
Software optimization technique for the
reduction page fault to increase the

processor performance
Jisha P.Abraham #1, Sheena Mathew*2

#Department of Computer Science, Mar Athanasius College of Engineering,
Kothamangalam,Kerala,India

1 Jishapa@mace.ac.in

* Division of Computer Science
School of Engineering,Cochin University of Science and Technology,

Kochi,Kerala,India

2 Sheena Mathew @cusat.ac.in

Abstract—This work is aimed on how to increase the processor performance without adding any extra
hardware. As technology grows new hardware are introduced and that replaces the old one. Which
actually leads to the E-waste generation, one of big environmental problem. In the entire work no extra
hardware is introduced inorder to increase the system performance. Processor performance can
measured in terms of how much time the processor is spending to perform useful work. This is
accomplished with the various stages of operations. The disk scheduling is done with MBFQV2 instead of
CFQ. Page replacement method which is used for loading the new requested page to the main memory
from virtual or loading to cache from main memory is replaced with the LRU_LFU scheduling. Along
with the above two steps for handling the branch instruction a new method called CaMMEBH
introduced. The increase in the processor performance is measured in terms of page fault. Even if there
is some change in the various time parameters which are not notable. The main reason behind this is
execution will take place only in sequentially. None of the compiler will generate the parallel execution
code. By keeping the mentioned thing in mind here some modification are done on the operating system
design itself..

Keyword-MBFQV2 , LRU_LFU, CaMMEBH, Page Fault, Performance

 INTRODUCTION I.
Disk scheduler is the one which is responsible for the transferring of data from secondary to the primary

memory. It work based one principles of round robin scheduling. Where time slice will be given to all the
request which will come to the scheduler list. The accessing will be done based on the queue data structure. Pre-
emption process is activated inside the system in order to maintain the CFQ[1] concept, each request will get a
fair allotment. The problem present in CFQ is that the arrival of a synchronous request may be arbitrarily
delayed by a scheduler by just delaying the dispatching of the preceding request. Only because of the delayed
invocation the request may get higher time stamp . The delay may be arises due to some other reason and if it
activated earlier they may get better time stamp. Only because of higher time stamp the request have to wait in
the request queue for long time period. Instead of setting the time slot a new concept of bandwidth is
introduced in the BFQ[1,2]. But here also the allotment of slot it kept as static it means once the budget is fixed
it will remain the same for the entire operation. Also the B max is fixed as the maximum budget value. Due to
this the request with less budget have to wait for long time period. These two things are taken in consideration
and modification is done on the BFQ method and formed MBFQV2[3]

 Once the data made available in the primary memory, the next level of data movement is from primary to
cache memory region. Whenever the data have to make a move to the next level before moving the data the
availability of the space/room should checked. The space is known as page frame in the case of virtual memory
to primary and from primary to cache it is cache line. Once the space is available then only the movement will
take place. If there is no space first the space should be generated by replacing on of the existing page called
victim page. This is done by the page replacement scheduler. The working of the scheduler can be done based
on various algorithms. LRU is most commonly used replacement algorithm in almost all operating system. All
the replacement algorithm will either take the arrival time of the page to the memory or how many number of
time the page is referred by the system (the pages which are residing inside the memory). New replacement
algorithm is suggested by modifying current LRU algorithm , the time stamp is mixed with the concept of
frequency parameter in terms of distance. By making this modification page fault both major and minor will

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Jisha P.Abraham et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i2/170902136 Vol 9 No 2 Apr-May 2017 1180

get reduced and the performance of the system get increased. Whenever a page fault occur the processor have
to spent a lot of time inorder to handle it. If it is major fault the processor cycle required is more. That is why
major fault is more expensive than minor fault. The current LRU is replaced with LRU-LFU [6,7]in the kernel

One of the reason behind the page fault is the problem caused by the branch handler. Even if a number of
branch prediction methods are available , none of them are completely error free. Branch handler will give the
preference to the true condition only in the existing system. Modifying the current one with a new concept
CaMMEBH[8], equal weightage will be given to both true and false condition. For this existing data structure
which is used by the handler is modified by adding a new field to it which is able to handle the false condition.
By this the handler will be ensure that the pages which are required by both true and false condition should
present in the cache memory and primary memory.

