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Abstract---In this paper, a new comparative approach has been proposed for reliable controller design. Scientists 

and engineers are often confronted with the analysis, design, and synthesis of real-life problems. The first step in 
such studies is the development of a 'mathematical model' which can be considered as a substitute for the real 
problem. The mathematical model is used here as a plant. Fractional integrals and derivatives have found wide 
application in the control of dynamical systems when the controlled system and the controller are described by a set 
of fractional order differential equations. Here the stability of fractional order system is checked at the different level 
and it is found that the stability region is large in the complex plane. This large stability region provides the more 
flexibility for system implementation in the control engineering. Generally, an analytically or experimentally 
approaches are used for designing the controller. If a fractional order controller design approach used for a given 
plant then the controlled parameter gives the better result. 

Keywords---Fractional Order Controller, Fractional Order Calculus, Stability, Performance Analysis, 
MATLAB, Function under Class, Ziegler-Nichols Method 

I. INTRODUCTION 

The technique model order reduction is used in all fields of Electrical, Chemical, Aerospace, Mechanical etc. 
In the large process control system and mechanical production houses, the model order reduction plays an 
important role to take the decision for the final product [1]-[3]. Generally, the work with large scale system is 
very complex and time-consuming [4]. To check the stability of the system first we make a mathematical model 
of the plant. If the Original system model does not match the desired performance of the implementing system, 
then a controller is designed to fulfill the requirement of the industry. The designed controller may be a full 
order or it may be fractional order. The implementation of the controller depends on the plant. If a control 
system satisfies their stability conditions by the Routh-Hurwitz stability criteria [5] then any analytical or 
experimental approaches are used. On the other hand, if control system requires the stability region beyond the 
Routh-Hurwitz criteria or it requires more flexibility than what an approach is useful? So to fulfill the stability 
condition beyond the Routh- Hurwitz criteria a fractional order approach [6] and [7] is used here to design the 
controller.   Here the comparative analysis provides the option to opt a controller design method for the given 
plant.          

II. PID CONTROLLER TRANSFER FUNCTION 

The block diagram for a PID controller is shown in Fig. (1). The PID controller may be represented in 
mathematical form as, 
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Fig.  1. PID controller block diagram 
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With the given block diagram u(s) denote control signal and e(s) denotes the error signals of the system. Here 
k1 represent the proportion gain and iT , dT  used for the integral and derivative time constants respectively. The 

transfer function )(sGc  of the corresponding PID controller is given as 
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Equation (2) can be rewritten as 
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Here k2 and k3 used for integral gain and derivative gain values of the controller respectively. 

The objective is to derive a controller such that the performance of the augmented process matches with the 
desired performance of the model. In the computational system, the desired performance should be satisfied by 
the closed loop control system. To fulfill these entire requirements a PID controller is derived in form of full 
order and fractional order. 

III. FRACTIONAL ORDER SYSTEM FUNDAMENTALS 

A.  The introduction to fractional calculus. 

The term “fractional-order calculus” is by no means new. It is a generalization of ordinary differentiation by 
non-integer derivatives. The theory of fractional-order derivatives was developed mainly in the 19th century [8-
11]. In the development of fractional order calculus, there appeared different definitions of fractional-order 
differentiation and integration. To reduce to a general form fractional calculus from integration and 
differentiation to the fractional order fundamental operator )(tfDt

βα , where α and t are the limit and R∈β   is 
the directive of operation. The continuous integration differential operator is [12] 
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There are various definitions for fractional integration and differentiation. Some of the definitions spread out 
directly as of integer-order calculus. The deep-rooted descriptions include the Cauchy integral formula, the 
Grunwald–Letnikov (GL) definition and Riemann–Liouville (RL) definitions are given [12] as 

Definition 1: - Cauchy integral formula 
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Where c is the smooth curve encircling the single value function f (t) 

Definition 2: - Grunwald–Letnikov (GL) definition 
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Here [.] represent the integer part. 

Definition 3: - Riemann-Liouville (RL) definition 
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The following function given below is obtained by Laplace Transform of the GL and RL fractional 
differential-integral. The zero initial conditions and order β gives the following result   

)(]);([ sFsstfDt
ββα ±± =                                                                                                                                    (8) 

B.   Fractional order system 

The fractional-order system is the extension form of the traditional integer order systems. Fractional order 
system is gained from the fractional-order differential equations. A classic n-term linear fractional order 
differential equation (FODE) is assumed by 
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Let considering the control function on which input signal is applied to FODE system Eq. (9) as follows: 

)()()(...)( 0
0

1
1 tuty

t
Dty

t
DtyD n

tn =+++
β

α
β

αα β

                                                                                          (10) 

After Laplace transform of Eq. (10), we get 
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From Eq. (11), we can obtain a fractional-order transfer function as 
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In broad, for a dynamic system with single variable and fractional order transfer function of a system can be 
defined as 
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Here )...1,0(),...1,0( niamib ii == are constant and )...1,0(),...1,0( niimii == βγ are random real or rational 

number and without lacking generality, can be prescribed as 01 ...γγγ >> −mm   and  01 ...βββ >> −mm  

The incommensurable fractional order system Eq. (13) can also be expressed incommensurable form by the 
multi-valued transfer function 
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Note that every fractional order system may be represented in the form of Eq. (14) and domain of H(s) meaning 
is a Riemann sheets. 

