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Abstract— Structural optimization approaches may be categorized into three major types. One type of 
approach is topological optimization, which involves many sensitivity analysis variables. This type of 
approach sometimes results in odd shapes, such as checkerboard patterns. The other types are shape 
optimization and parametric optimization, which involve certain difficulties in dealing with the selection 
of proper parameters and require repeated meshing for the purpose of finite element analysis. We 
propose an efficient method for grouping finite elements to reduce the number of degrees of freedom of 
the system considerably and to perform the optimization of several groups of elements. If we reject 
elements using a cutoff criterion based on the specific strain energy for several steps, we may obtain a 
topologically optimized result for the discrete configuration, without any irregularity. This optimization 
may have a higher-speed process based on the grouping method. The grouping method divides the 
elements into three groups on the basis of strain energy—a high-energy group, a low-energy group, and a 
mid-energy group. By moving the high-energy group to a high-priority group and eliminating the low-
energy group, a 1/3rd rule can be used to obtain an optimized design. The 1/3rd rule is fast and effective 
and provides a way to obtain a realistic result. Several examples were considered to test the optimization 
efficacy of the grouping technique. 
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I. INTRODUCTION 
The importance of optimization [1], which can be used to remove unnecessary parts and improve the 

effectiveness of a design, has grown gradually in engineering design. Structural optimization approaches may be 
categorized into three major types. One type of approach is topological optimization, which considers many 
variables in a sensitivity analysis [2]-[4]. This type of approach sometimes results in odd shapes, such as 
checkerboard patterns. The other two major types of approaches are shape optimization and parametric 
optimization. These types of approaches have certain difficulties in dealing with the selection of proper 
parameters and require repeated meshing for finite element analysis. This is a complex and time-consuming 
execution method, and a single execution involves considerable effort and cost. Therefore, producing objects 
using this approach involves considerable costs and time expenditures, which decreases its economic efficiency. 

Therefore, it is necessary to develop a new and more realistic optimization method. In this paper, we propose 
an efficient method for grouping finite elements to reduce the number of degrees of freedom of the system and 
performing optimization for several groups of elements. If we reject elements using a cutoff criterion based on 
the specific strain energy [5]-[9] for several steps, we can obtain a topologically optimized result with a discrete 
configuration and without any irregularity. This method exhibits fast calculation times and yields realistic results. 

In addition, a 1/3rd rule based on strain energy was developed. The 1/3rd rule divides elements into groups 
and compares them in terms of their strain energy, retaining the high-energy groups and removing the low-
energy groups. The 1/3rd rule increases the understanding of the structure by examining it in terms of the strain 
energy, and thereby increases the efficiency of the structure. In addition, the results obtained are practical 
because the operator considers the entire shape at each step in the process. 
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Fig. 1. Flowchart of optimization procedure 

Several examples were considered to test the efficiency of the grouping technique and application of the 1/3rd 
rule to optimization. A cantilever structure was fully optimized using PIAnO [10]. Then, its elements were 
grouped into several categories and optimized with far less computational effort. We then applied several 
rejection steps to obtain topologically optimized results. 

II. GROUPING METHOD AND 1/3RD RULE 
In topological optimization, the number of variables is high, and the computation cost is high as a result. 

Satisfying the strength constraint is another problem that needs to be addressed, as well as addressing the 
checkerboard pattern problem. In this section, a grouping method is proposed for use in resolving these types of 
problems to a certain extent. The procedure for applying the grouping method and 1/3rd rule is as follows: 

 
1 The entire domain of a model is classified into several groups. 

1-1 Each group is selected manually based on similar levels of strain energy density, based on experience and 
mechanics. 

