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Abstract—The multiobjective hybrid ant colony optimization (ACO) and bees algorithm (BA) is
proposed to solve multiobjective optimal placement of public fast charging station (FCS) for battery
electric vehicle (BEV) on power distribution system. This new algorithm is named as MOHACOBA. It is
used to minimize simultaneously both total cost associated with FCS and feeder loss on distribution
network under many constraints of the power distribution system and traffic condition. The IEEE-69-bus
in Tianjin Development Zone is the test system for the proposed approach with three case studies on fast
charging head size. In order to verify performance of algorithm, four performance metrics (Hypervolume
ratio, error ratio, spread and epsilon indicator) is applied to measure quality of Pareto optimal front of
proposed method and it is compared with other multiobjective optimization methods i.e. MOPSO, NSGA
Il and MOACO. From the results, quality of Pareto optimal front of proposed approach is better than
other methods. It can be summarized that MOHACOBA algorithm has effectiveness and robustness to
obtain multiobjective optimal placement of FCS on power distribution system.

Keyword-Fast charging station, Battery electric vehicle, Ant colony optimization, Bees algorithm, Power
distribution system

NOMENCLATURE
. . Number of branches in the power
N T
Necs Number of fast charging stations s distribution system
Maximum limit of distance between the

Ney It?;?g;:yg]ebreé;; BEVs to be D mex FCS and the EV load point (meter)

Number of BEVs in the p™" EV Distance between two adjacent FCSs
n D

P load point Fes (meter)

¢ Average charge time of an BEV D Minimum distance limit of two adjacent
cHe (hr) Fes FCSs (meter)
t Service hours of FCS each day Dmax Maximum distance limit of two adjacent

(hr) Fes FCSs (meter)
4, Eggber of fast charger head in a I Load factor of ECSs

+th
ceilin Ceiling function poutput Rated power output of a FCS at the i" bus
g[ ] g FCSi (kW)
. - - .th
rand[ ] Random function pmt Active power input of a FCS at the 1" bus
(kW)

Cost Total cost associated with FCS input Reactive power input of a FCS at the i"

(CNY) Fest bus (kVar)
C Initial investment cost of FCSs ginput Apparent power input of a FCS at the i"

INV (CNY) Fest bus (kVA)
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Rated power output of fast charging head

C maintenance cost of FCSs povtet .
0&M Hi th
(CNY) of a FCS at the i” bus (kW)
C Annual travelling cost of all P Active power supplied from the
TRV BEVs for recharging (CNY) sus distribution substation (kW)
Reactive power supplied from the
h FCS number Quue distribution substation (kVar)
INV Investment cost of the h" FCS pmax Permitted maximum active power supplied
" (CNY) suB from the distribution substation (kW)
) Permitted maximum reactive power
I, Interest rate (%) A supplied from the distribution substation
(kVvar)
iy Investment period (yr) kWh,, Battery capacity or size of an BEV (kWh)
: ith
¢ Conversion coefficient v, Voltage_ma_gnlt_ude at the i" bus of the
power distribution system (pu)
X Road twist coefficient Ng Number of buses in the distribution system
n rSorzgoth traffic coefficient of the S j Apparent power flow in the j"line (MVA)
5 Travelling cost rate of an BEV g rted Rated apparent power flow in the j"line
(CNY/km) j (MVA)
Annual recharging frequency f -
1 (times/yr) effcs Efficiency of FCS
Turnaround coefficient PFecs Power factor of FCS
G Service parameter for the a Relative influence of the pheromone trail
ph p"BEV load point of the h™ FCS information
Distance between the p"BEV
D, load point and the h"FCS p Relative influence of heuristic information
(meter)
nl Number of BEV load points in Heuristic function of then* station at the
the residential area hi i"bus
Total travelling time for - . . .
T ° . n th
allev recharging of all BEVs (hr) T Trail intensity of then» station at the i bus
g Average speed of all BEVs Obj, Objective function of the h» station at the
BV (km/hour) i i"bus
. 1
P Active power loss at the j* line P Pheromone evaporation coefficient
(kW)
- 'lh
Qy F_Qeactlve power loss at the j Obj™ Maximum objective functions
line (kVvar)
- 'Ih
P, Active power demand at the i Obj™ Objective function of the best solution
bus (kW)
Reactive power demand at the . Lo .
Qo P cput;;;  CPU time limit in computation

i"bus (kVar)

