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Abstract— The present paper proposes a control scheme comprising of a new sliding mode controller 
(SMC) with sliding mode observer (SMO) for improved performance of a Brushless DC (BLDC) motor. 
The SMO is used to estimate rotor speed and rotor position using terminal voltages and currents of the 
BLDC motor. The error between actual and estimated currents taken as the sliding surface from which 
the back emf is estimated which is further used to estimate rotor position and speed. The SMC consists of 
both speed control and current control loops where the reference to the currents is derived from speed 
error using PI controller. The speed error and current error together comprises the sliding surface. The 
proposed SMC is an alternative to second order SMC and it eliminates the derivative of the sliding 
variable for speed control thus eliminating complexity while preserving the benefits. The simulation 
results of the proposed scheme are compared with those of the conventional scheme to prove its 
effectiveness. 
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I. INTRODUCTION 

There has been a tremendous interest in permanent magnet drives in recent years due to their excellent 
characteristics like low power requirement, high energy savings and ease of control. Majority of the BLDC 
motor advantages attributed to its construction in which its armature winding placed in stator and field is 
provided withthe permanent magnets placed in rotor. This makes the cooling arrangement is easier for BLDC 
motor as compared to the conventional dc motor. Due to the permanent magnet rotor, the commutation process 
is not possible from the rotor side like a DC motor [1]. So an electronic commutation is used in which the 
supply to the motor will be controlled through inverter. In order to make a phase to conduct, we need to find the 
exact location of the rotor poles and the commutation sequence must be ensured such that a phase difference of 
90o must be maintained between stator flux and rotor flux to get maximum torque [2]. 

To attain information regarding the position of rotor, transducers like hall sensors are used. The hall sensor 
transmits logic high or logic low signal based on the proximity of a pole as the magnetic field of a pole induces 
emf in it. For a three phase BLDC motor, three sensors are aligned with 1200 phase shift to get complete 
information regarding back emf voltages in all phases and this hall sensor circuit is placed on the non-rotating 
part of motor [3]. 

The position sensor circuit requires a special arrangement to be mounted on the motor and need dedicated 
electronic circuitry. If the motor is far away from the control center, then we need a separate cabling system for 
signal transmission. All these requirements increase the cost and reduce the reliability of the drive [4]. Hence 
sensor control schemes cannot be utilized in situations where high reliability is needed and the motor has to 
operate in harsh environments. One of the solutions is to estimate the position of the rotor using voltage and 
current measurements. Since we are eliminating the need of position sensors, it can be treated as sensorless 
control. Sensorless control can also be utilized as a backup scheme where hall sensors are already in use. For 
rotor position estimation, sensorless algorithms depend on measured values of motor currents and motor 
terminal voltages. In many of the sensorless methods, position and speed information is estimated using back 
emf voltages. This back emf estimated either by direct or indirect methods. Further, in direct back emf sensing 
zero crossing detection of the back emf using voltage dividers is utilized. The principle of this method is that 
whenever two of the three phases are conducting, the remaining phase will carry only the back emf which can 
be used for position sensing. But it contains high frequency noise so low pass filters are essential in reducing 
harmonics. But the filter introduces delay and reduces sensitivity. The zero crossing of the back emf does not 
represent the commutation periods and it should be ensured that there will be a phase shift in signals used for 
commutation. These limitations can be eliminated with the indirect back emf sensing methods such as voltage 
integration method or terminal current sensing method [4]. 
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Sensorless methods are further diversified into the open loop and closed loop methods. In open loop 
sensorless methods, the rotor position obtained directly from sensing of terminal voltages without any correction 
mechanism so these methods are sensitive to parameter variations. In close loop methods, observer schemes that 
use internal correction mechanism are implemented. Observers are again classified into full order and reduced 
order models. Full order observers can estimate the states based measurements of all the states but the reduced 
order observer is based measurements of some of the states. Reduced order observers may be a flux observer or 
a current observer. In the flux observer the reference model is a magnetic model and inthe reduced order current 
observer it is the electrical model from which rotor position is attained by estimating the back emf voltages [5]. 

