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Abstract - An undersea earthquake or a geological disturbance causes Tsunami. Initial attempts to 
forecast Tsunami was made in Hawaii in the 1920s. The National Oceanic and Atmospheric 
Administration (NOAA) has been operating Tsunami early warning systems (DART) since 1949 for the 
Pacific Ocean. An accurate prediction algorithm helps to detect even a small Tsunami. The NOAA 
predicts Tsunami using Newton’s forward divided difference formula from measured pressure time 
series. In this article, we compare the performances of Kalman algorithm and Artificial Neural Network 
(ANN) algorithm with respect to NOAA Tsunami Early warning system using in-situ data. We also 
discuss statistical characteristics of these algorithms. The ANN and KALMAN algorithm detect Tsunami 
with equal delay with respect to DART algorithm. The overall percentage of error rate is less with ANN. 
This study shows ANN algorithm is the optimized alternate algorithm to detect Tsunami.  
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I.  INTRODUCTION 

The Tsunami is detected by Bottom Pressure Recorder (BPR) deployed in the deep sea. The first deep ocean 
detection system called DART (Deep-ocean Assessment and Reporting Tsunami) system is developed by 
Pacific Marine Environmental Laboratory (PMEL) of National Oceanic and Atmospheric Administration 
(NOAA), USA [1] in 1995. The system consists of a BPR to measure water levels in the Tsunami frequency 
band with 0.1 millimeter resolution. The BPR transmits information to a moored surface buoy through acoustic 
telemetry. The moored buoy transmits the information to shore station through satellite telemetry. A series of 
DART systems are deployed since 1991 to monitor Tsunami events.  

The important features of Tsunami detection algorithms are number of samples required, accuracy and 
computation time. The BPR records a superposition of tidal wave, Tsunami wave and surface turbulence. The 
tides can be forecasted from in-situ measurements using algorithms [2]. The presence of Tsunami signal 
increases the difference between forecasted and measured pressure. Hence, an accurate prediction algorithm 
helps to detect even a small Tsunami. In this article we compare the performances of DART [4], Kalman and 
Artificial Neural Network algorithms with in-situ data. 

II. DATA AND METHODS 

The BPR system deployed in the deep sea, at a depth of 3793m, in the Bay of Bengal by NOAA (Buoy ID 
23227, position, Lat. 6.255 ºN Lon. 88.792 ºE) provides the data (ranging from 2012 to 2014) studied for our 
analysis [3]. A Tsunami was generated by a Mw 8.6 earthquake (2.327°N, 93.063°E ), at 08:38:36 UTC on 11 
April,2012. In approximately 39 minutes after the event (at 09:17), the Tsunami wave was first recorded at 
DART buoy 23227. The BPR records data at every 15 sec. We studied 1400 samples of data (5.83 hr) before the 
event, 1100 samples of data (4.58 hr) during the event and 2389 samples of data (9.95hrs) after the event (Figure 
1). 
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The Kalman filter requires 40 samples(10 minutes of data). 

C. ANN algorithm 

The Artificial Neural Network (ANN) algorithm which is proposed by that by Beltrami [10,11] is similar to that 
of the DART algorithm given by Mofjeld [4] (1997) in the sense that both the algorithms filters out the 
astronomical and meteorological surges recorded by a BPR by subtracting at each new time step the predicted 
pressure values from the observed pressure values and then examines the actual propagation of a Tsunami by 
comparing the amplitude of the filtered signal against a prescribed threshold value. Therefore, the ANN 
algorithm (similar to that of DART algorithm) also belongs to the category of the amplitude-discriminating 
ones. In order to update the prediction every 15 s, ANN uses feed forward network shown in Figure 2 and 760 
samples of data. The ANN algorithm proposed by [11] consists of a two adaptive-weight (feed-forward) 
network characterized by 4 input units plus bias, 6 hidden units plus bias and one output unit (I4H6O1).  The 
network’s inputs consist of the same 10-minute averages ζ of bottom pressure observations ζ as those used by 
the DART algorithm. These values are pre-processed so as to re-scale them linearly in the range [0;1]. The 
network function can be expressed as 

 
Fig. 2.  Artificial Neural Network [11] 
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and  ∆t ൌ 1 h (t is the actual time is an hour) also wij
(1) and wbj

(1) are the adaptive weights connecting input units 
and bias to the hidden units ,and wj

(2) and wb
(1) those connecting hidden units and bias to the output unit. 

Moreover, g(·) and ˜g(·) represent the hidden and output unit activation functions which are  the logistic-
sigmoid and the linear activation functions respectively. Unlike the coefficients of the DART Algorithm, the 
adaptive weights of [11] result from the network’s supervised learning. The adaptive weights (w) result from 
minimizing the error function chosen to express the difference between the calculated ζˆ and the actually 
observed outputs ζ. 

D.  Comparison of Algorithms 

The predicted pressure values of DART, Kalman and ANN algorithms are compared with measured pressure 
during various stages of event. The Root Mean Square Error (RMSE), percentage error, correlation coefficient 
(r) and coefficient determination (R2) are also computed at each stage. 

III. RESULTS AND DISCUSSION 

The DART, Kalman and ANN algorithms are implemented using MATLAB software (Figure 3). The 
differences between measured data and predicted data with the algorithms are computed (Figure 4(a), 4(b) & 
4(c)). The percentage of error is calculated respect to observed data sets shown in Table 1. A threshold of 0.03 
m is applied on the differences and a Tsunami detection flag is generated shown in (Figure 5(a) & 5(b)) and 
prediction algorithm test has been carried out using actually measured time series with three cases to calculate 
the algorithm performance. 
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IV. CONCLUSION 

All the algorithms detect to the event signal at the same time and Kalman algorithm takes more time to fall than 
other two algorithms. The average percentage of error is lower in ANN. The correlation coefficient has higher 
strength in forward modeling which is positive (0-1).  
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