and preferring this, to create their own ontology despite of 
availability of ontologies belonging to that domain which in turn results in collection of a large number of 
ontologies. A number of such ontologies represent different levels of detail and granularities of the same domain. 
Therefore, there is a need to manage existing ontologies on the web at one place and provide global ontology for 
further purpose. A number of operations [3] such as mapping, alignment, matching, merging, and integration are 
being used by researchers which take different variants of ontologies from different sources and manage them 
efficiently. Ontology Mapping means mapping one ontology with another. It is a way to express how to translate 
statements from one ontology to the other one. In the simplest case, it is a mapping from one concept of the first 
ontology to the corresponding concept of the second ontology. Ontology matching is the process of detecting 
links between entities in heterogeneous ontologies. Ontology alignment is the task of creating links between two 
original ontologies. Ontology alignment is made if the sources become consistent with each other but are kept 
separate and when they usually have complementary domains. Ontology integration is the process of building 
ontology in a common subject reusing one or more ontologies of different subjects. Ontology merging is the 
process of generating a single, coherent ontology from two or more existing and different ontologies related to 
the same domain. 

A number of ontology management tools/techniques are available out of which some have been discussed as 
follows: 

A. PROMPT[4] 

Noy N. and Musen M. proposed an ontology-merging and ontology-alignment algorithm in 2001. It takes two 
ontologies as input and guides the user to generate a merged ontology as an output. It creates an initial list of 
matches based on class names. The user triggers an operation by either selecting one of PROMPT’s suggestions 
from the list or by using an ontology-editing environment to specify the desired operation directly. 

B. FCA-Merge[5] 

Stumme G. and Alaxander M. in proposed in 2001  an ontology merging technique based on bottom up 
approach which offers a global structural description of the merging process. For source ontologies, it extracts 
instances from a given set of domain specific text documents by applying natural language processing and then 
applies FCA-merge core algorithm that derives a common context and computes a concept lattice. Concept 
lattice contains a collection of all formal concepts from given ontologies of a given formal context and then 
generates the final merged ontology based on the concept lattice. 

C. ATOM(Automatic Target-driven Ontology Merging)[6] 

S.Raunich & E. Rahm in 2011, implemented a new approach for taxonomy merging which generates a default 
solution in a fully automatic way that may interactively adapted by users if needed. It uses equivalence matching 
method to find equivalency between to concepts and target driven algorithm to merge source taxonomy into 
target taxonomy.  

D. YAM++ [7] 

Duy Hoa Ngo, Z. Bellahsene in 2012 proposed a semi-automatic mapping tool which maps two ontologies at 
three levels: element level, structural level and semantic level. At element level, it applies different 
terminological based metrics on the annotation of each entity. At structural level, it uses similarity flooding 
algorithm for more detail. At the semantic checking module, it uses global constraint optimization method. The 
resulting mappings of the matching process are displayed in graphical user interface. 

E. Lambrix P. and Kaliyaperumal R. [8] 

It is session based approach for aligning large ontologies developed in 2013 is a semi-automatic alignment tool 
which uses three sessions. First session, recommendation session, contains a database of matching algorithms 
which will be used in computation session for alignment between ontologies. Computation session involves the 
preprocessing of ontologies, matching results and generating mapping suggestion which goes as an input in the 
validation session where experts validates the suggestion and uses reasoning to check consistency of the 
validation. The accepted mapping suggestions form a partial alignment and are part of final alignment. 

F. MapSSS [9] 

Cheatham hitlzer in 2013 presented an ontology alignment system with syntactic, structural and semantic 
metrics. The syntactic metric is a simple lexical comparision. The structural metric is a graph based method 
which relies on the direct neighbours of an entity and the edges that connect the entity to those neighbours. It 
uses a semantic metric based on google queries. When considering two lables, ‘A’ from first ontology and ‘B’ 
from second ontology, this metric queries google for phrase ‘A’ definition. It then searches the snippets on the 
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first page of the results for ‘B’. if ‘B’ is found, the metric turns true, otherwise it returns false. If this metric 
retuirns true in both directions then the mapping is added to alignment.  

