ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Nancy Yaneth Gelvez Garcia et al. / International Journal of Engineering and Technology (IJET)

Comparison of process planning algorithms
In order to determine their effectiveness in
an operating system through a web
simulation

Nancy Yaneth Gelvez Garcia™, Danilo Lopez Sarmiento*, Nelson Vera Parra™

#1Full Time Professor at Universidad Distrital Francisco José de Caldas,
Faculty of Engineering, Bogota (Colombia-South America)
nygelvezg@udistrital.edu.co
*2 Full Time Professor at Universidad Distrital Francisco José de Caldas,
Faculty of Engineering, Bogota (Colombia-South America)
dalopezs@udistrital.edu.co
" Eull Time Professor at Universidad Distrital Francisco José de Caldas,
Faculty of Engineering, Bogota (Colombia-South America
neverap@udistrital.edu.co

Abstract — This article seeks to compare process planning algorithms in operating systems; for this
purpose test cases are defined for each of them, setting different processes which have a lifetime, resource
and priority in order to perform an analysis and comparison. Similarly, graphical tools are used to
contrast performance and lifetime. Advantages and disadvantages of each algorithm are evidenced based
on the metrics set for processing algorithms within a web simulation.

Keywords — Planning algorithm, Operating Systems, processes, performance, metrics, resource, priority,
appropriative/preemptive, non- appropriative/non-preemptive, queues, gantt.

I. INTRODUCTION

Most computer systems require an operating system as interface to display the processes running and the
hardware that they will use for their implementation during the set lifetime. Thus it can be stated that an operating
system is a set of programs or software that manages system resources and serves as the interface for the user to
perform any actions on the system. In short, the operating system together with the hardware form a computer
system. [1, 2]

Today modern operating systems make use of different methods of planning processes in order to perform
essential tasks for them, thus we can assume they are becoming increasingly complex, due to the ease of
switching from a single-task environment to a multitask one [3]. That is, through its initial configuration the
operating system proceeds to execute processes and assign them to the CPU, ensuring fairness and avoiding
inanition at all costs, in order to allow a series of processes at the same time, maximize CPU utilization of the
CPU and switch between different processes with such a high frequency that users can interact with each program
while it executes [4].

With this background, and understanding that operating systems are a vital part of any computer system, it
opens up to the large and complex world that encompasses everything related to planning processes along with
planning algorithms. It can be said that what this process planner seeks is to meet these objectives, selecting a
process available (within a set of multiple processes) for it to be executed in the CPU. It is important to note that
in single processor systems, there will never be more than one process running: if more, it will have to wait for
the CPU to become available and another process may be assigned to it [5].

Knowing that the operation of each of these algorithms is based on the concept of queues that host all
processes of the computer system, we proceed to develop a study showing and clarifying the notions of the most
used planning algorithms, in addition to their efficiency and effectiveness when addressing various processes in
the system. This simulation aims to make a comparison through their implementation in a web environment.

DOI: 10.21817/ijet/2016/v8i6/160806410 Vol 8 No 6 Dec 2016-Jan 2017 2468

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Nancy Yaneth Gelvez Garcia et al. / International Journal of Engineering and Technology (IJET)

Il. THEORETICAL FRAMEWORK
A. Processes

It could be argued that the processes are the vital unit of the whole operating system, therefore they are the
most important concept that is immersed within an operating system, because they are a small abstraction of a
running program that has the ability to operate concurrently, even when there is only one CPU available [1].

Also noteworthy is that every process executed changes status as time passes and this is defined as the current
activity of that process. Several types of statuses (Fig. 1) which are defined as:

e Execution: The process currently running.

e Ready: processes waiting to be executed.

e Blocked: processes that can not be run until a certain event ends, an /O operation.
e New: a process that was just created.

e Completed: a process that has completed its function, was executed and completed.

[New]
Issue Blocked
Read
—> Performance
T Time -out 7T
Event
occurs
expected
events

Blocked

Fig. 1. Five-status model. [6]

Some examples of processes stand out, such as word processors, a web browser and an email program, seeking
to achieve a result defined in terms of concrete actions to be performed within a given time [7]. Such processes
are often associated with certain properties such as name, resources needed, runtimes or probable completion,
priority, etc. [8].