1-2 Every group is discretized into many finite elements. 
2 The finite element model is analyzed after the application of boundary conditions. The strength constraint is 

satisfied by adjusting element thicknesses. 
3 The elements in each group are sorted in order of their strain energy density (SED). 
4 The groups are sorted in order of the highest SED of the elements within each group or in the order of the 

highest average SED. 
5 The highest SEDs of each group are compared with the highest SED of the 1st sorted group, and the groups 

of the highest SED smaller than 1/3rd of the highest SED are eliminated from the model. 
6 Elements in the groups with the highest SED smaller than 2/3 of the highest SED are modified, depending 

upon the level in the group. 
6-1 The elements with SEDs in the top 1/3rd are moved to the adjacent group. 
6-2 The elements with SEDS in the middle 1/3rd remain in the same group. 
6-3 The elements in the lowest 1/3rd are removed from the group. 

7 The process returns to step 2 and repeats until there is no group whose highest SED is smaller than 1/3rd of 
the first highest SED. 
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Fig. 2. Truss structure model 

 
Fig. 3. Numbering of elements and nodes 

Through the actions of elimination and modification (elements being, moved removed, or unchanged), the 
overall model is topologically optimized while the strength constraint is satisfied. The chance of a checkerboard 
pattern occurring and the necessity for smoothing during post-processing are minimized by the reasonable 
selection of groups for the model. A flowchart of the procedure is shown in Fig. 1. 

III. EXAPMPLES 
Three examples—truss, cantilever, and clamped deep beam problems—are presented to demonstrate the 

effectiveness of the grouping method. 

A. Truss 

The first example is a truss structure, illustrated in Fig. 2 and Fig. 3. If the results obtained and time required 
for the calculations for each element are compared with the results obtained using the grouping method, the 
efficiency of the grouping method is easily understood. The truss structure consists of steel with a Young's 
modulus of 200 GPa and a Poisson’s ratio of 0.3. As mentioned above, based on engineering judgment and 
experience, the elements under stress in a similar direction are grouped together. If the elements are not grouped, 
the number of elements is 12. However, as shown in Table 1, if the elements acting in similar directions are 
grouped together based on symmetry, they are categorized into six groups. In addition, among the six grouped 
elements, those acting in a similar direction are regrouped. This results in a total of four elements, so four 
elements are generated. The amount of calculation required is thus reduced to one third of the original amount 
required. This example is a simple case. Because the amount of calculation required is reduced by grouping the 
elements, the calculation time is decreased, and similar results are obtained. 

TABLE I 
Numbering of Non-grouped and Grouped Elements 

nodes 1, 2 2, 3 3, 4 4, 5 2, 6 4, 7 3, 6 3, 7 1, 6 5, 7 6, 8 7, 9 

12 
elements ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ 

6 groups 1 2 2 1 4 4 5 5 3 3 6 6 

4 groups Ⅰ Ⅰ Ⅰ Ⅰ Ⅲ Ⅲ Ⅳ Ⅳ Ⅱ Ⅱ Ⅳ Ⅳ 
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TABLE III 
Results of the Calculations with Non-grouped Elements 

Element No. A (mm2) L (mm) volume (mm3) 
1 8.23E-04 40 0.0329 
2 7.38E-04 40 0.0295 
3 1.01E-03 40 0.0403 
4 2.03E-04 30 0.0061 
5 7.79E-04 30 0.0234 
6 4.29E-05 50 0.0021 
7 1.50E+01 50 750.0000 
8 1.50E+01 50 750.0000 
9 6.53E-04 50 0.0326 
10 9.37E-03 50 0.4687 
11 1.50E+01 50 750.0000 
12 1.50E+01 50 750.0000 

TABLE IIIII 
Results of the Calculation with Six-group Elements 

Group No. G1 G2 G3 G4 G5 G6 
A (mm2) 1.24E-09 2.58E-06 2.12E-09 1.55E-09 1.50E+01 1.50E+01 
L (mm) 40 40 50 30 50 50 