IV. STABILITY OF FRACTIONAL ORDER SYSTEM 

Stability is one of the most frequent terms used in literature when we deal with the dynamical systems and 
their behaviors. In mathematical vocabulary, stability theory addresses the convergence clarifications of 
differential or difference equations. A system (LTI) is said to be stable if the roots of characteristics polynomial 
are had negative real part. In the case of fractional order system (LTI), the stability is not same as of integer one. 
Important point is that, for a fractional order system, the roots may lie on the right half of complex plane Fig. 
(2). 
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Fig. 2.   Stable and unstable region of LTI fractional order system 

Theorem: - According to Matignon’s stability theorem the fractional order transfer function 
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If 0=s , is a single root of D(s), the system cannot be stable. 

Above theorem stability region is shown in Fig. (2), Indicate the wholes s plane where 0=q . It shows the 
Routh-Hurwitz stability and 1=q   tends to the negative real axis for 2=q . 

As we know that only the poles play an important role in the stability of a system. So the stability assessment 
is done by denominator only and numerator does not affect the stability of an FOTF. The stability of fractional 
order system can be analyzed in another way also. Let considering here, the characteristic equation of a general 
fractional order system as: 

0...
0

10
10 ==+++ 

=

issss
n

i
i

n
n

ββββ αααα
                                                                                                      (15) 

For
v

vi
i =β , we can transform the Eq. (15) into the σ-plane. 
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Here m

k

s=σ  and m is the least common multiple of ѵ. 

For a given αi, if the absolute phase of all roots of transform Eq. (16) is )arg(σφσ = , we can close the 

following points for the stability of fractional order systems. 

1. The stability condition is as  .)arg(
2 mm

πσπ <<  

2. The oscillation condition is as   .
2

)arg(
m

πσ =  

If any linear time invariant (LTI) fractional order system satisfy the above two points then the system is stable 
otherwise unstable. 

V. FRACTIONAL ORDER CONTROLLER DESIGN 

Maximum of the works in fractional order control systems are in hypothetical nature. Controller design and 
application in run-through is very small. In this paper, the core objective is to spread on the fractional order 
control (FOC) to examine the system control performance. The fractional-order PIλ Dμ controller was proposed 
as a broad view of the PID controller with integrator of real order λ and differentiator of real order μ. The 
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transfer function of such kind the controller in Laplace domain has form 
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Here KP is the proportional gain constant KI is the integral gain constant and KD is the derivative gain 
constant. If λ=1and   μ=1, we obtained a classical PID controller. If λ=0 and   μ=0, we obtained a PDμ and PIλ 
controller respectively. These entire controllers are the case of PIλDμ controller, which provides flexibility with 
an opportunity to adjust the dynamic property of fractional order control system. Two steps are used here to 
design such controllers. 

Step 1: - Design of KP  

Overshoot in percentage [Pr], settling time in second [Ts] and static error in percentage [Et] belongs to 
Proportional gain KP. In general, KP can be obtained by 
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Here Proportional gain KP is selected for minimum static error. 

Step 2: - Design of KD, μ, KI and λ  

To determine these values for Fractional-Order controller design, the following synthesis scheme is used here. 

Let the controller transfer function is C(s), Plant transfer function is G(s) and a unity feedback is applied to the 
system. Phase margin of controlled system [13 and 14] is 
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Here jωg is the crossover frequency. Phase margin is an independent or constant phase. This can be 
accomplished by controller of the form  
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Here Kplant is the gain of plant and τ is the time constant for the plant. 

Now from the Eq. (19) and Eq. (20) 
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Here for a given plant, we fix the gain margin. Put the gain value in Eq. (21) one can find out the value of v. 
the other desired values k1 and k2 are obtained from Eq. (20). Now using these constant in Eq. (20), we can 
obtain a fractional Iλ Dμ controller, which is a particular case of PIλDμ controller has the form 
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If the value of KP is given then the full transfer function of fractional order controller is 

v
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If do a comparison with Eq. (17), we can say 

vandv =−= λμ )1( . 

VI. CONTROLLER DESIGN USING ZIEGLER-NICHOLS SECOND METHOD 

In this method, we first set T = ∞ and dT  = 0. By use the proportional control action increase K from 0 to a 

critical value crK at which the output exhibits sustained oscillations in the system Fig (3).  
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Fig. 3.   Closed loop system for proportional controller 

 
Thus, the critical gain cK and the corresponding period crP  are determined by experiment. According to 

Ziegler-Nichols method the values of the parameters pK , iT  and dT can be obtained by the formulas shown in 

Table 1. 