B. Process planning

Each time the operating system is executed, the user may or may not make the decision to execute one or more
processes simultaneously, then each process is assigned a ready state and arranged to be serviced by the CPU.
This decision which is a part of the operating system is known as process planner and the algorithm used to
service the processes that are in the ready queue is known as planning algorithm [1].

Not surprisingly, depending on the environment different planning algorithms are required based on the
objectives that it wants to meet. Consequently, optimization within the planner is a subjective concept depending
on the system that uses it [1].

Then, throughout the centuries a series of algorithms have been developed that according to their nature serve
different purposes. They are governed by the precept of what each of them should do and what a good planning
algorithm should have, according to the goal that must be accomplished they will be desirable or not, within the
application environment [1, 5], below some of the basic criteria will be explained:

e Utilization of the CPU: desire to keep the CPU as busy as is possible.
e Processing rate: the number of processes that pass over to the completed queue per unit of time.

e Runtime: how long it takes to execute a process. Defined as the interval from the instant the process
execution is ordered to the time it is completed.

e Wait time: the sum of the cost in time of some processes while waiting in the ready queue. Note that
the CPU planning algorithm only affects the time that a process invests waiting in the ready queue.

e Response time: time elapsed since the request is submitted until the first response occurs.

Having clarified these concepts, it is said that the desired objective is to maximize CPU utilization and
processing rate, minimizing the wait time, the execution time and response time. But we should also consider a
very important feature in planning algorithms and that is the type of discipline applied, which are divided into [9]:

DOI: 10.21817/ijet/2016/v8i6/160806410 Vol 8 No 6 Dec 2016-Jan 2017 2469

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Nancy Yaneth Gelvez Garcia et al. / International Journal of Engineering and Technology (IJET)

e Appropriative: One the CPU has been assigned a process, it cannot be withdrawn, i.e., it is non-ejecting.

e Non-appropriative: One the CPU has been assigned a process, it can be withdrawn, i.e., it ejects the
process.

I1l. SIMULATION DEVELOPMENT

Having introduced the basic concepts of operating systems, we proceed to do a web simulation where planning
algorithms are evaluated: Round Robin, Shortest Job First (SJF), Short Time Remaining First (SRTF), planning
by appropriative and non-appropriative priority, multiple queues and multiple queues with feedback.

In order to evaluate the individual behavior of each of the planning algorithms, a metric is set based on the one
proposed by "Tanenbaum™ [1] with certain modifications. In Equation 1, we can see clearly how each of the
criteria is defined for this particular exercise as it is important to note that the five-status model will not be used
entirely, therefore it does not apply fully. However the same concepts previously explained for planning
algorithms are used.

Response time (t)= time elapsed since the creation of the process until it is served on the CPU
Process time = lifetime
Wait time (TE)= Response time - Process time
TimeP= TE + t where t equals performance
Penalty (P)= Response time /Process time
Response portion= 1/ Penalty
Total time = sum of total time of running processes
CPU utilization = (total time*100) / execution time of simulation (1)
For clarity, the statuses that are handled in this simulation are as follows:
e Completed: the process successfully completed its lifetime or quantum, as appropriate.
o Ready: the process is waiting to be executed.

e Blocked:the process cannot run and will remain in this status until the resource it needs to fulfill its
function is released.

e On hold: the process was interrupted by an action that occurred within the system and will have to
wait until the penalty time stipulated for this queue is met.

Additionally, to measure and calculate the effectiveness of each of the planning algorithms which is one of the
pillars of this study, the following Equation is proposed:

Effectiveness = (Wait time - Time in CPU) / Total processes (2)

Applying these criteria will allow not only to give qualitative values on the performance of each of these
planning algorithms, but also assign a quantitative value which will allow to conclude which one is the best time
to avoid process inanition. Consequently, for the development of this simulation it is crucial that the same
processes are used for all and each one of them, as shown in Table 1, in order for the simulations to be under the
same conditions ensuring the accuracy and validity of the results.