Volume (mm3) 4.97E-08 1.03E-04 1.06E-07 4.64E-08 7.50E+02 7.50E+02 

TABLE IVV 
Results of the Calculation with Four-group Elements 

Group No. G1 G2 G3 G4 
A (mm2) 1.34E-09 1.00E-09 1.00E-09 1.50E+01 
L (mm) 40 50 30 50 

Volume (mm3) 5.35E-08 5.00E-08 3.00E-08 7.50E+02 
 
As Tables 2 to 4 show, the results of the calculations are almost the same, but the number of elements 

required for the calculation is noticeably reduced. Based on this, the calculation time is also reduced. The effect 
of the grouping method is greater if the target object is more complicated and the number of elements is 
increased. The results of the truss problem demonstrate the efficiency of the grouping method. 

B. Cantilever 

 
Fig. 4. Boundary conditions and load on cantilever 
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Fig. 5. Grouped elements 

      
(a) von Mises stress                                                        (b) Strain energy 

Fig. 6. Analysis results 

Figure 4 illustrates a cantilever problem that can be solved using the grouping method and the 1/3rd rule. This 
cantilever has the following properties. The type of steel is AISI 8000 series steel, with a density of 7.8e-9 
Mg/mm3 and a Young’s modulus of 207 GPa. Its Poisson’s ratio is 0.3, and its yield strength is 900 MPa. This 
cantilever is under a load of 3,500 N, as shown Fig. 4. The objective of the problem is to minimize the weight of 
the cantilever while satisfying the requirement for a safety factor of three. This example is used to demonstrate 
that the grouping method and the 1/3rd rule may be the best method for optimizing the design of this type of 
structure. 

The cantilever problem is solved by applying the grouping method to a large bundle of elements rather than 
individual elements. The elements of the cantilever problem are grouped empirically as shown in Fig. 5. For this 
shape, the von Mises stress and the strain energy are obtained using Abaqus, as shown in Fig. 6. 

By creating a table for the strain energy per unit area (SED) and per element, as shown in Table 5, the sizes 
and priorities of the element groups can be determined. In considering the entire shape, high-strain-energy 
elements move to the high level, and low-strain-energy elements are eliminated. Mid-level elements are 
maintained without any decision being made concerning their placement. 

TABLE V 
Strain Energy Sheet for the First-step Model 

Group 1 Group 2 Group 3 

Element SED Element SED Element SED 

6 0.2780 73 0.0277 120 0.6789 

63 0.2720 69 0.0275 118 0.1544 

14 0.1985 76 0.0270 119 0.1046 

62 0.1854 77 0.0261 85 0.0733 

64 0.1845 72 0.0258 117 0.0519 

7 0.1829 80 0.0245 86 0.0455 

5 0.1773 78 0.0220 87 0.0453 
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8 0.1597 81 0.0219 116 0.0431 

22 0.1532 74 0.0219 107 0.0352 

13 0.1440 75 0.0213 109 0.0320 

15 0.1412 83 0.0212 88 0.0318 
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. 

. 

. 

. 

. 

65 0.0207 
. 
. 
. 
. 

. 

. 

. 

. 

79 0.0205 

71 0.0197 

82 0.0193 

41 0.0225 70 0.0184 115 0.0205 

57 0.0211 84 0.0181 96 0.0170 

43 0.0200 68 0.0173 104 0.0150 

48 0.0199 67 0.0127 95 0.0140 

54 0.0186 66 0.0095 114 0.0110 

42 0.0186  103 0.0083 

51 0.0180  94 0.0082 

49 0.0163  113 0.0058 

60 0.0149  102 0.0050 

50 0.0127  112 0.0015 

55 0.0103  101 0.0014 

59 0.0093  111 0.0007 

56 0.0089  110 0.0000 

 
According to Table 5, the strain energies of the elements in group 2 are generally low, as are the von Mises 

stresses. Therefore, group 2 does not seem to be important to the overall shape and is eliminated. The high-
strain-energy elements in group 3 move to the high group, and the low-strain-energy elements in group 3 are 
eliminated. The results of the above procedures are shown in Fig. 7. The optimal thickness that satisfies the 
constraint is found using PIAnO. 