SMO is a reduced order current observer which usesthe terminal voltages and currents of BLDC motor to 
estimate the rotor speed and rotor position [6]. Several methods are implemented in the SMO technique for 
better results. A hybrid SMO proposed in [7] is used for the speed and rotor position estimation in the multiple 
reference frame (MRF). Another SMO scheme presented in [8] estimates the back emf from which the Zero 
Crossing Detectors estimate commutation points. The proposed scheme made an effort to reduce the number of 
gains to be selected properly to ensure the convergence of both states. A new method to sense the rotor position 
and speed for PMSM based on SMO is presented [9] in which the signum function is replaced with a saturation 
function and calculation of differential speed is substituted with a phase locked loop (PLL) and a low-pass filter 
with variable cut-off frequency is used for improved filtering. The paper [10] implemented an Iterative SMO 
which improves the motor speed and angle estimation by reducing the estimation error in the back emf by 
iteratively using the observer and this scheme used a sigmoid function as the switching functionto reduce 
chattering. The paper [6] represented a modified SMO in which the speed component is added in the back emf 
estimation which minimised the phase shift at higher speeds and multiple zero at lower speeds. 

     In the proposed scheme phase currents are estimated within the SMO and then compared with actual 
currents. The error between actual and the estimated currents constitutes the sliding surface. A saturation 
function is used as switching function to reduce chattering. Integration of the switching function provides the 
back emf estimation. Rotor speed is calculated using estimated back emfs and integration of speed provides 
rotor position. A BLDC motor as a variable speed drive has features like ease of control and low maintenance.  
For faster and accurate control, current controlled voltage source inverters are preferred. The conventional PI 
controller and hysteresis controller are simple techniques for the speed control of the BLDC motor. But for 
higher order circuits like this motor these techniques result in poor performance [11]. 

The SMC approach is a most suitable scheme to deal with these types of systems under uncertain conditions 
as it delivers better performance in terms of simple and robust control. On the otherhand SMC suffers with the 
undesirable phenomenon of oscillations called chattering effect as also its control action is discontinuous in 
nature and it ideally operates at infinite switching frequency. It is mainly due to the use of signum function in 
the sliding surface. It is responsible for less accurate control and high stress in the power circuits. Chattering can 
be minimised by using a continuous function to smoothen the switching term before the sliding variable reaches 
the sliding phase. It can also be reduced by using SMC with carrier-based fixed switching frequency method 
with proper design of the parameters [12]. 

There are many approaches in the field of SMC. The paper [13] proposed a second order SMC algorithm 
which requires only the actual motor parameter information and does not need any current feedback. An 
adaptive fuzzy SMC strategy was developed in the paper [14], in which the control law of the controller is 
governed by the control algorithm depending on the output of the SMC to minimise uncertain delay in the 
network control system. A hybrid method of SMC scheme consists of a non-singular terminal sliding mode 
method and the high-order sliding-mode method in [15]. A cascade SMC with PID controller is developed in 
[16] based on an integral control which uses the concept of weight function and error window concept.The 
paper [17] gives a new two-degree-of-freedom PID controller structure based on Takagi-Sugeno fuzzy 
controller for speed and position control of BLDC drives. A second order SMC with anti-windup for BLDC 
motor is proposed in [18] in which the speed control is based on the super twisting algorithm based on the dq 
field oriented frame model. A dual loop control strategy implemented in [19] in which a SMC for speed control 
and a SMO for torque estimation are designed. The paper [20] proposes a SMC with unidirectional auxiliary 
surfaces to deal with indefinite friction forces and inertia. A cascade SMC method is implemented in [21] for the 
closed loop control of torque and speed based on the first order SMC and Super-Twisting algorithm respectively. 
A control methodology of SMC is proposed in [22] in which the SMC is used in the inner control loop and PI 
controller is used in the outer control loop to minimise the steady-state error. 