DOI: 10.21817/ijet/2016/v8i6/160806410 Vol 8 No 6 Dec 2016-Jan 2017 2470

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Nancy Yaneth Gelvez Garcia et al. / International Journal of Engineering and Technology (IJET)

TABLA I. Process description by processor

NAME | LIFETIME | PRIORITY | RESOURCE
Processor 1
PO 34 1 Printer
P1 54 3 Speakers
P2 23 1 Keyboard
P3 65 2 Printer
P4 32 3 Printer
P5 76 1 Mouse
P6 54 2 Keyboard
P7 12 3 Mouse
P8 35 3 Speakers
P9 83 2 Keyboard
Processor 2
PO 90 1 Speakers
P1 76 2 Printer
P2 35 1 Speakers
P3 89 2 Mouse
P4 70 3 Mouse
P5 47 2 Speakers
P6 85 2 Keyboard
P7 13 3 Screen
Processor 3
PO 78 1 Speakers
P1 42 3 Keyboard
P2 67 2 Keyboard
P3 45 3 Mouse
P4 86 1 Printer
P5 94 2 Printer
P6 23 1 Printer
P7 13 2 Screen
P8 54 2 Screen
P9 87 3 Mouse
P10 32 2 Printer
P11 72 1 Keyboard
P12 49 3 Speakers

A. Round Robin

One of the oldest, most simple, impartial and widely used algorithms is Round Robin or circular shift. In which
each process is assigned a small unit of time, known as quantum, which ensures that the CPU is shared equally
among all processes and there is not a process that monopolizes. The Quatum decreases only when the process is
in the CPU or critical zone, once this portion of time, if the process still has lifetime, this becomes suspended
state and the quantum will be recalculated to go again to the ready queue. Otherwise, the process state passes over
[10]. Also noteworthy is that the processes in the ready queue are governed by the concept of FIFO (First Input,
First Output), first in, first out.

DOI: 10.21817/ijet/2016/v8i6/160806410 Vol 8 No 6 Dec 2016-Jan 2017 2471

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Nancy Yaneth Gelvez Garcia et al. / International Journal of Engineering and Technology (IJET)

One of the most interesting questions of this algorithm is the length of time quantum and appropriation of the
CPU until the quantum of time has expired. Despite being these innovative features in its infancy, this creates a
major performance problem, because of the dependence you have a good estimate of the quantum; so, if it is
small, all processes will be interrupted several times, affecting processing speed [11].

Then in Fig. 2, the results obtained from simulation and values that threw its metric is.

B. Shortest Job Firs (SJF)

This algorithm gives priority to processes that have a shorter lifetime within the ready queue. Every time SJF is
executed, the queue is order by lifetime for the one with the shortest time to be the first to run. As this is a non-
ejecting or appropriative algorithm, the process that is in critical zone (CPU) will not be interrupted until
completion or until an interruption occurs in the system [11]. One feature to highlight is that shall there be a tie,
this is settled by FIFO.

It is important to understand that in the absence of a quantum, the process will not enter the on hold status
unless an interruption occurs in the system. Excluding the above it can be said that the behavior of the blocked
and completed queue is the same as R.R.

Because of its nature, it is possible to say that SJF is optimal in the sense that the wait time for processes that
have less time is minimal, but processes with too large times will present a very high wait time, therefore this
mechanism is said to be useful for long-term planning.

Gantt Processor # 1 Gantt Processor # 2 Gantt Processor # 3

T R T T S . T T — T
oo ato o200 oo oans o0 oo o100 0200 o100 nano %00 a0 oxca oo opos exoa B0 0%00 Deno or0n

metric processor # 1 metric processor # 2 metric processor # 3

Time Rewponss Wan Tine Bewpome Wit
4 b 4 vt e b

1 ana a0 O148145140140040 0109111 FAMGOGRITS P ™ 78
"

FOMASEIZIIING COATIISAUTEISOTES P2 " [T} BARSTIATASTI ATNES OLIRGANSIASS0NAINTY 2] any

i
"

e 3 HETBNIONGRLITT ilmdlessiatiaar P " s P —
u
2

IGmROIEIEEMAN P ar ara

QUTINMANATRIROS PO ™ m

omsnisTEIeAzIAny FT " a7 304

™ = 183 1zm ABSTIAIRITIATIATS 0IVATINEI030800 " - e,
-

CPU Performance T

o s a1 e SALAIIGRETARETD | O1AOAEIA FATIIEIG

CPU performance was 67% therefore, it can be concluded that the =

CPU Performance algorithm is efficient — :,

CPU performance was 62% therefore, it can be concluded that the
algorithm is acceptable

=] 658 (D0 MEMRMRAARE 00086101 MRS 1T

2z 2 601 TLMAIZIAMSTOSEE DOTSISIITAZINIIRED

CPU Performance

CPU performance was 9% therefore, it can be concluded that the
algesithm Is efficient.