 
Fig. 7. Results of applying the 1/3rd rule to the first step of the cantilever problem 
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(a) von Mises stress                                                        (b) Strain energy 

Fig. 8. Analysis results for regrouped cantilever 

Application of the 1/3rd rule to the first step results in division into two groups, as shown in Fig. 7. For this 
shape, the von Mises stress and the strain energy obtained using Abaqus are shown in Fig. 8. 

After the von Mises stresses and SED values for the above results were determined, the SED sheet shown in 
Table 6 was developed, and the 1/3rd rule was applied. 

TABLE VI 
Strain Energy Sheet for the Second-step Model 

Group 1 Group 2 

Element SED Element SED 

12 22.6965 29 2.2643 

121 22.2012 17 2.2445 

24 16.2038 32 2.2064 

120 15.1352 41 2.1345 

122 15.0598 20 2.1075 

13 14.9302 44 1.9978 

11 14.4742 42 1.7998 

14 13.0344 54 1.7874 

36 12.5100 30 1.7854 

23 11.7536 31 1.7394 

25 11.5272 56 1.7316 

. 

. 

. 

. 

. 

. 

. 

. 

5 1.6921 

43 1.6724 

19 1.6101 

78 1.9857 55 1.5737 

66 1.8373 18 1.5043 

95 1.7238 68 1.4802 

69 1.6339 8 1.4163 

79 1.6241 7 1.0366 

92 1.5222 6 0.7728 

67 1.5191 

82 1.4682 

80 1.3306 
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107 1.2186 

81 1.0349 

93 0.8436 

106 0.7626 

94 0.7274 

 

 
Fig. 9. Final shape of the cantilever model 

    
(a) von Mises stress                                                        (b) Strain energy 

Fig. 10. Analysis results for final shape of cantilever 

According to the 1/3rd rule, group 2 is eliminated. The optimized result that satisfies the constraints is 
identified using PIAnO. The final shape is shown in Fig. 9. The weight of this structure is 40% less than that 
before the optimization. 

The above shape was analyzed again using Abaqus and optimized once again using PIAnO. The following 
results were obtained. 

In the results shown in Fig. 10, the strain energy is distributed evenly, and the weight has been reduced 
overall. This shape was optimized once again to calculate the optimal thickness and weight. The results are 
shown in Table 7. 

This result shows that the weight has decreased by approximately 41.39% satisfying the constraint of 
maximum von Mises stress 300 MPa. Through this cantilever problem, the efficiency of grouping can be 
reconfirmed. 

TABLE VII 
Thickness Results Obtained from Optimization 

 σmax (MPa) weight (mg) thickness (mm) 
Step 1 300 1.275e-04 10.8988 
Step 2 300 9.964e-05 10.8723 
Step 3 300 7.473e-05   11.2724 
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Fig. 11. Boundary condition and load on clamped deep beam 

 
Fig. 12. Grouped elements of clamped deep beam 

C. Clamped deep beam 

The next example is the clamped deep beam problem illustrated in Fig. 11. Its vertical length is greater than 
that of the cantilever, and the location of the load is at the center of the structure. The size of the clamped deep 
beam is 40 mm × 60 mm, and the left side is fixed. The clamped deep beam is subjected to a vertical downward 
5000-N load at the center of the right side. As with the cantilever beam, the objective is to find a shape with an 
optimum weight while satisfying the constraint of not exceeding the allowable stress of 300 MPa. 

The elements for the shape shown in Fig. 11 were assembled using Hypermesh, and the elements were 
divided into groups empirically, as shown in Fig. 12. Because the load is located at the center of the clamped 
deep beam, the shapes of the groups are symmetric upward and downward. 