The drive controller comprises of an outer speed control loop and an inner current control loop. The reference 
of the inverter phase current in the current control loop is derived from the speed error using a PI controller. The 
stability of the system will be improved as the steady state error can be minimised by the PI controller and 
sliding mode is used in the inner current control loop. The speed error and the current error together comprise 
the sliding surface. The saturation function is used as a switching function based on which the proper switching 
sequence of the inverter can be attained. 
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In this paper, firstly based on the modeling equations of BLDC motor, SMO is designed to estimate the rotor 
position and speed. Then SMC is implemented to control the inverter for the optimum performance of the motor. 
The model is simulated using MATLAB/SIMULINK and the simulation results have been presented.  To prove 
its effectiveness, thsese results are compared with those of the conventional control scheme of hysteresis current 
controller with SMO. 

II. SLIDING MODE OBSERVER AND CONTROLLER 

In this presented approach, the observer and the controller are designed based on the dynamic model of BLDC 
motor and their details are given in the following sections 

A.  Sliding Mode Observer 

In SMO, the reference currents taken from the motor model and the adaptive model produce the estimated motor 
currents. The error between estimated and actual currents is fed back to adaptive model to estimate the back emf 
[5]. The sliding mode observer equations for the current and back emf estimation for the phase-A is proposed as,  
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Where aî , aê are the estimated values of phase current and back emf respectively and s  is the sliding surface 

which is the error between actual and estimated currents. The chattering effect eliminated with the use of the 
saturation function which is defined as, 
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Where ε is the sliding surface band. 

The sliding surface reaches to zero when both actual and estimated currents converge. To ensure convergence, 
observer gains a1 and a2 must be selected properly. An estimation algorithm based on sliding mode with a 
combination of a stability theorem ensures stability and convergence of estimation. 

The observer gain values can be chosen such that, 
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For simplicity, consider the absolute value of current observer gain 1a  as, 
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The value of back emf observer gain is proportional to the ratio of actual speed N to maximum speed Nmax is 
multiplied with the back emf observer gain as,  
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Where γ  is a constant. 

The maximum value of phase back emf can be resented as 
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Where kb is the back emf constant and m  is rotor speed. 
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After inserting (12) and constants in both (10) and (11) these equations transformed as, 
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The rotor speed is estimated with the help of back emf voltages as,  
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Where m̂ is the estimated value of rotor electrical speed. 

The rotor position r̂  is calculated with the estimated rotor speed as,  
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Where p is the number of poles. 

B. Sliding Mode controller  

The proposed controller is a modified version of the second order sliding mode controller. For speed control of 
BLDC motor, the sliding surface αs  of a second order sliding mode control is given as, 
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Where e is the error in the rotor speed which can be represented as, 
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Where ref reference is speed and   is actual speed. 

From the electromagnetic torque equation, the state equation of rotor speed is obtained as, 
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From (14) the derivative of speed error is given as, 

)()(
1




  referefe
e

J

B
TT

Jdt

d
        (15) 

Where refeT   is the reference electromagnetic torque which can be derived from speed error using PI controller 

as,  
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As electromagnetic torque and current are related as, 
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Where i the phase is current, tk is the torque constant. Equation (16) can be modified as, 
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Where refi  is the reference current. 
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After substituting (21) and (22) in (19), 
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The sliding surface can be modified by inserting (23) in (17) as, 
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Where   refe  the error in the rotor is speed and iii refe   is the error in the current. 

The proposed sliding surface can be redefined as, 
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Once the sliding surface s  is calculated, the control input to the inverter is selected with reference to switching 

function as,  
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III. RESULT ANALYSIS AND DISCUSSIONS 

The proposed scheme of sensorless control of the BLDC motor using SMO and SMC are simulated using 
MATLAB/SIMULINK using the motor parameters listed in the Table. 1. 

A. Rotor position and speed estimation 

The position and speed estimated with SMO is compared with that of actual values to check the accuracy of 
the SMO. Figure 1 represents actual and estimated rotor position and rotor speed using SMO and SMC at 3000 
r/min.  