Fig. 2. Round Robin planning algorithm
Fig. 3 shows the results obtained after applying the SJF algorithm to a set of previously established processes.

DOI: 10.21817/ijet/2016/v8i6/160806410 Vol 8 No 6 Dec 2016-Jan 2017 2472

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024

Gantt Processor # 1

Nancy Yaneth Gelvez Garcia et al. / International Journal of Engineering and Technology (IJET)

Gantt Processor # 2

Gantt Processor # 3

L L] Ll
"
M (1] rn
P2 " =
P1 L] [+
P P4 "
P [P |
)
v » #ia|
bl Lll
| 1
ot T T LI, AL L S I S T 1 1T 171 L T T T ¥ T T T T
0100 ax00 0300 000 0500 000 arom AD0 OO o000 Ol00 ORO0 0L00 0400 0500 OO0 OF00 OO0 ORO0 M0G0 0000 0400 000
metric processor # 1 metric processor # 2 metric processor # 3
Tiewsr Reapomia Want Tine Furigronde Wt * Tavw Respene Wt rate
Home o fng Penalty Rerponse abe Hawe — b Feealry Resporae rate Hame b — Penalty Heaponie rats
o - 138 103 4 o0 L L 4 m A AT QIVQASTIAZASTIAIT o 7w 81 481 TARIOTESTIONGRIS D1IM0ITAII 5508001
L] - 4 150 ASTRSIESTRSIASIN O2VNNI4TSA0RNIGT L T a1 os LIMI0S61 1 ATEREFE OAFSISIONPONS4EET Ll ar b EL NASTI42ESTRAJASTY O538461518441 5384
(7] 1 iy 12 1531 TH01I0SARTET? DB I428ATIEIHATY L] 113 " w0 ATIESTIATEST A annnnnnnny Lo or m e AT MIZAISENG O2IBSEMITOSINT
(4] - 9 244 ATHABMGISIR4G1SA D21DNSSSETOS501018 L2 L s 241 1707865 885393 26 0 e e st L2} a5 e (L1 SOURINNIIIINIZYY DN S0MAT4TTATSY
1] n 10 o LIATS CNIIT SN0 0T L) n m L AT QRTINS DHIBAONHIHG 153 Lol L 4a3 L SA162TO0BATEIA] O17R0IAI0ZIT A0S
PS5 ™ T 3y SISSIAHISTENTIT OIBSTIZIBETIH AT L] ar -0 " N XPEAOS TasssRi N1 OTARIRESAANNLY P - rar L) TAOIGT RO ITeSUEE 01266848301 1HSG84
3 “ 190 AL LSTESTAS NSNS IS OLTBA21040601 5T 007 L3 as 575 A A TOATISRIZ IS Y O VATEMDBGESG5 TS o 1] n o L} 1
L 7 12 e 1] L " " o 1 1 Lcs 11 » n 1000760150060 O3SIIEIRINININD
. w — I CPU Perf m ou om T —
erformance m
e o 40 SOOMIMSTENIZE OMGREETTESNO0M08 L Lo L 581 TASEITSROIOGEMES 01 JATSRISATSATSIT
cPU @ was 67% therefore, it can be concluded that the i
ﬁﬂol’l‘hlﬂ is effickent. il n Wy s 1240615 DOBOR0AS MOOE0ITTR
CPU Performance o e T ST GTTReTTeTy
CPU performance was 62% therefore, it can be concluded that the prov——— pree. - P —p———————
algoithm is acceptable
CPU Performance

C. Short Remaining Time First (SRTF)

Fig. 3. SJF planning algorithm

CPU performance was 93% therefore, it can be concluded that the

algosithm is efficlent.

It is an improved version of SJF and therefore, is very similar. The difference is that the design is based on a
non-appropriative algorithm, i.e. it ejects the processes found in the critical zone depending on the condition to be
established [11].

In this case the condition of removal is based on whether in the ready queue there is a process that has a shorter
lifetime compared to that found in the CPU, then it will be interrupted and sent to the on hold queue until the
penalty time finishes and it returns to the ready status with the remaining lifetime.