 PROPOSED SYSTEM II.
In the current system is make use of the CFQ for the disk scheduling , LRU for the page replacement method

and the adaptive prefetching is make for the prefetching method. In the proposed system instead of CFQ we
make use of the MBFQV2 is used for the disk scheduling. In this method the application work is in the service
domain and not in the time domain, they are scheduled by the BFQ scheduler as a function of their budgets.
Regardless of the time interval, workload and disk physical parameter, BFQ guarantees to each application a
minimum possible delay, achievable by serving applications budget-by-budget. BFQ the budget (Bmax) will be
always set as the maximum value of the budget in the request queue and kept it as static value. Which will lead
to the starvation of the smaller processes. In order to overcome the drawback the allocation of the budget is
done in a dynamic way. To make Bmax allocation in a dynamic form new Bmax is calculated by considering
all the applications which are waiting in the request queue. Average budget of all the applications present in the
request queue each time is calculated and is set as the Bmax value. If the average value is greater than
threshold value then the threshold value with maximum budget is set. Whenever a process is completed the
budget calculation will be reactivated by removing the serviced one from the request queue. Along with these
steps C-LOOK scheduling concepts are also considered for the scheduling process, in order to reduce the
rotational latency. The algorithm used for the implementation of BFQ is given in algorithm 1. and the
calculation of the budget value is described under algorithm 2.

ALGORITHM 1 :-
Step1: input: application index, request issued by the application

 step 1.1 insert the request in the request queue
 a d d r e q u e s t (i nit , r e q u e s t R)
 a p p l = a p p l i c a t i o n s [i] ; / / reference to the i-th application
 step 1.2 activate the timer for waiting time calculation

Step 2: Generate the tree structure for the storage of the request
Step 3: Generate the weighted tree corresponding to the request tree

 Step 3.1 Activate the sector calculation function(budget calculation)
 Step 3.2 assign the corresponding budget to various requests

Step 4: select the request for service
 Step 4.1 Calculate the sector distance from the current position to the request.
 Step 4.2 Fix the budget value for the request
 Step 4.3 Dispatch the request
 r e q u e s t d i s p a t c h ()
 Step 5: Activate data transfer function

step 6: Activate the timer function
Step 7: check the status of the dispatch request

 Step 7.1 If the request is serviced completely
 step7.1.1 the request should be removed from the application queue
 step 7.1.2 the request should be removed from the tree
 step 7.1.3 the request should be removed from the weighted tree

 Step7.2 if it is not serviced completely
 step7.2.1 calculate the remaining budget value
 step7.2.1 store the information about how much is serviced

Step8: Extract the next active application from queue
 Step 8.1 go to step 4.3

ALGORITHM 2 :-
defaultmaxbudget =16*1024
update_maximum_budget()
{
Budget =0;

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Jisha P.Abraham et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i2/170902136 Vol 9 No 2 Apr-May 2017 1181

For(i=0…maximum_queue_size)
{
Budget =Budget+Application.Budget;
Application++;
}
B_max =Budget/queuesize; //queuesize is the number application
 //currently in queue
If (B-max>defaultmaxbudget)
{
 B_max =defaultmaxbudget;

}
The page replacement is done based on the LRU-LFU algorithm. Performance of the page replacement

algorithm is measured in terms of major and minor fault[4,5]. Minor page fault is the one when a process
attempts to access a portion of memory before it has been initialized. That is, a potential source of memory
latency is called a minor page fault. When this occurs, the system will need to perform some operations to fill
the memory maps or other management structures. The severity of a minor page fault can depend on system
load and other factors, but they are usually short and have a negligible impact. The fault which is going to occur
in the cache memory will come under this fault level.
 Major fault occurs when the system has to synchronize memory buffers with the disk, swap memory
pages belonging to other processes, or undertake any other Input/output activity to free memory. When the
processor references a virtual memory address that didn't have a physical page allocated to it, the reference to an
empty page causes the processor to execute a fault, and instructs the kernel code to allocate a page and return,
all of which increases latency dramatically. That is the major fault occurring in the primary memory level.
Due to this reason itself major fault is more expensive than minor fault. In this algorithm instead of using one
parameter this method makes use of both the time (when) and frequency (how many). The LFU-LRU, need to
consider the existing parameters available in LRU along with new parameter for frequency (freq).

