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Abstract- The flow and heat transfer of aCasson fluid flow over an impermeable stretching surface with 
variable thermal conductivity and non-uniform heat source/sink in the presence of partial slip is 
investigated. The resulting partial differential equations are reduced to a set of non-linear ordinary 
differential equation using similarity transformation and solved numerically using Runge-Kutta method 
along with shooting technique. The effects of the governing parameter on velocityand temperature fields 
are discussed. 
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1. INTRODUCTION 

The flow over a stretching sheet is significant due to its much application in engineering processes such as in the 
extraction of polymer sheets, paper production, wire drawing and glass-fiber production.Sakiadis [1,2] initiated 
the study of the boundary layer flow over a continuous solid surface moving with constant speed.The boundary 
layer problem considered by Sakiadis differs from the classical boundary-layer problem of Blasius [3], mainly 
due to the entrainment of the ambient liquid. Here the surface is assumed to be constant (uw=0) whereas most of 
the physical situations are concerned with extensible surface (uw = cx) moving in a cooling liquid. Crane [4], for 
the first time, considered the boundary-layer behavior over an extensible surface, where he assumed the velocity 
of the surface to vary linearly with the distance from the slit. Carrayher and Crane [5] analyzed the heat transfer 
due to a continuous stretching sheet. The pioneering work of Crane was  extended by many authors  Gupta and 
Gupta [6], Grabka and Babba [7], Chen and Chur [8],  and Chaim [9]. 

In engineering applications, homogeneous or heterogeneous reactions often lead to a significant heat release 
accompanied by non-isothermal conditions that require the introduction of a heat source/sink term in the energy 
equation.Cartel [10-12] studied the flow and heat transfer characteristics with linearly and Non-linearly 
stretching sheet for both Newtonian and Non-Newtonian fluids with internal heat generation/absorption and 
suction/injection.The study of flow and heat transfer for electrically conducting fluids under the influence of a 
magnetic field has attracted the interest of many investigators. MHD flows have great significance for the 
application in the field of satellite and planetary magnetospheres, aeronautics and chemical engineering. 
Sarpakaya [13] was the first to study the MHD effects on the flow of a non-Newtonian fluid. Pal and Mondal 
[14, 15] considered the MHD fluid for their study. The MHD fluids have been considered by many researchers 
[16-21,41]. Abel et al. [22] studied the effect of variable viscosity on the heat transfer of viscoelastic fluid due to 
stretching sheet. Vajravelu and Rollins [23] and Vajravelu and Nayfeh [24] have studied the effect of a uniform 
heat source/sink on the heat transfer from a stretching sheet. Bhattacharya and Vajravelu [26] studied the 
stagnation-point flow over an exponential stretching sheet. Abo-Eldahub and Elaziz [27] investigated heat 
transfer considering a non-uniform heat source/sink. Recent work of Nandep-Panavar et al. [28], Abel et al. [29] 
and Bataller [30] in the case of a visco elastic liquid flow due to a stretching sheet. 

The no-slip boundary condition is known as the central tenet of the Navier-Stokes theory. But there are 
situations wherein such a condition is not approximate. Especially the no-slip condition is insufficient for the 
most non-Newtonian liquids. The liquids exhibiting boundary slip find applications in technology such as 
polishing of artificial heart valves and internal cavities. Navier [31] suggested a slip boundary condition in terms 
of shear stress. The work of Navier was extended by many authors [32,40,43,44]. Mustafa et al. [45] studied the 
effect of non-uniform heat source on heat transfer of non-Newtonian power law fluid over a non-linear 
stretching sheet. John and Kumaran studied the heat transfer due to a heat source in MHD unsteady stretching 
sheet flow. Mahantish M. et al. [47] studied the MHD flow and heat transfer over a stretching surface with 
variable thermal conductivity and partial slip. In the above work,  theCasson fluid flow over a stretching surface 
with variable thermal conductivity and partial slip has not investigated yet. 
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2. FORMATION OF THE PROBLEM 

 
Fig 1 schematic of a stretching sheet problem with partial slip condition 

Consider a steady, laminar, two dimensional flow of an incompressible viscous liquid past a flat impermeable 
sheet coinciding with the plane y = 0  and the flow being confined to upper half of the plane (y > 0). The flow is 
generated, due to stretching of the sheet, caused by simultaneous application of two equal and opposite forces 
along the x-axis (see Fig. 1) the sheet is stretched keeping the origin fixed, with a velocity varying linearly with 
the distance from the slit. Let B0 be the externally applied magnetic field. Since the magnetic Reynolds number 
is assumed to be small, the induced magnetic field is negligible. We take the x-axis along the surface and y-axis 
is normal to it. 