I. INTRODUCTION

Battery electric vehicles (BEVs) are driven by an electric motor powered by rechargeable battery packs. It is
known that they do not emit the pollution produced with the internal combustion engine car (ICEs). BEVs can
convert about around 80% of the electrical energy from electric power source to mechanical power. It shows
that the energy efficiency of BEV is higher than ICE. However, BEVs can run about around 150 kilometres
before recharging at charging station while ICE can run over 500 kilometres before refuelling [1]. In order to
release this problem, charging station for electric vehicle (EV) should be installed sufficiently along the street or

service area.
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Fast charging station (FCS) could possibly release the speed issue in charging for BEV but it causes some
negatives effect to the power distribution network like real power loss [2]. Thus, the FCS planner must plan to
reduce this loss. Moreover, they should consider total cost in traveling from BEV owner house to FCS for
recharging a day. The investment and operating cost of FCS should be combined as total cost. The optimal
placement of FCS is studied in many research works [2-4]. Total cost of charging station and feeder loss cost of
distribution network is combined to be single objective under many constraints and it is solved by the modified
primal-dual interior point algorithm [2]. The charging station planning with single objective of the total cost
under traffic constraints is solved by genetic algorithm [3]. The primary investment, operation and mobility cost
is combined to be single objective for optimization problem solved by program processing [4]. However, the
multiobjective optimization of both cost associated with FCS and feeder loss in the power distribution system is
not yet developed subject to factors of traffic condition, electric power supply of FCS, power distribution system.

Various multiobjective optimization techniques such as multiobjective ant colony optimization (MOACO) [5],
nondominated sort genetic algorithm 11 (NSGA 11) [6], and multiobjective particle swarm optimization (MOPSQO)
[7] can solve multiobjective problems in electrical system. Also, multiobjective hybrid swarm optimization is
developed to solve multiobjective optimization problems [8]. However, MOACO is more successful in
searching Pareto optimal front [5]. From these reason, hybridizing bi-swarm intelligence for the multiobjective
optimal placement of FCS is proposed in this paper to improve performance and efficient of MOACO with Bees
algorithm.

This paper proposes the multiobjective optimal placement of FCS on power distribution system under many
constraints of the power distribution system and traffic condition. The multiobjective hybrid ant colony
optimization and bees algorithm (MOHACOBA) for the optimal allocation of FCS is proposed to minimize
simultaneously both cost associated with FCS and feeder loss of distribution network and compared with other
multiobjective optimization. The IEEE-69-test system in Tianjin Development Zone is used to test the proposed
approachwith three case studies on fast charging head size. Hypervolume ratio, error ratio, spread and epsilon
indicator are brought to find performance of MOPSO, NSGA I, MOACO and MOHACOBA. Numerical results
and conclusion is presented in last section.

1. PROBLEM FORMULATION
A. Location Graph of FCS Planning on Power Distribution System

A Tianjin Development Zone of about 10.5 square Kilometres as residential area with 3,140 electric vehicles
and the location of BEV load points can be found in reference [3]. A FCS can be constructedat bus of IEEE-69-
bus system in Tianjin Development Zone and its system data of bus and branch can be found in reference [9].
The backward-forward sweep distribution power flow is used to calculate the system operating condition of the
systems [10]. In this paper, BEVs use a rapid recharged battery and FCS is constructed as 3-phase with many dc
fast charging head. One bus of the IEEE-69-bus has to be chosen from a set of bus numbers in order to install a
station of FCS.