Fig. 4 shows the application of this algorithm in terms of the Gantt chart and its outcome in terms of the metric
proposed.

Gantt Processor # 1 Gantt Processor # 2 Gantt Processor # 3
" — " I
T
" | i
] "
== ” — |
el EE— E—
- —— ~]
v — " —
" -]
]
Fio L
o] R0 000 L]) 000
metric processor # 1 metric processor # 2 metric processor # 3
Tirs: Buripime W hame Tire: Reiponas ol e rate
e [T P W [— N — Perty esoonee o D Ry
w w w W S Messemmesien ORI o onm om ot assanoressa
L - " 55 LAIPBAMGASEIVEMG OLEEDOIIANINNDI 1238
] ™ " e EIANSTANTIAN O SANIINNARNNILNT " L4 m 4 Lreesii4edesess) LMK ST A081 ST
L] - 4 " [
" 8 [° 1 L a8 @ 1 1
T TR Ty .
y = w1 m
L] b] " 15 TALET I TSRS | PotRT OIOUASANG FIi6ATE L - anr 1 SIANCTEIIMOAN O NSTHOMISITIITIS
" = m = w o w T —
F m av o sseresaes aumssmssie
L] -] " L3 1 1 L] " " L} VOMGATIETHAIMIND 0T ERSTIA TG
m u owm w3
Ll " 3 o 1 1 L) - " ¥ FOAISRASRISAITII 9 SRSATITINEN 156
w @ wm w3 [
m w R T —
w u ow T —
L] n " - 190825 4a0med;| i
W B 0B R e CPU Performance S ey
L 5 CPUp it 0560850054 7143062
algorithm is efficient. T >
CPU Performance
b Reanb CPU Performance

[veas
aigarithm Is acceptable

DOI: 10.21817/ijet/2016/v8i6/160806410

Fig. 4. SRTF planning algorithm

Vol 8 No 6 Dec 2016-Jan 2017

CPU performance was 83% therefore, it can be concluded that the

algesishm is afficient.

2473

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Nancy Yaneth Gelvez Garcia et al. / International Journal of Engineering and Technology (IJET)

D. Appropriative priority algorithm

This algorithm establishes an initial priority to all and each of the processes to be executed within the system,
from a series of well-defined criteria:

e High — system process, also known as priority 1.
e Medium - processes performed by the user, also known as priority 2.
e Low - input and output processes, also known as priority 3.

Once this priority is established, processes will be served according to their importance in the processor, for
this exercise, the top priority will be the system processes. Should there be a process running and in the ready
queue there is a higher priority process, it cannot be served until the process in the critical area ends its lifetime
[11]. Therefore, it can be said that this type of algorithm is similar to SJF, the only difference is their ordering
criteria.A major problem with priority planning algorithms is the indefinite block or inanition, because the low-
priority processes can stay waiting indefinitely to be served while there are still processes with higher priority
[11].In Fig. 5 the graphical and numerical implementation of this algorithm results are shown.

E. Non- appropriative algorithm with Priority

The non-appropriative algorithm with priority s a variation of the algorithm described in Section D, except this
one has the ability to eject the process that is running in critical zone. If upon comparison with those found in the
ready queue, there is a process with higher priority, this process will go into on hold status and upon ending its
penalty time it will go back to the ready queue. In case there are multiple processes with the same priority, they
will be served by FIFO.After running the algorithm, the results from the metric used were obtained, where
inanition is less evident in the processes regarding the appropriative priority algorithm. For more clarity, see Fig.
6.

F. Multiple queues

This kind of planning algorithm is a solution developed to the problems that arise with the above algorithms. It
is vital for operating systems where processes coexist with different needs. This algorithm is based on a
predetermined scheme which gives special treatment to the processes according to the queue in which they are
[11]. Here priorities are also handled, but this time the priority is in the queue, which means that there is a queue
(ready, blocked and on hold) that has a higher priority over the others.

It is also worth emphasizing the appropriation of processes over the CPU and a defining characteristic of such
algorithms, which specifies that until they find a queue (ready, blocked and on hold) that is completely free, they
cannot move on to serve the following [11]. And this condition generates inanition processes in lower priority
queues until they are fully served.