We assume that the rheological equation of state for an isotropic and incompressible flow of a Casson 
fluid can be written as 
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Where B is plastic dynamics viscosity of the Casson fluid, y is the yield stress of fluid,  is the product of 
component of deformation rate with itself, namely, = eijeij, eij is the (i,j) the component of the deformation rate 
of c is the critical value . The momentum, temperature and concentration equation under the above 
assumptions are written as 
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Where u and v are the velocity components along x- and y direction, respectively,  is the kinematic viscosity,  
is the density and  is the electric conductivity. T is the temperature of the liquid, k is the thermal conductivity, 
Cp is the specific heat at constant, constant pressure. 

 The second term on the right hand side of equation (4) represent the non-uniform heat source/sink term. A* and 
B* are the parameters of the space and temperature-dependent internal heat generation/absorption. The case A* 
> 0 and B* > 0 corresponds to internal heat generation, while the case A* < 0, B* < 0 corresponds to internal 
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 when  is small parameter.  

The boundary conditions are 
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Where A0 is the constant;  is the variable wall-temperature parameter; Tw is wall temperature. T the 
temperature of liquid far away from sheet (in this problem we take  = 1] 
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Where D is positive constant; L is the characteristic length. 

3. ANALYSIS 

 The continuity equation is identically satisfied by stream function (x,y) 

given  as 
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In the solution of equation (2), (3) and (4), the following dimensionless variables are derived as  
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Solution of equation (2), (3) and (4) with help of equation (9), (10) and (11) can be written as 
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Fig 5.Effect of magnetic parammeter Pr on temp
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Fig 6 Effect of slip pparameter  (a) PSST case (b) PHF c

(a) 

(b) 

case on temperatuure profiles at  Prr=1,Mn=1,A*=-0
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Fig 7.Effecct of variable  theermal conductivitty (a)PST case(b)
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Fig 8.EEffect of space –ddependent heat source/sink parame
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Fig 9.Effecct of temperature –dependent heatt source/sink para
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Fig 10.Effect of Casson parammeter   on velocitty  profiles at Mn
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Table I. Skin-friction coefficient for various values of  when Mn= 0 and  =  

 Sahoo [43] Mahantesh [47] Present result 

0.0 -1.0000 -1.0000 -1.0000 

0.1 -0.8721 -0.87208 -0.87200 

0.2 -0.7764 -0.77638 -0.77635 

0.5 -0.5912 -0.59120 -0.59120 

1 -0.4302 -0.43016 -0.43014 

2 -0.2840 -0.28398 -0.28395 

5 -0.1448 -0.14484 -0.14480 

10 -0.0812 -0.08124 -0.08120 

20 -0.0438 -0.4379 -0.4375 

50 -0.0186 -0.01860 -0.01858 

Table 2.Nusselt number for PST and PHF cases for different values ofgoverning parameters when  =  

 Mn Pr A* B*  Values of 
PST 

'(0) 
PHF 

Mahantesh [47] 

        PST PHF 
0.0 
1.0 
5.0 

1.0 1.0 -0.01 -0.01 0.1 0.836978 
0.518720 
0.271048 

0.866430 
0.755690 
0.497640 

0.836973 
0.518719 
0.271043 

0.866428 
0.755687 
0.497638 

1.0 1.0 
2.0 
3.0 

1.0 -0.01 -0.01 0.1 0.518720 
0.410480 
0.344735 

0.755690 
0.656625 
0.577456 

0.518717 
0.410482 
0.344737 

0.755687 
0.636622 
0.377458 

1.0 1.0 1.0 
2.0 
5.0 

-0.01 -0.01 0.1 0.518720 
0.832307 
1.478850 

0.755686 
0.877665 
0.963913 

0.518719 
0.832306 
1.478850 

0.755687 
0.877669 
0.163913 

1.0 1.0 1.0 -0.5 
0.0 
0.3 

-0.01 0.1 0.912442 
0.502510 
0.385214 

0.896505 
0.739318 
0.485420 

0.912443 
0.502414 
0.385212 

0.896506 
0.739313 
0.501422 

1.0 1.0 1.0 -0.01 -0.5 
0.0 
0.3 

0.1 0.912448 
0.502515 
0.384525 

0.896503 
0.739315 
0.485420 

0.912443 
0.302314 
0.384521 

0.896506 
9.739913 
0.485424 

1.0 1.0 1.0 -0.01 -0.01 -0.5 
0.1 
0.5 

0.995745 
0.345258 
0.128426 

2.221570 
0.755187 
0.221566 

0.995746 
0.345255 
0.128425 

2.221570 
0.755687 
0.221566 
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