G. SIMTSS [10] 

Essayeh A. and Abed M. in 2015 proposed a research process for the alignment between ontologies written in 
different languages such as RDF, SKOS, turtle etc. including heterogeneous information. The result is new data 
stored as an XML file used in inference phase. It uses terminological, structural and semantic similarity 
measures for matching the entities (classes and properties) in order to form alignment between ontologies. It 
uses five methods such as jaro-wrinkler distance, levenshtein distance, tri-gram, jaccard distance and 
terminological aggregation. It uses weighting sum method to weight the five terminological methods and then 
uses semantic matching to complement the terminological matching since it neglects semantics. The results 
obtained by the terminological and semantic methods are used as inputs for initial structural mapping method. 
At this level, internal structure of ontologies represented as graph is analyzed using similarity flooding 
algorithm that allows examing the alignments between the nodes of the graph and their neighborhood based on 
the notion of fixed point computation. 

H. SEM+ [11] 

Z.J.Guang, et.al in 2015 presented a modern tool for concept mapping. It has designed the information entropy 
based weight similarity model to compute semantic similarity between entity data and suggest possible linking. 
It has also proposed a blocking approach to group possible matching entities into one block to reduce the 
computation space. 

A critical look at the above mentioned ontology management techniques highlight the following issues which 
need to be addressed. 

Existing ontology management techniques need user interaction in order to confirm the similarity of two 
concepts. Therefore, there is a need of techniques which can perform concept similarity automatically. 

I. Merged, integrated ontologies should be designed in such a way that they cover most of the concepts of that 
domain. Current concept matching methods use terminological and semantic level similarity and on that basis 
of that they decide if two concepts can be mapped into one or not. For example, if any lexical similarity 
method is applied between two concepts say, pen and pan that belong to different ontologies, then that method 
return them similar which is incorrect. In the same way if a semantic similarity method( proposed by Wu and 
Palmer[12] which measure the of similarity between concepts based on path lengths (in number of nodes), 
common parent concepts, and distance from the hierarchy root.) is applied between employee and worker then 
it returns them similar and on the basis of this current ontology management tool considers them as one which 
is not true in actual because employee is specialization of worker. 

II. Existing ontology management tools are not scalable. 

Therefore, keeping in view these limitations, an ontology merging method is proposed in this paper which along 
with concept matching will handle the issues that are discussed as above.  

III. PROPOSED WORK 

In order to make machines understand the meaning of each entity, semantic web uses URI which is used to 
uniquely identify that entity. But the presence of multiple ontologies of the same domain generates different 
URIs to the same concept corresponding to related ontologies which creates problem during the process of 
reasoning. As a solution, individual ontologies can be collected at one place and then merged. During ontology 
merging, concepts belonging to different ontologies must be merged in such a way that merged ontology covers 
almost all entities that belong to that domain. In such a way entities will be identified with the same URI in the 
global ontology. This will be very helpful in dealing with semantic conflicts and query processing. 

I. PROPOSED ARCHITECTURE 

A large number of researches have been done to facilitate the interoperability between systems. The major 
challenge that comes across while ontology management is that how to map two entities (concepts, properties) 
of different ontologies? There are two main architectures that have been used for ontology management. First 
approach comprises of merging desperate source ontologies using upper ontologies (general ontologies) and 
second comprises heuristics-based or machine learning techniques that use various characteristics of ontologies, 
such as their structure, definitions of concepts, and instances of classes to find mappings between the entities of 
two ontologies. But, these approaches didn’t help much for ontology management. The first approach could be 
helpful if upper ontologies exist, so that they can be used as reference to map two ontologies but it is not 
necessary that there exist upper ontology for each domain. Thus, this approach didn’t have the success as 
expected whereas second approach works fine in database integration because it is concerned with the lexical 
matching between database entities. But ontologies contain semantic also which is not handled by this technique. 
Therefore, there is a need of new approach which not only uses lexical and structural matching in order to map 
entities of different ontologies but also handles semantics of entities. 
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Therefore, a novel approach is being proposed which will merge data source ontologies of the same domain. 
The process starts with collecting the ontologies belonging to different domains from the ontology libraries 
available on the web and placing them in domain specific ontology stores. After this step, parsing of domain 
specific ontologies is done and local concept tables are maintained corresponding to retrieved ontologies. These 
tables hold the information of each concept specified in that ontology such as name of the local ontology to 
which it belongs, local concept name, its URI and global id which will be assigned in the global concept indexer. 
In the same way, local data property table and local object property table are maintained for respective 
ontologies. This process is done in parallel with concept matching module wherein concepts which have same 
meaning but defined in different ontologies are identified and unified accordingly. These concepts are assigned 
a unique global id and maintained in global concept indexer which will play vital role during building the global 
ontology of that domain. The design architecture of building global concept indexer is shown in Fig. 1.  