B. Mathematic Model of the FCS Planning on Power Distribution System

The mathematic model of the FCS planning comprises two objective functions under many constraints as
follow.
Objective Functions:
1) The total cost associated with FCS: The total cost associated with FCS in the residential area can be
expressed as follows.
Cost = C, +Coem +Crayv (1)
i) Initial investment cost: Initial investment cost of FCSs is formulated as uniform series capital recovery
cost or annual payment for recovery [6] as following equation.

i, (L+i)P
Coo =N INV | ="/ )
W hzi‘ h[(1+ i) —1]
Where INV, includes cost of all devices and land cost for constructing a FCS.
ii) Annual operating cost: Operating and maintenance cost of a FCS includes maintenance costs, material

costs, staffs’ salary, power consumption cost of electric device in a FCS and other operational costs as
follows.

Necs

Coem =6 Z INV, 3)
h=1
iii) Annual travelling cost of all BEVs in recharging at FCS: Annual travelling cost of BEVSs in recharging

at FCS is the total travelling cost of all BEVs that drives from BEV load point to FCS to recharge the
battery calculated each year.
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Cirv :Zml/’5zszthh 4
p=1 h=1

Where G is service parameter of the p" FCS whetherthe BEV load point selects n» FCS as a
candidate station.

" (B)

[t 1fD, <D™
" 10 otherwise

Total travelling time (T, ) for recharging of all BEVs is shown as following equation.

i s G hD h
TaIIEV = Z % (6)
p=1 h=1 EV

2) The total real power loss in the feeder of the power distribution: The total real power loss in the feeder
of the power distribution system is formulated as follows.

Ns
Loss=)Y P, (7
i-1

Constraints:The constraints include the equality and inequality of electric power flow of the power
distribution, power supply constraints of FCS, power distribution system and traffic constraints as follows.

1) Active and reactive power flow balance equation as follows:

Ng Ng Ns
I:?sus = Z PDi + ZPFlgpsL:I + Z PLj (8)
i-1 i-1 j=1
Ng Ng Ng
QSUB = z Qui + ZQII%)SU: + Z QLj 9)
i=1 i=1 j=1
input __ PF%J;?Ut _ qH P}—?impm (10)
FCSi — =
efchs PFecs efchs PFecs
inpu inpu 2 inpu 2
F(?Sil = \/(SF(:psil ) - ( Pltc%iI ) (11)

2) Constraint of daily power supplying of FCSs for all BEVs: Electric power consumption of all BEVs
which select to charge its battery at the FCS once per a day must be less than daily power supplying of
the FCS as follows.

nl
output output
I:)H tCHG Z r'IEVp g ph < l:)FCSh tSIF
p=1

=12, M)

3) System quality constraint of power distribution network: System quality constraint is defined as voltage
limit and voltage deviation of distribution network due to the connection of the FCSs. The constraints
of voltage magnitudes of all buses on the distribution network must be within acceptable range and can
be written as.

(12)

V"M <V, <V™ ieN, (13)

The summation of voltage deviation is expressed as follows.
Ng
V.D.=Y [1.05-V,| (14)
i=1

4)  Security constraint of distribution system: Security constraints are of feeder line loading limit and
substation capacity limit.

Sy <SP, jeNg (15)
Poe < Pl (16)
Quue < Qslis (17)

5) Constraints of the service radius of FCS: The service radius of FCS must be within the maximum limit
of distance as follows.

D,, <D™ (18)

DOI: 10.21817/ijet/2016/v8i6/160806405 Vol 8 No 6 Dec 2016-Jan 2017 2434



ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Prakornchai Phonrattanasak et al. / International Journal of Engineering and Technology (IJET)

6) Constraints of distance between two adjacent FCSs: The distance between two adjacent FCSs must be
within the minimum and maximum limit.