     
(a) von Mises stress                                                        (b) Strain energy 

Fig. 13. Analysis results 
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The von Mises stresses and strain energies for the grouped elements were obtained using Abaqus, as shown in 
Fig. 13. 

Based on the listing of elements and SEDs shown in Table 8, elements were eliminated or moved according 
to the 1/3rd rule. The results obtained are shown in Fig. 14. 

TABLE VIII 
Strain Energy Sheet of First-step Model 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

Element SED Element SED Element SED Element SED Element SED Element SED 

113 0.007  58 0.011  360 0.188 723 0.500 731 0.006  740 0.0001 

485 0.007  448 0.011  722 0.188 359 0.500 351 0.006  342 0.0001 

66 0.007  10 0.011  2 0.046 724 0.084 732 0.005  695 0.0001 

440 0.007  400 0.011  408 0.046 358 0.084 350 0.005  291 0.0001 

67 0.007  59 0.010  1 0.034 726 0.050 687 0.004  739 0.0001 

439 0.007  447 0.010  405 0.034 356 0.050 299 0.004  343 0.0001 

116 0.007  105 0.010  357 0.030 727 0.034 688 0.003  696 0.0000 

486 0.007  493 0.010  721 0.030 355 0.034 298 0.003  290 0.0000 

118 0.006  57 0.010  3 0.027 725 0.029 734 0.003  742 0.0000 

484 0.006  445 0.010  407 0.027 353 0.029 348 0.003  340 0.0000 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

741 0.0000 

337 0.0000 

743 0.0000 

529 0.006  16 0.006  201 0.009 551 0.005 692 0.001  339 0.0000 

433 0.005  394 0.006  589 0.009 147 0.005 294 0.001  744 0.0000 

20 0.005  167 0.006  149 0.009 595 0.005 647 0.001  338 0.0000 

390 0.005  531 0.006  545 0.009 199 0.005 243 0.001    
23 0.005  213 0.006  152 0.008 596 0.005 648 0.001    

387 0.005  577 0.006  546 0.008 198 0.005 242 0.001    
17 0.005  215 0.005  262 0.007 642 0.005 737 0.001    

389 0.005  579 0.005  628 0.007 248 0.005 341 0.001    
22 0.005  261 0.005  309 0.006 641 0.004 738 0.001    

388 0.005  625 0.005  673 0.006 245 0.004 344 0.001    
24 0.004  216 0.005  263 0.005 597 0.004 694 0.000    

386 0.004  578 0.005  627 0.005 193 0.004 292 0.000    
21 0.004  264 0.004  312 0.004 598 0.004 693 0.000    

385 0.004  626 0.004  674 0.004 196 0.004 289 0.000    
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Fig. 14. The results of the 1/3rd rule, first step, for the clamped deep beam 

     
(a) von Mises stress                                                        (b) Strain energy 

Fig. 15. Analysis results for regrouped clamped deep beam 

These results were analyzed again using Abaqus, as shown in Fig. 15. Because considerable portions of the 
structure still appeared to be unnecessary, we decided to apply the 1/3rd rule one more time. 

After listing the SEDs and elements, as shown in Table 9, low-strain elements were eliminated, and high-
strain elements were moved to the high level, according to the 1/3rd rule. 

TABLE IX 
Strain Energy Sheet of Second-step Model 

Group 1 Group 2 

Element SED Element SED 

359 9.58832 726 0.870392 

723 9.58832 725 0.616489 

2 7.211136 679 0.573113 

408 7.211136 680 0.425903 

1 4.261984 635 0.319316 

405 4.261984 636 0.30694 

360 4.239464 682 0.292934 

722 4.239464 591 0.279462 

3 3.173456 592 0.264418 

407 3.173456 727 0.253897 

106 2.637224 681 0.251197 
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. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