The process of collecting local ontologies and storing them to some data structures for representing and 
organizing concepts so as to carry out the concept matching operation is explained in following steps: 

Step 1: Input layer 

 It collects local ontologies belonging to the same domain from resources such as ontology libraries and 
semantic search engines. Search engines such as Google, Swoogle, Watson etc are used in this work for carry 
out this process. 

Step 2: Parser layer 

It parses input ontologies and performs stemming operation on the concepts defined in those ontologies. 

 
Fig. 1. Architecture of building Global Concept Indexer 

Step3: Local Concept Table layer 

It takes parsed concepts from its parser instance and maintains Local Concept Table (LCT) corresponding to 
the each local ontology. Fig. 2 shows the schema for LCT. 

LCID GCID LCN URI 

Fig. 2. Schema description for LCT 

The description of various attributes used in LCT is described below: 

Field Description 

LCID  Unique id of concept c in the local ontology. 

GCID  Unique id of concept belonging to the local ontology in the Global Concept Indexer. 

LCN  Local Concept Name in local ontology. 

URI  Uniform Resource Identifier of concept in the local ontology. 

Step 4: Concept matching Layer 
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It generates a Global Concept Indexer (GCI) as an output which contains list of concepts with unique global 
ids after performing concept matching procedure on the concepts collected from concept table of the each 
ontology. Fig. 3. shows the data structure for the Global concept indexer. 

GCID URI GCN 
Link to the original ontologies to which this concept belongs 

LON   LCN Next pointer 

Fig. 3. Data Structure for Global Concept Indexer (GCI) 

The schema for Global Concept Indexer (GCI) as shown in Fig. 3. is described in detail as follows: 

Field Description 

GCID Unique Id to each concept in GCI. 

URI Uniform Resource Identifier of concept in the global ontology. 

GCN Name of the global concept in GCI. 

LON Name of the local ontology to which concept belong. 

LCN Name of the concept in its LCT. 

Next pointer Link to the next node. 

Step 5: Maintain synonym table which will hold the list of synonym concepts. 

During concept matching, it checks whether two concepts are semantically same or not. For this, it checks 
synonym table which contains a list of synonyms corresponding to each global concept retrieved from wordnet. 
Following Fig. 4. shows the schema for Concept Synonym Table (CST). 

GCID GCN list of Synonym(noun) from wordnet 

Fig. 4. Schema description of Concept Synonym Table 

The schema for CST as shown in Fig. 4. is described in detail as follows: 

 
 
 
 
 
 
 
In the next subsection, algorithm for concept matching is explained step by step. 

II. THE ALGORITHM 

The proposed algorithm is outlined in Fig 6 which builds GCI works on the basis of five steps mentioned in 
the previous sub-section. The working of concept matcher component is described below to better understand 
the algorithm. 

1) Concept Matcher component: 

The motive behind this module is to collect maximum concepts from the source ontologies to cover most of 
the domain area. For this, if two concepts are exactly same or they are synonym of each other then only they 
will be considered as a single concept otherwise will be considered as different and added in global indexer as 
different concept. Therefore, in order to find the equality between two concepts belonging to two different 
ontologies, following steps are performed. 

Algorithm 1: Exact Concept string matching 

It takes two strings (say p and q, which are labels of concepts) one given by GCI and other from the LCT of 
next ontology and performs exact string matching algorithm as shown in Fig.  5. 

 

 

 

 

 

Field Description 

GCID Unique Id to each concept in the GCI. 

GCN Name of the global concept in GCI. 

Synonym  List of synonyms (nouns) from the wordnet connected via link list. 
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Fig. 5. String matching Algorithm 

Algorithm 2: Synonym matching 

If concepts are not lexically same then it may also happen that they are synonym of each other. Therefore, a 
list of synonyms corresponding to concept cj concept from the Concept Synonym table (CSI) using cj’GCID is 
retrieved and checked if any synonym has got matched with ci. If yes, then ci and cj are considered to be same 
otherwise these two concepts are taken as different. The algorithm to perform synonym matching is shown as 
below in Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Synonym match algorithm 

Algorithm 3: Building Global Concept Indexer (GCI) 

It is well known that an indexer optimizes speed and performance in finding relevant documents for a search 
query. Therefore, keeping this in mind, an indexer is maintained that stores a list of global concepts identified 
after concept matching process along with the information that contains the list of source ontologies in which 
this concept was used. The algorithm for building Global Concept Indexer (GCI) is explained in Fig. 7. as 
shown below. 