Gantt Processor # 1 Gantt Processor # 2 Gantt Processor # 3

CPU Performance

CPU performance was 67% therefore, it can be concluded that the
algoaithm is efficient

Fig. 5. Appropriative priority planning

For this exercise only three lines were used, each programmed with different Round Robin, SRTF and FIFO
planning algorithms, assigning high, medium and low priorities respectively. After completion of the algorithm,
the following results were obtained (see Fig. 7).

DOI: 10.21817/ijet/2016/v8i6/160806410 Vol 8 No 6 Dec 2016-Jan 2017 2474

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Nancy Yaneth Gelvez Garcia et al. / International Journal of Engineering and Technology (IJET)

G. Multiple queues with feedback

This algorithm is governed under the same concept of multiple queues, which allows the movement of
processes from one queue to another when a process takes too long in the CPU or when its aging time is over, but
the difference is that the CPU is not being appropriated, if for example, there is a process in the critical area that
has priority 3 and one with lower priority reaches the system it will be rejected and put on hold. This means that
this algorithm performs a comparison between the CPU and the ready queues to determine which process should
be executed first by priority [11].

Multiple queues with feedback as a solution to the major problems of inanition and indefinite blocking apply
the aging mechanism, a technique to gradually increase the priority of the processes that have been waiting a long
time in the system [11]. That is, a process that has been waiting too long in line 3, upon ending its aging time will
jump to line 2 and so on.

Gantt Processor # 1 Gantt Processor # 2 Gantt Processor # 3
¥
o p— " I
] " L 4
" " el Co—
mim 3 = n ——
. —
" — — o
F7 — L | Pl g _——
vu = " i —
2] Pia|
"o Lo L1
T T v T T T
) 0500 1o 0 00 o) o 0500 2 1500
metric processor # 1 metric processor # 2 metric processor # 3
T =1 o
e T N W it e — P -y RS,
P ome bt Bepem
L] - " “ o 12 "0 Py oy oy P a 0 b L] o ABONAT WA TE 0 20A0000000000000]
L £ e {1 031958] ™ Iy e 2 ™ " & m 154 LrmsOTas ean ST NP0 AT
T P ! B —— —— - n o5 on ') '
s om) [n ow m [T TR ———
n m m w1 3
R o — = nom W W1 SIS BIReRITITY
P ™ EEI NSMTMAAIGEMI OATTISEITIY 1) - = = T mon 1M ARSI GIATEELIENSAIN
mooM o m m o e rg—— = . mou ou | eMMMSIT OSISTIGETIN
] & 1 L] 1 03208 L - “w £} 1029 QOVAILAITIEN Ma
o 1n L] o 1 1
L] 12 " n 2 0 T - - L 55 S MMLAR)THIAI0N XSV 1T07
L] ¥ & 12 1A 1 A20ET 14T 0T essB0nS LOR I L] -] a ot Loou3s AR S04 TRT
Pl L]] 5 1 OROM0MMSSAIIN OSIFRIRIATRIANE) CPUPerrormance LA 0e w 15} HSEARARRAREAY DU S045ET | 555654
CPU performance was 61% thesefare, it can b the
algorithm & efficient, LU - [1 1
CPU Performance
CPU performance was 61% therefore, t can be concluded that the CPU Performance
S boaphbie CPU performance was B3% therefore. |t can be concluted that the
algorishm i efficient.

Fig. 6. Non-appropriative planning algorithm with priority

Gantt Processor # 1 Gantt Processor # 2 Gantt Processor # 3

e

metric processor # 3

D00 DIED DN OMEA DAS G0 GMOD GwSn GASO feSe JDS0

metric processor & 1

e — P
W e e onamy Rt o o - o ™ EY - B IR T -
o » - o 1 . L a3 s 4 ML e i
" - am an 9. L] - e an TALPRIIENINSSTE
L] n o "wr o el] a L -
] 5 w0 s ’ - ” s —— . - i1 o
———— LT T R DT P g
] ™ "l L) 2] -3 - n)
Y s ns - . - e TN L] " an ne R M PR GDATIRAN 1 A POl
" " s "r " ot e]) 3 o
W - : e —— e T en eummemie armmmmmen
™ - TV EPil Parfarrianes e w m o TaTT
[Itcan that 1 - ~
algorithm is efficient. iz 4 - ™ TABTTEII 0300 16 R0 ML
CPU Performance
riormance was i thenefare, |t can be conckuch at
f:;;l"ﬁwl‘:“(-l,l‘l;m o lare, It o Bucled that the CPU Performﬂnce
CPU performance wai. W% therefare, it can be concluded that the

algarithen s effacient.
Fig. 7. Multiple queue planning algorithm

Despite the advantages of this adaptation algorithm based on the system that is to be applied, a high
complexity arises in defining the best set of planners required for a specific environment. In this case, the same
configuration will be used for multiple queues and results will be evaluated as shown in Fig. 8.