Dres < Dees < DY (19)
7)  Constraints of service number of FCS: The summation of service parameters of all FCSs must be more
than or equal to the number of BEV load points as follows.

Nl Necs

D> Gy 2nl (20)

p=1 h=1

1H1.MULTIOBJECTIVE HYBRID ANT COLONY OPTIMIZATION AND BEES ALGORITHM FOR SOLVING
PROBLEM

A) Multiobjective Optimization Principle
A general multiobjective optimization principle is expressed as follows;
MinF (x) = (£,(x), £,(X),...., fy (X))

21
subject to X € S, X = (X, X,,., X, )" @

Where (f,(x), f,(x),....., Ty (x)) are the N objectives functions, (x,X,,..,X,) are the n optimization parameters
and S e R"is the solution of problem. Objective vectors, {F(X),XE S}, there is no unique solution to this
problem. Thus, the concept of Pareto-optimalitymust be used to characterize the objectives.

Definition 1. For a problem having more than one objective function , any two solutions and can have
one of two possibilities, one dominates the other or none dominates the other. Asolution X' is said to dominate
the other solution X if both the following conditions are true

1. The solution X' is on worse )the operator < denotes worse)than X° in all objectives, or f.(x') < f.(x*) for
all i={1,2,..., N} objectives.

2. The solution X' is strictly better (the operator > denotes better) than x%in at least one objective or
f,(x') = f,(x?) for at least onei e {1,2,..., N} .

If any of the above conditions is violated, the solution X" does not dominate the solution x”.

Definition 2. X is said to be a Pareto optimal solution of multiobjective optimization problem if there exists no
other feasible x such that f,(x )< f,(x") for all i={1,2,.,N} and f,(x )< f,(x")for at least one objective

function fj .

B) Principle of Ant Colony Optimization
Ant colony optimization (ACO)is motivated by the collective behavior of a real ant colony in nature.

Ant colony optimization is a probabilistic technique and an iterative algorithm which can find best paths in
optimization problem designed in pattern of graph. While an ant walk on the path, it will drop pheromone on
path. Consequently, accumulated pheromone on the path will continually guide the ants in walking and the path
which has many pheromones can be the candidate of best path in current iteration of computation. Each ant will
walk until finishing its tour and the best path will be acquired from these mechanisms at last iteration.

C) Principle of Bees algorithm

Bees algorithm (BA) is an optimization technique motivated by the natural forging behaviour of honeybees.
The process of algorithm can be described as follows. Scout bees initially find the food source. They will return
to the hive and be raised as an employed forager. Recruited employed foragers will follow an employed forager
who memorizes the location of the food source. A number of recruited employed foragers of each food source
will depend on the importance of a food source. They will exploit the nectar around neighbourhood area of the
food source. After the employed foraging food source, bee loads a portion of nectar from the food source, and
then returns to the hive. Moreover, bees will abandon food source that has little nectar. Those bees become new
scout bees to search new food source. BA uses these mechanisms in searching optimal solution.
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D) Multiobjective Hybrid Ant Colony Optimization with Bees Algorithm for Solving FCS placement
The computation flow of the proposed MOHACOBA algorithm is described as follows.
Step O:Initialization, the process of this step is the following;
- Read system data and set initial parameter of MOHACOBA
- Start iteration;

- Initial trail intensity on route is set as 7,;(0) =1and initial probability distribution on the route is set as
P, (0)=1.

- Calculating two heuristic functions which are defined as visibilities of objective function of the h®station
at i"the bus can be expressed as follow.

1

- 22
77h| COSthi ( )

2 1

= 23
77h| LOSShi ( )

Step 1:State transition rule for constructing ant solution;
Update iteration; t=t+1

The state transition rule guiding the ant k walking, an ant of the n*"station chooses bus i by applying the
pseudo-random proportion rule as given in following equation.