0 0.002 0.004 0.006 0.008 0.01
0

100

200

300

400

500

t [s]

R
 [d

e
g

re
e

]

 

 
Actual rotor position

Estimated rotor position

0 0.01 0.02 0.03 0.04 0.05
0

500

1000

1500

2000

2500

3000

3500

t [s]

N
 [r

/m
in

]

 

 

Actual speed

Estimated speed

 
        (a)                                                                      (b) 

Figure1. Actual and estimated parameters using a sliding mode observer and controller at 3000 r/min: 
(a) rotor position R versus time t, (b) rotor speed N versus time. 

From Figure 1, it is observed that the estimated rotor position has an error of 20 with respect to the actual rotor 
position and estimated speed has an error of 0.5 r/min from actual speed. 

B. Speed and torque performance 

 To assess the effectiveness of the proposed controller, a hysteresis current controller scheme is used for 
comparison. The simulation models run at different speeds such as 500 r/min, 1500 r/min and 3000 r/min with a 
load 0.5 N.m applied at 3 s.When the proposed scheme is simulated at 500 r/min, the speed characterstics are 
shown in Figure.2. But their torque curves as shown in Figure 3 exposes that torque ripple is well minimized to 
0.0005 N.m in the proposed controller while in case of a hysteresis controller, it is 0.001 N.m. 
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(a)                                                     (b) 

Figure 2. Speed N versus time (Sec) curve at 500 r/min: (a) with sliding mode observer and hysteresis controller, (b) with sliding mode 
observer and controller. 
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Figure 3. Electromagnetic torque T versus time (t) curve at 500 r/min: (a) with sliding mode observer and hysteresis controller, (b) With 
sliding mode and controller. 
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(a)                                                                                       (b) 

Figure 4. Speed N versus time (sec) curve at 1500 r/min: (a) with sliding mode observer and hysteresis controller, (b) with sliding mode 
observer and controller. 
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Figure 5.  Electromagnetic torque T versus time t curve at 1500 r/min: (a) with sliding mode observer and hysteresis controller, (b) with 
sliding mode observer and controller. 

When the proposed scheme is run at 1500 r/min, speed characteristics are much similar with an accuracy of 0.5 
r/min in both controllers as shown in Figure 4 but their torque curves as shown in Figure 5 depicts that the 
torque ripple is 0.001 N.m using the proposed controller and it is 0.003 N.m using hysteresis controller.When 
both models are simulated at 3000 r/min, the corresponding speed curves are shown in Figure 6 and their torque 
curves as shown in Figure 7 and it is evident that the ripple in the torque is 0.003 N.m in case of SMC and it is 
0.006 N.m with hysteresis controller. 
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(a)                                                             (b) 

Figure.6. Speed N versus time (sec) curve at 3000 r/min: (a) with a sliding mode observer and hysteresis controller, (b) with sliding 
mode observer and controller. 
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Figure.7. Electromagnetic torque T versus time curve at 3000 r/min: (a) with sliding mode observer and hysteresis controller, (b) with 
sliding mode observer and controller. 

TABLE I.  BLDC MOTOR PARAMETERS 

Parameter name  Symbol  Value Unit 

  Poles   P   4 --- 

  Stator resistance   Rs   0.75 Ω 

  Stator self-inductance   Ls   1.75 mH 

  Mutual inductance   M   1.6 mH 

  Back emf constant   kb   0.56 V/rad/sec 

  Torque constant   kt   0.055 Nm/A 

  Moment of inertia   J   0.00027 Kg.m/s2 

  Friction coefficient   B   0.00198 N.m/rad/sec 

  DC voltage   Vdc   160 V 

  Maximum speed   N   4000 r/min 

IV. CONCLUSION  

This paper a closed loop control scheme of BLDC motor using SMC in conjunction with SMO is proposed. The 
SMO is designed to estimate the rotor position and rotor speed to eliminate the necessity of sensors. To check 
the accuracy of the observer, estimated speed and rotor position are compared with the actual parameters of 
BLDC motor and both are identical. The new SMC is implementedwhich is an alternative to the second order 
SMC and it eliminates the derivative of the sliding variable for speed control. The proposed controller is 
compared with the conventional hysteresis current controller and it is proven that the proposed scheme exhibits 
more accurate and faster response in performance improvement of BLDC motor without the need of any 
position sensors. 
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