DOI: 10.21817/ijet/2016/v8i6/160806410 Vol 8 No 6 Dec 2016-Jan 2017 2475

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Nancy Yaneth Gelvez Garcia et al. / International Journal of Engineering and Technology (IJET)

Gantt Processor # 1

]

—_—mm

g 171231221

melric processor # 1

CPU Performance

Gantt Processor # 2

il

CPU Performance

L e et reymiicon wais £ Paetuite, 1 £ars b corstiusted at 1P aligoiion & actoptale

Gantt Processor # 3

HHIHEEEEUED
]

H

CPU Performance
e

It ean

Fig. 8. Multiple queues with feedback planning algorithm

IV. ANALYSIS OF RESULTS

After execution of the planning algorithms, the simulation produced the following results that contrast
performance versus runtime. It can be seen that time varies depending on the algorithm and in general processor 3
behavior tends toward better performance.

The Round Robin planning algorithm ran all its processes in 751 seconds and its performance on most
processors tends to decrease over time (Fig. 9). The troughs show some kind of prolonged inactivity, therefore we
can say that the algorithm is acceptable.

Round Robin

performance pescentage (%)
5 &

.......... A RARAMNGBRARRRRBNGHNTNIEOUBGRBARRGIENGUBNNIEaNRGERERS
time {se<)

1 F]

o 3

Fig. 9. Performance of Round Robin Planning Algorithm

DOI: 10.21817/ijet/2016/v8i6/160806410 Vol 8 No 6 Dec 2016-Jan 2017 2476

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Nancy Yaneth Gelvez Garcia et al. / International Journal of Engineering and Technology (IJET)

On the other hand, the SJF algorithm and appropriative priority algorithm show better performance in CPU,
since the peaks and troughs are not as pronounced and inactivity of the critical zone starts later with respect to the
previous algorithm. Fig. 10 shows that the runtime for the proposed processes was 721.

Appropriative Priority

100

— —_—

performance percentage (%)

B RERREEEY ST TSV ARRERESCESITIE5HERARE
time (sec)

essor 2 ; 3

SJF

performance percentage (%)
g

time (sec)

essort 2 r 3

Fig. 10. Performance of SJF and appropriative priority planning algorithms

The SRTF and non-appropriative algorithm with priority, as shown in Fig. 11, show greater variety in

performance of the critical zone of each of the processors, as process ejection generates downtimes and strong
activity peaks.

SATF

petrmarc prte

IECEYSIRENERAD

nonpresmptive with priority

performance percentage (%]

Fig. 11. Performance of SRTF and non-appropriative algorithm with priority

DOI: 10.21817/ijet/2016/v8i6/160806410 Vol 8 No 6 Dec 2016-Jan 2017 2477

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Nancy Yaneth Gelvez Garcia et al. / International Journal of Engineering and Technology (IJET)

By nature, multiple queues have a greater runtime for process completion. As displayed in Fig. 12, this
algorithm shows with more urgency a downtime in critical zones, but performance remains constant over time.

multiple queues

performance percentage (%)

Fig. 12. Performance of multiple queues algorithm

Finally, multiple queues with Feedback (Fig.13) present a more uniform and consistent performance over
time since having an aging time makes possible combating inanition processes easier.

multiple queues fed back

performance percentage (%1

Fig. 13. Performance of multiple queues with feedback algorithm

By averaging the criteria that are involved in the metrics, it can be seen that some algorithms respond better
due their nature as evidenced in Table 2, comparing their response time, wait time, penalty time and response
rate. It shows that the SRTF algorithm has a better response in all items.

Given that the response time refers to the time it takes for the process to be served, this is one of the most
important and conclusive metrics to determine the superiority of an algorithm. Having said that, SRTF and the
non-appropriative with priority algorithms manage to optimize management of processor resources, minimizing
in each of its processors the indefinite blocking and process inanition.