204 0.559075 251 0.069972 

590 0.559075 148 0.065785 

312 0.552746 300 0.05884 

674 0.552746 250 0.051003 

305 0.545626 145 0.050018 

677 0.545626 297 0.038077 

152 0.532826 199 0.02597 

546 0.532826 198 0.014447 

253 0.520713 196 0.013047 

633 0.520713 245 0.012496 

256 0.516326 146 0.012038 

634 0.516326 248 0.011893 

149 0.486726 193 0.009099 

545 0.486726 147 0.00799 

 
The results obtained are shown in Fig. 16 (a). To illustrate the advantages of the grouping method and the 

1/3rd rule, the results obtained using the conventional topology method for a clamped deep beam are shown Fig. 
16 (b) [11]. 

 
(a) Final shape obtained using the grouping method 

 
(b) Final shape obtained using a conventional method [11] 

Fig. 16. Comparison of grouping method with 1/3rd rule and conventional topology method 
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(a) von Mises stress                                                        (b) Strain energy 

Fig. 17. Analysis results for regrouped clamped deep beam 

TABLE X 
Thickness Optimization Result 

 σmax (MPa) weight (Mg) thickness (mm) 
Step 1 300 2.012e-04 10.7524 
Step 2 300 1.008e-04 10.7756 
Step 3 300 6.212e-05 10.9857 

 
The above results were analyzed again using Abaqus and optimized once again using PIAnO. The following 

results were obtained. 
As Fig. 17 shows, the strain energy is evenly distributed, and the weight has been reduced overall. This shape 

was optimized once again to calculate the optimal thickness and weight. The results are shown in Table 10. 
 
As the results show, the weight was decreased by 69.12% in comparison to the initial design of the beam. 

IV. CONCLUSION 
In the grouping method developed in this study, engineers intervene directly in the optimization process so 

that the optimal solutions to realistic problems can be found. The general topology optimization approach 
satisfies the constraints and tunes itself to the objectives, but in fact, the shape obtained as a result often cannot 
be produced in reality. In grouping, engineers consider each element directly and can add one or leave one out; 
therefore, it is more efficient than any other optimization method. In addition, because the optimization is 
carried out based on the strain energy, the efficiency of the entire shape can be increased considerably. By 
eliminating unnecessary parts and moving some parts with high strain energy, the strain energy can be 
distributed evenly, so that an efficient design, without any unnecessary parts, is obtained by considering the 
contributions of all of the elements. The grouping method and the 1/3rd rule are more efficient than other 
optimization methods used in production because they make it possible for the engineer to identify and add or 
subtract each element directly. 

 
The results of this study of the grouping optimization method can be summarized as follows. 
1. The grouping method and 1/3rd rule examined in this study can quickly and accurately identify highly 

realistic and easily manufactured shapes by addressing the problems of the traditional topological 
optimization method, such as the complexity of the process and the impracticality of some of the results. 

2. Analysis in terms of the strain energy per unit area increases the efficiency of the entire shape. By 
eliminating unnecessary parts and reinforcing high-strain-energy parts, the strain energy is evenly 
distributed, and the action of the entire shape is made structurally uniform. Thus, the structure can be 
designed efficiently without unnecessary parts. 

3. In conventional topological optimization, a large number of finite element analyses are performed to 
identify and remove ineffective elements. The proposed grouping method requires several finite element 
analyses to obtain a reasonable shape in the structural, artistic, manufacturing, and practical senses. 

The results obtained show that the grouping optimization method can be used to easily reduce the weight of 
the designed structure by more than 30%, and avoid unrealistic structural designs and checkerboard patterns. 
Thus, the grouping optimization method makes it possible to identify the optimal structure in manufacturing 
practice. Moreover, because element identification is fast in the group optimization and because individual 
elements are identified in groups, the computational effort required is minimized. In conclusion, because 
engineers can intervene directly in each step, the grouping optimization method can be used to identify the 
optimal structural solution that satisfies a variety of conditions at the same time. 
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