 For the handling of the branch instruction CaMMEBH is make used. CaMMEBH is a branch handling
method which will make use of both the concept of adaptive prefetching (software prefetching) along with
branch target prefetching(hard ware prefetching) methods. The branch handling are mainly focused on the
conditional statements and the looping constructs in which the execution flow changes from the sequential
manner. When the execution flow changes from a sequential manner, the chance of increasing page fault in
cache memory is more and it reduces the throughput of the system. CaMMEBH reduces the page fault in
memory through prefetching. Its objective is to load the next instruction that follows a branch handling jump
instruction onto memory while executing the jump.

 IMPLEMENTATION OF VARIOUS PHASES III.
The proposed system can be implemented through step by step procedure. It includes the installation and

compilation of Linux-3.13 with modified program code. Kernel building involves creation, loading and
installing of modules and these steps are explained with the use of commands make, make modules, make
modules install. Make command is the one which does building or compiling of program. Loading of module is
achieved by the next command make modules. The installation performed by the command make modules
install.

 PERFORMANCE ANALYSIS IV.
 Table 1, Table 2 and Table 3 will give the details of change in major and minor fault and observation
regarding the various time parameters. The work is mainly concentrated in the improvement of system
performance. For that keep the processor free from the fault handling by reducing the major and minor fault
rate

 Table 1 the details about the major fault in various condition. Here the various scenarios are taken for the
observation. In the first case only the CaMMEBH is considered. Results shows that the number of major fault is
not increasing in any case but in certain cases the fault remains the same. The reason behind this is there is no
major fault is generated inside the program due to the branching statements. CaMMEBH is not able to reduce
any major fault generation other than branching. To handle the fault generation due to other condition, other
methods should be included along with CaMMEBH. CaMMEBH is combined with LRU-LFU, the results are
shown in the Table 1. Number of major fault is reducing in all the cases. The reason behind this may be due to
replacement algorithm LRU in which how the selection of the vitim page is done. If the vitim page selected by
the LRU is the one which is referred by system in the next reference, it lead to major fault. This selection
method is replaced in the case of LRU_LFU.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Jisha P.Abraham et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i2/170902136 Vol 9 No 2 Apr-May 2017 1182

TABLE I DETAILS OF MAJOR FAULT

FILE SIZE CURRENT

CaMMEBH

CaMMEBH+LRU
-LFU

CaMMEBH
+MBFQV2

CaMMEBH+LRU
-LFU+MBFQV2

300KB 7 5 5 4 3
350KB 6 4 3 3 2
912KB 3 1 1 1 1
1.43MB 6 5 4 4 4

2MB 9 8 6 5 3
15MB 5 4 4 4 3
20MB 23 20 20 29 16
25MB 3 2 2 2 1
65MB 24 21 21 20 18
70MB 115 108 100 98 95
75MB 54 49 50 50 47
78MB 56 52 51 50 48

 CaMMEBH is merged with MBFQV2, the results are shown in Table 1. This case also the
number of major fault is reducing in all the cases. The reason behind this may be how fast the pages are made
available in the respective memory levels. If the corresponding page is not available in the memory it should be
taken from the lower memory level. This will depend on how fast the data can move from one level to the
other one. Even if the chance of occurring the fault is detected and the page can't be bring to the main memory
it leads to the major fault. This condition is handling in this scenario.

 Finally CaMMEBH is merged with both LRU_LFU and MBFQV2, the results are shown in Table1.
Here also in all the cases the major fault is get reduced. Fault due to branching, improper page replacement
method and delay due to the waiting in the request queue for transferring the page from secondary to primary
are considered in this case. Results shows that there is a drastic change in the major fault number in certain
cases. But the major fault can't be completely removed from the system. The graphical representation of Table1
is given in Figure 1

Figure 1: Comparison of major fault in various scenario.

 Table2 will give the details about the minor fault. In this cases also the various condition are
considered as in the case of major fault.