Another metric that can support the above statement is the "penalty" in which a more lenient process behavior
is observed, so they do not waste time in queues designed to penalize but to concentrate more on ready queues.

Also in Table 2, it is clearly seen that is no coincidence given by a context pattern, the similarity in the results
obtained by the metric, but instead is a behavior that persists between processors 1, 2 and 3, where despite the
change of initial conditions, number of process, lifetime and priorities, they remain around the arithmetic mean.

DOI: 10.21817/ijet/2016/v8i6/160806410 Vol 8 No 6 Dec 2016-Jan 2017 2478

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Nancy Yaneth Gelvez Garcia et al. / International Journal of Engineering and Technology (IJET)

TABLE II. Average criteria for evaluation of planning algorithms

Processor 1

Round Robin 354,4 307,6 9,3 0,2

SRTF 153,7 107,4 3,0 0,5

Non-
Appropriative 153,7 107,4 3,0 0,5
with priority

Multiple queues

with feedback 336,2 289,4 78 0,2

Name Response time ~ Wait time Penalty Reponse rate

SIF 2418 178.6 34 0.4
Appropriative 2418 178.6 34 0.4
with priority ' ' ' '

Multiple queues 310,3 247,1 8,5 0,3

Processor 3

Round Robin 513,7 456,6 10,4 0,2

SRTF 195,9 137,6 3,0 0,5

Non-
Appropriative 195,9 137,6 3,0 0,5
with priority

Multiple queues

with feedback 6014 544,3 14,0 0,1

DOI: 10.21817/ijet/2016/v8i6/160806410 Vol 8 No 6 Dec 2016-Jan 2017 2479

ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Nancy Yaneth Gelvez Garcia et al. / International Journal of Engineering and Technology (IJET)

V. CONCLUSIONS

Appropriative planning algorithms such as Round Robin, significantly help improve processor performance,
thanks to the fulfillment of the objectives of efficient planning, when partitioning process runtime. This addresses
its shortcomings by merging with priority algorithms and aging strategies to reach the expected performance.

It is difficult to make a definitive comparison between all planning algorithms, because performance depends
on several factors, including the probability distribution of process service times, planning efficiency and
mechanisms of change of context.

It can be stated in regard to the simulation presented, that the calculation of quantum length directly affects the
performance of the planning algorithm, for example, a short quantum with respect to process lifetime reduces
CPU performance, and a long quantum negatively affects response times.

Processes that are assigned a low priority or a very long lifetime, show inanition in planning algorithms that
are based on priorities and those sorted by lifetime.

REFERENCES

[1] A.S. Tanenbaum, Sistemas Operativos Modernos. Pearson Educacién, México. 3 — 7. 2009.

[2] H.M. Deitel Introduccion a los Sistemas Operativos. Addison-Wesley Iberoamericana, México. 1987.

[31 A. Singh,, P. Goyal, S. Batra. An Optimized Round Robin Scheduling Algorithm for CPU Scheduling. International Journal on
Computer Science and Engineering Vol. 02. 2383-2385. 2010.

[4] A.Silberchatz, P. BGalvin, G.Gagne. Operating systems concepts. John Wiley & Sons, Inc, Estados Unidos. 2003.

[5] A. Silberchatz, P. BGalvin, G.Gagne. Fundamentos de los sistemas operativos. Mc Graw Hill, Espafa. 2005.

[6] H.J. Ortiz, Sistemas operativos modernos. Sello editorial, Colombia. 2005.

[7]1 J. A. Jiménez,J. J. Medel,Planificacién por prioridades para sistemas SISO a través de un controlador. Latin-American Journal of
Physics Education. Vol. 5, N°. 1. 2010.

[8] A.S.Tanenbaum, M. V Steen Sistemas Distribuidos. Pearson Educacién, México. 2008.

[9] D. Martinez, Sistemas Operativos: disefio e implementacion. Martin Iturbide, Argentina. 1998.

[10] A. Mclver, IFlynn, Sistemas Operativos. Cengage Learning Editores. México. 2010.

[11] P. Martinez, M. Cabello, J. C. Diaz, Sistemas operativos: teoria y practica. Ediciones Diaz de Santos. Espafia. 1996.

DOI: 10.21817/ijet/2016/v8i6/160806410 Vol 8 No 6 Dec 2016-Jan 2017 2480