 

 
 
 
 

Algorithm: string_matching (p,q) 
[Input:]p and q are two strings which are labels of concepts (which are to be matched) given by GCI. 
[Output:] true, if p & q are same 
    false, otherwise. 
Step 1: [Check if two strings are lexically same] 
k=0       //k holds the index of string and initially set to 0. 
while(p[k]!=’\0’ && q[k]!=’\0’) 
{  
 if (p[k]!=q[k])        // during comparison if any character does not match then it returns false. 
return false; 
k=k+1; 
} 
Step 2:[Check if two strings matches completely] 
if( p[k]==’\0’ && q[k]==’\0’)      
return true; 
else return false; 
return true; 

Algorithm: synonym_match(cj,ci) 
[Input:]Two concepts ci and cj, cj whose match is to be find out against second concept ci’s synonyms.  
[Output:] true, if cj got matched with any synonym of ci. 
    false, otherwise. 
Step1:[check if any synonym of ci gets matched with cj] 
match=false    // match is a Boolean with will store the final result if any match found or not. Initially it 

is set       to false which indicates that match is not found.  
Match for each c є si with cj         // The synonyms of ci are represented as si stored in CST 

corresponding   to ci’s GCID. 
{ 
match=string_matching(cj,c) 
if match=true then 
return true. 
} 
Return false. 
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Fig.  7. Algorithm for building Global Concept Indexer 

The process starts with assuming that GCI is initially empty and thus first ontology’s (Oi) concepts (ci) are 
given as seed to the GCI from its Local Concept Table (LCTi) and then it starts taking other ontology’s (Oj) 
Local Concept Tables(LCTj) and starts growing itself by applying following steps. 

1. A variable match is used corresponding to each concept cj which is to be matched against set of concepts ci 
available in GCI. Initially match is set to false which indicates that there exists no match corresponding to 
the new concept 

2. In the next step, new concept cj is matched with every concept denoted as ci in the GCI starting from the 
first entry. Here, first it is checked weather ci and cj are lexically same or not. For this, string matching 
algorithm is called. If concepts found to be lexically same then it comes out of the loop and same process 
restarts for second concept. But, if they are not lexically same then synonyms are matched and 
corresponding steps are taken. If cj gets matched with any synonym of ci retrieved from CST then a new 
node is created and gets appended to the rear of ci links. Otherwise a new entry of concept cj is made in 
GCI. 

IV. EMPERICAL RESULTS 

In this section, the practical work that has been carried out to find the concept matching and building concept 
indexer is illustrated. To illustrate the proposed work, four different ontologies (univ-bench.owl, swportal.owl, 
onto.owl and university.owl ) belonging to university domain were retrieved from web. 

Consider the following sample ontologies depicted in Fig 8 to have an understanding of the complete process 
carried out by the proposed work to build Global Concept Indexer.  

In this scenario, the process from developing Local Concept Table to building and growing Global Concept 
Indexer has been shown in 7 steps. The step by step illustration of proposed work is outlined below. 

1. First of all, parser instance develops a LCT corresponding to all ontologies retrieved from the web. The LCT 
stores local concept id, local concept name, its URI in that ontology and global concept id which will be 

Algorithm: Building Global Concept Indexer 
 [Input]Local Concept Tables LCTj of �Oj є ontology repository 
[Output]Collection of unified concepts in concept indexer 
// Start of algorithm 
[Initialization] 
When global concept indexer is empty initially, assign all the concepts ci of ontology Oi from its local 
concept table LCTi to the indexer as seed concepts. 