TABLE I 

  For Critical Gain and Critical Period 

Type of 
controller pK  iT  dT  

P 
0.5 

crK  ∞ 0 

PI 
0.45 

crK  

1/1.2 

crP  0 

PID 
0.6 

crK  

0.5 

crP  

0.125

crP  

 

The PID controllers tuned by the second method of Ziegler-Nichols rules give [15]. 
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Equation (25) shows that the PID controller has a pole at the origin and double zeros at
crP

s
4−= . 

VII. EXAMPLES 

Consider the control system [16] given in below figure, in which a PID controller is used to control the 
system Fig. (4). Here the objective is to analysis the stability of the system and designs the controller by 
proposed approach.  

 
Fig. 4.   PID control and two degrees of freedom control 

A.  Stability Check and Controller Design by Ziegler-Nichols Method 

The first requirement is to find out the starting point for pK   and double zeros. Let start the tuning with 

considering the pK  only. Here the closed loop response is 
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By the help of Routh-Hurwitz criteria, the value of crK  for sustained oscillations is crK  = 30. So after putting 

this value in characteristic equation the value of critical frequency is 5=ω . Now with the help of table 1other 
values are 

8099.2
5

2 == π
crP  

186.0 == crP KK  

405.15.0 == cri PT  

35124.0125.0 == crd PT  
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pZN ++= we find out the controller transfer 
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= , here the double zeros exists on    s = -1.4235. 

So here the initial values are obtained. As the requirement of industry, we can set the value of maximum 
overshoot in programming. Generally, according to the better establishment of the system, the overshoot should 
be between10% to 40%. Using the MATLAB program, we vary the gain 90 to 3.5 with step size -0.2 and zeros 
as 7 to 0.3 with step size -0.2. Fine tuning gives the following results Fig. (5) and Fig. (6). 

Gain (K) = 21and Zeros (a) = 0.4 

Maximum overshoot (m) =1.0995 

The final close-loop transfer function of the system is 
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Fig. 5.   Pole location on Pole-Zero Map 
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Fig. 6.   Unit step response of the closed loop system 

 

B.  Stability Check and Controller Design by Fractional-Order Method 

Consider the transfer function model of plant in given example is 
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Here s = -5 is non-dominant pole and it does not affect the plant stability so we can eliminate it. After removing 
the dominant pole the transfer function of the plant is 

)1(

2.0

+
=

ss
GPlant                                                                                                                                                  (29) 

We are using here the technique proposed in section 4 for fraction order controller design. According to this 

Step 1: - To design the KP 

For minimum static error the value of proportional gain KP=10, from Eq. (29)  

Step 2: - Design of KD, μ, KI and λ 

The value of a time constant τ = 1 and gain of Plant KPlant = 0.2 respectively Eq. (29). 

If we fix to gain margin ϕm >= 600 for the given control system. Then we find out the value of v = 0.3 by Eq. 
(21). The other desired value k1 = 5 and k2 = 1 obtained from Eq. (20). Now putting these values in Eq. (22), we 
got  
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Now adding the value of KP = 10 from step 1into Eq. (30), we got final transfer function of fractional order 
controller as 
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The open loop control system for controller and plant is 
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The close-loop transfer function of given control system with unity feedback is obtained as 
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The function isstable checked the denominator of Gcl(s), s2.3+s1.3+5s+10s0.3+5 and it is found that K=1, indicate 
the system is stable. Here Fig. (7) Shows that system controlled by fractional order controller has more stability 
region and Fig. (8) Indicate that the complete designed system is stable. Figure (9) represents the comparison 
between both type controller designs.  
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Fig. 7.   Pole position of a closed loop system 
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Fig. 8.   Step response of closed loop system 
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Fig. 9.  Simultaneously unit step response of both systems
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TABLE II 

 Comparison for Performance Specification of Designed Controller 

Controller 
design 

Ziegler-Nichols 
Method 

Fractional-Order 
Method 

Models Full Model Full Model 

Specifications G (s) G (s) 

Rise time (sec) 0.394 0.25 

Settling time 
(sec) 

7.74 
2.6 

Peak 
amplitude  

1.1 
1.291 

Overshoot 
(%) 

9.95 
29.1 

At time (sec) 0.83 0.62 

 

VIII. CONCLUSIONS 

On behalf of the result shown in the table 2, some important point may be described for tuning of the 
controller. All basic ideas of fractional calculus, the stability of fractional order system and MATLAB function 
are presented here. The main purpose of the paper is to draw attention to fractional order system stability and 
analysis over a conventional way. Here an integer order plant is controlled by full order controller and fractional 
order controller. It concludes here that the fractional order system has a large region for stability which 
improves the performance of the system. Here all transient parameter of fractional order controller design 
system has better performance over conventional controller design except overshoot. Here the maximum 
overshoot is 29.1 % in comparison to 9.95%, but it’s not a problem because due to this, the response is fast and 
till 40 % the overshoot is accepted in the general system design. We believe that the comparative approach used 
in this paper is useful for selecting the method of controller design. 
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