_ argmax; (Thi (t))a (77r11i (t))ﬂhlﬂ (Uﬁ. (t))

i otherwise

" ifq<q0

(24)

The parameter g0 can be set from O to 1 and q is a random number in a range of [0,1].

Where 4, and 4,, are computed by using (25) for each station h in order to force the ants to search in
difference regions of the Pareto fronth € {1,2,..,n } .

Ay =mod(h/n.,1)

25
Ay, =mod (h/ns +1,1) )

For (h=1,2,...,n,) and (f=1, 2,..,Ng) 1 is a bus to be selected according to the probability distribution
function expressed as follow.
a ﬂhlﬂ 2 ;”hzﬁ
T f(t) 771f t) n f(t)
phr (t) _ N( h ) ( h ) ( h ) (26)

ﬁ(m(t))“ (5 )™ (n2 )™

Constructing ant population ahk,(h =12....,Neey ),(k =1,...,m), the selection process on the bus i of then
station of ant k is based on discrete spinning the roulette wheel between 1 and Ny with the probability
calculated in (25).

Step 2: Evaluating both objective functions and find Pareto optimal solution;Evaluating both objective
functions of feasible solutions and finding the non-dominated solution this iteration by non-dominated sort
function:

The non-dominated solution in this iteration will be set as the Pareto optimal solution
Pos,,(p=12,..,np) .where np is the number of the Pareto optimal solutions.

Step 3:Recruit bees around Pareto optimal solution;The process of bees algorithm is used in this step. The bees
are recruited from its hive to search around the Pareto front asan,,,(h=12...,ngs),(W=12...,nba),(p=12...,np) -

Thenumber of bees around the Pareto solution is nba . The bees are recruited to generate the neighbourhood
solution around Pareto solution as following equation and it build new Pareto optimal front.

any,, = Pos, +rand[0,1]xnghx (Ng —1) (27)
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The advantage of this process is to search prudently new Pareto solutions in determined area (controlled by
patch sizes(ngh)) around the Pareto optimal solution. Consequently, this process can help ant to release from
trap of local optimal solution.

Step 4:Combining neighbourhood solution and existing non-dominated solution to find new non-dominated
solution;The best compromise solution from new non-dominated solution is acquired by using fuzzy-based
mechanism [7].

Step 5:Global updating rule; Global updating is carried out in the best tour from all ants. For (h=12,...,Ncs)
and (i=12,...,Ng), the pheromone update is implemented in following equation.

7y (t+1) = (L= p)7, () + Az () (28)
A (D) = kb if (h,i) belongs_to thebest compromise solution at iteration t 29)
otherwise

Where kb is a positive number.
Step 6: Stopping criteria
If cpu_time > cput,,,, then end; else go to Step 1.
Fig. 1 shows the flowchart of the proposed MOHACOBA algorithm to solve the FCS planning problem.

C Start )
.

Read system data
Set initial parameter and t=0

—

v

constructing ant solution by using

state transition rule

¥

Evaluating both objective
functions and

find Pareto optimal solution

Y

Recruit bees around

Pareto optimal solution
v

Find best compromise solution

=+ 1

from Nnew Pareto optimal solution

!

Global updating rule

Cpu_time>=Cput_limit

Yes
C End )

Fig. 1. Flowchart of the proposed MOHACOBA

Merit of the proposed multiobjective algorithm techniquescan be found as follow.
1) It can efficiently overcome the drawback of MOACO that have stagnation behavior in searching.

2) The candidate paths to be selected by the ants has new alternative paths rather than to be fixed
because of additional process from bees algorithm. Consequently, the solution will tend to be
diverse and various in finding Pareto optimal front.

3) It can find Pareto solutions of multiobjective optimization problems very efficiently.
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E) Quality Measurement of the Pareto Fronts
Following four metrics are used in this paper to measure the quality of the Pareto-optimal front obtained
by various algorithms:

1. Spread: This metric measures the extent of spread or equal spacing of Pareto-optimal solutions along the
Pareto-optimal front. As long as the spread is uniform, this metric produces a small value [11].