300K B
350K B

912K B
1.43MB

2MB
15MB

20MB
25MB

65MB
70MB

75MB
78MB

0

20

40

60

80

100

120 C UR R E NT
C AMM
C AMM + LR U-LFU
C AMM+ B FQV2
C AMM+ LR U-LFU+ B FQV2

F IL E S IZ E

N
U

M
B

E
R

 O
F

M
A

JO
R

 F
A

U
LT

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Jisha P.Abraham et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i2/170902136 Vol 9 No 2 Apr-May 2017 1183

 In the first case only the CaMMEBH is considered. Results shows that the number of minor fault is not
increasing in any case but in certain cases the fault remains the same. The reason behind this is there is no minor
fault is generated inside the program due to the branching statements. CaMMEBH is not able to reduce any
minor fault generation other than branching. To handle the fault generation due to other condition, other
methods should be included along with CaMMEBH. CaMMEBH is combined with LRU-LFU , the results are
shown in the Table 2. Number of minor fault is reducing in all the cases. The reason behind this may be due
to replacement algorithm LRU in which how the selection of the vitim page is done. If the vitim page selected
by the LRU is the one which is referred by system in the next reference, it lead to minor fault. This selection
method is replaced in the case of LRU_LFU.

TABLE II DETAILS OF MINOR FAULT

FILE SIZE

CURRENT CaMMEBH CaMMEBH+L
RU-LFU

CaMMEBH +MBFQV2

CaMMEBH+LRU-
LFU+MBFQV2

0KB 6998 6960 6583 6815 6557

350KB 2161 204 1624 1635 1478

912KB 5139 5116 5110 5205 5104

1.43MB 5601 5510 5837 5680 5456

2MB 240 238 239 237 237
15MB 240 238 239 239 237
20MB 239 238 238 238 236
25MB 239 237 237 237 238
65MB 27481 26457 25783 25233 24346

70MB 36586 33724 33653 33862 33242

75MB 35873 34456 33686 34327 33456

78MB 36487 35343 34586 33726 34543

 CaMMEBH is merged with MBFQV2, the results are shown in Table 2. This case also the number of
minor fault is reducing in all the cases. The reason behind this may be how fast the pages are made available in
the respective memory levels. If the corresponding page is not available in the memory it should be taken from
the lower memory level. This will depend on how fast the data can move from one level to the other one. Even
if the chance of occurring the fault is detected and the page can't be bring to the cache memory it leads to the
minor fault. This condition is handling in this scenario.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Jisha P.Abraham et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i2/170902136 Vol 9 No 2 Apr-May 2017 1184

 Figure 2: Comparison of minor fault in various scenario

 Fnally CaMMEBH is merged with both LRU_LFU and MBFQV2, the results are shown in Table1.
Here also in all the cases the minor fault is get reduced. Fault due to branching, improper page replacement
method and delay due to the waiting in the request queue for transferring the page from secondary to primary
are considered in this case. Results shows that there is a drastic change in the minor fault number in certain
cases. But the minor fault can't be completely removed from the system. The graphical representation of Table 2
is given in Figure 2.

TABLEIII DETAILS OF TIME PARAMETERS

FILE
SIZE

CURRENT CaMMEBH CaMMEBH+LRU-
LFU

CaMMEBH
+MBFQV2

CaMMEBH+LRU-
LFU+MBFQV2

User
time
(sec)

System
time
(sec)

User time
(sec)

System
time
(sec)

User time
(sec)

System
time
(sec)

User time
(sec)

System
time
(sec)

User
time
(sec)

System
time
(sec)