 
For each concept cj of LCTj    //  This step adds all the concepts cj of  Oj stored in LCTj in GCI. 
  {  
match=false  //match is a variable which  holds  result either as true or false. This indicates whether 
concept cj got //matched with any concept ci in GCI or not. Initially it is set to false indicating no 
match exists. 
     for each concept ci of GCI  // this step performs matching operation where cj is matched with 
every concept ci in //GCI until a match is not found. 
    { 
       match=string_matching(cj,ci) 
       if (match=true) 
          break; 
      Else 
     { 
match=synonym(cj,ci) 
If (match=true) 
Break; 
     } 
     } 
If (match=true) // step to be taken if match found  
{ create a new node corresponding to cj and link it with existing node ci and add ontology name and 
local concept id in that node. } 
Else // step to be taken if match is not found 
{add cj as the new entry  to the rear of concepts in the GCI . 
} 
} 
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assigned to this concept when this will be added in GCI. These LCT tables will be used as input for building the 
GCI. 

2. In this step, initially first ontology’s concepts (Person, Employee and faculty) are given as seed inputs to the 
GCI. The GCI assign unique GCID to these newly added concepts, URI to each concept and contains the 
information such as its local concept name and the name of the ontology to which this concept belongs. Here for 
instance, concept “person” belongs to ontology O1 and its LCN is person. So, GCI creates a new node where it 
stores these two information’s corresponding to its GCID. Likewise, it adds the same information for other seed 
concepts in GCID. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8. Example illustrating the process of proposed work 

3. A CST table containing a list of synonyms is maintained corresponding to all the concepts which exist in 
GCI. For example, corresponding to person concept, its synonyms (mortal, soul ,someone, somebody etc.) are 
maintained in CST. 

4. From this step onwards, main process of concept matching starts where it takes concepts from the next 
ontology’s LCT and compares its concepts with the concepts in the GCI. It uses concept matcher algorithm to 
match two concepts. For instance, it starts with taking first concept from ontology O2’s LCT say person. Now, 
Concept matcher (CM) takes two parameters as an input; one concept “Person” from ontology O2’s LCT and 
one concept from GCI and performs the steps explained in algorithm. It will be matched with GC1 on the basis 
of string matching algorithm and thus GCI will create a new node where it will store the name of the ontology to 
which it belongs (which is O2) and local concept ID in its LCT (which is O2C1) and insert it at the rear of the 
matched concept. Concept person and Employee encircled with red lines are added to the GCI using string 
matching algorithm. 

5. In case, two matched concepts are not lexically same then it checks if they are synonym of each other. For 
instance, in case of concept “Staff”, when it is matched with faculty in GCI, lexically they are not same. It then 
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retrieves the synonym from the CST and checks if any synonym gets matched with faculty. If a match is found 
then a new node is created and required information’s are added into the node and then that node is added to the 
rear of the matched concept. 

6. If no match is found then in that case, it added as a new concept in GCI as can be seen for concept professor 
encircled with green color. 

7. Its corresponding synonyms (here of ‘professor’s synonyms) are retrieved from the wordnet and added into 
CST for future purpose.  

V. COMPARISON OF ONTOLOGY MANAGEMENT METHODS 

A critical look at the available literature highlights several differences in the basic concepts used in each 
ontology management approach. The proposed Global Concept Indexer which will be used as a module in 
upcoming proposed ontology merging tool gathers unique concepts in such a way that maximum entities 
belonging to that domain are covered. Each and every selected global concept will be assigned a URI while 
creating a global ontology which will enhance the knowledge of machine to recognize each entity individually. 
The comparison summary of the five ontology management methods is given in Table 1.  

TABLE 1: COMPARISON OF ONTOLOGY MANAGEMENT METHODS 

 
VI. CONCLUSION & FUTURE SCOPE 

In this paper, a technique for building Global Concept Indexer have been proposed which collects maximum 
number of unique concepts belonging to a specific domain from desperate ontologies available at the web. GCI 
holds complete information of every concept to which source ontology it belongs to. So, in case source ontology 
diminishes, its information can be retrieved from GCI. It has been observed that existing methods or techniques 
that are using wordnet for semantic matching between concepts, refers wordnet every time a synonym is 
required which slows down the functioning of concept matching. To deal with this issue, proposed technique 
has maintained a Concept Synonym table (CST) which holds a list of synonyms retrieved from the wordnet 
corresponding to each concept listed in GCI. By doing this, when a concept from new ontology is added in GCI, 
it checks CST first rather than wordnet thereby fastening the speed of growing GCI. In the near future, this GCI 
will be used a module and a complete ontology merging technique would be proposed over which query 
processing will be performed to retrieve the desired results corresponding to user’s query. 
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