300KB 00.01 0.041 00.01 0.042 00.01 0.042 00.01 0.041 00.01 0.04

350KB 00.00 0.042 00.00 0.043 00.00 0.042 00.00 0.04 00.00 0.042

912KB 00.00 0.042 00.00 0.042 00.00 0.041 00.00 0.042 00.00 0.041

1.43MB 00.01 0.041 00.01 0.041 00.01 0.043 00.01 0.041 00.01 0.041

2MB 00.00 0.043 00.00 0.041 00.00 0.043 00.00 0.041 00.00 0.042

15MB 00.01 0.042 00.01 0.042 00.01 0.041 00.01 0.042 00.01 0.041

20MB 00.00 0.042 00.00 0.042 00.00 0.042 00.00 0.042 00.00 0.042

25MB 00.00 0.041 00.00 0.041 00.00 0.041 00.00 0.043 00.00 0.04

65MB 00.00 0.043 00.00 0.041 00.00 0.042 00.00 0.043 00.00 0.043

70MB 00.01 0.041 00.01 0.043 00.01 0.041 00.01 0.042 00.01 0.041

75MB 00.00 0.043 00.00 0.043 00.00 0.042 00.00 0.041 00.00 0.042

78MB 00.01 0.041 00.00 0.041 00.00 0.042 00.01 0.042 00.01 0.041

 Table 3 the details about time parameters in various condition. Here the various scenarios are taken for
the observation. The results shows that even if the correction is made on the data transfer method, page
replacement method or the branch handler it does not affect the user time or system time parameters. By the
above methods the fault rate can be reduced, but it will affect the execution parameter. Even if all the operating
systems are designed with multi-threading capability the compilers are not able to utilise this feature. The
execution will be done in sequential order only. That is reason behind there is no change in the user time or in

300K B
350K B

912K B
1.43MB

2MB
15MB

20MB
25MB

65MB
70MB

75MB
78MB

0

5000

10000

15000

20000

25000

30000

35000

40000 C UR R ENT
C AMM
C AMM + LR U-LFU
C AMM+ B FQV2
C AMM+ LR U-LFU+ B FQV2

F IL E S IZ E

N
U

M
B

E
R

 O
F

M
IN

O
R

 F
A

U
LT

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Jisha P.Abraham et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i2/170902136 Vol 9 No 2 Apr-May 2017 1185

the system time parameters. If the execution speed has to increase the facility of multithread should be utilized
in proper way .

 CONCLUSION V.
 The results shows that by incorporating these various methods in the current Linux version number of
major and minor fault can be reduced . If the fault rate is get reduced the performance of the system will get
increased by freeing the processor for fault handing condition. Analysis of the time parameter shows that even
if the number of major and minor fault is get decreased the execution time is get reduced. This is because of the
compilers which we are make used. Modern processors are able to handle multiple threads in parallel. But the
compilers are not able to initiate multiple threads. This will affect the execution time parameters. Experiment
results shows that the waiting time is get reduced by the above methods.

REFERENCES

[1] Paolo Valente and Fabio Checconi”High Throughput Disk Scheduling With Fair Bandwidth Distribution” IEEEtransactions on
computers. Vol 59,no.9,september 2010

[2] s.layer and p. Druschel “anticipatory scheduling: A Disk Scheduling Framework to overcome Deceptive Idleness in synchronous/O”,
Proc.18th ACM Symp. Operating systems Principles, Oct 2001

[3] Jisha P Abraham, Sheena Mathew “High Throughput disk scheduling with equivalent bandwidth sharing” Indian Journal of Science
And Technology(Journal extension -IEEE International conference on Innovations in Information, Embedded and Communication
Systems)

[4] Sedigheh Khajoueinejad, Mojtaba Sabeghi, AzamSadeghzadeh. A Fuzzy Cache Replacement Policy and its Experimental
Performance Assessment, 2006 IEEE..

[5] Elizabeth J O’Neill ,Patrick E O’Neill,Gerhard Weikum The LRU-K page replacement Algorithm For Database Disk Buffering
SIGMOD Washington, DC,USA 1993 ACM.

[6] Jisha P Abraham, Sheena Mathew “A novel approach to improve the processor performance with page replacement method”.
International Conference on information and communication Technology (ICICT-2014)

[7] Jisha P Abraham, Sheena Mathew “A novel approach to improve the system performance by proper scheduling in memory
management” 2nd international conference on Emerging trends in electrical, communication and information technologies 2015.

[8] Jisha P Abraham, Sheena Mathew “Efficient CaMMEBH for page fault reduction” International Journal of Applied Engineering
Research.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Jisha P.Abraham et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2017/v9i2/170902136 Vol 9 No 2 Apr-May 2017 1186