2. Hypervolume ratio (HV): This metric calculates the normalized volume in the objective space covered by
the members of the Pareto optimal front. It is said that whenever a set of Pareto-optimal solution is better than
another Pareto set, its hyper volume is higher than the latter one [11].

3. Error ratio: This metric uses the true Pareto front as reference set. Lower values of error ratio are
preferable [12].

4. Epsilon indicator: This metric uses the worst-case distance between Pareto front and true Pareto front.
The metric is harder to meet, if it have a large gap, it will have poorer metric performance [13].

This paper uses boxplots to present the statistical data of four performance metrics from all methods.
IV.NUMERICAL RESULTS

Numerical examples of three cases of fast charging head as 43, 60, and 100 kW following international
standards [14] on the IEEE-69-bus test system were performed. The following parameters are set: Set PS¢ =

215 kW and INv = 215,000 CNY, thus Pi2" = 221.65 kW, Q%™ = 45,01 kVar, S = 226.17 kVA. n,
=3,140, nl =28, I, =20, i =10%, ¢ =0.12, y =1.1, ¥ =15, 5 =11, s =13, ¢ =180, D" =1.2, D[t
=0.15, D{s =30, t =24, t,,, =1/6, q,=5 | =09, t, =24, eff. =097, PF =0.98, S&, =50. n
= 6 and there are 5 fast charging heads per a FCS.

The results were computed by using Pentium core2duo, 2.2 GHz processor, 2GB ram coding by Matlab®
programming language. Enumeration is operated to find true Pareto front on the IEEE-69-bus system. 100 trial

runs were carried out for all algorithms with CPUL,;;, = 250 seconds. The optimal parameters of MOHACOBA
and other optimization techniques for all cases can be obtained from trial and error and is shown in Table I.
TABLE I. Parameters of MOHACOBA and other Optimization Techniques

Method Parameter Case | Case Il | Case lll

population 600 600 600
Winax 0.7 0.7 0.7
MOPSO Wiin 0.2 0.2 0.2
C1 1.4 1.4 14
C, 1.4 1.4 1.4
population 300 300 300
pc 0.9 0.9 0.9

NSGA Il
nc 20 20 20
nm 20 20 20
population 300 300 300
alpha 1.0 1.0 1.0

MOACO
beta 1.0 1.0 1.0
do 0.05 0.05 0.05
population 300 300 300
alpha 1.0 1.0 1.0
beta 1.0 1.0 1.0

MOHACOBA

nba 120 120 120
ngh 0.03 0.03 0.03
do 0.05 0.05 0.05
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A) Case I: Fast charging head for the FCS is 43 kW
Set P"™ = 43 kW, P2 = 215 kW and INV = 215,000 CNY, thus P = 221.65 kW, Q2% = 45,01

FCS FCS

kVar and S = 226.17 kVA. Fig. 2 show best compromise solution and Pareto optimal front from all methods

and true Pareto front. The best compromise solution and location of FCS can be calculated as 286,563.27 CNY
and 215.31 kW at bus [5 19 29 49 56 66] and its location on IEEE-69-Bus system can be shown in Fig.3.

x 10
2.882 -+ T T i i i i i
I I O Pareto Optimal Front of MOHACOBA
,,,,,,, e L
2.88 A* I | * Best Compromise of MOHACOBA
o878 - L 777777 L - Pareto Optimal Front of MOACO i
’ ! ! & Best Compromise of MOACO
2876 ---—-—- [ [ + Pareto Optimal Front of NSGAII H
o+t : : b Best Compromise of NSGAII
g 2.874 & i i x Pareto Optimal Front of MOPSO H
et + [ *  Best Compromise of MOPSO
2.872———%——L 777777 - o
R | | AN True Pareto Front
'g 587l A 7L 777777 } 77777 O Best Compromise of True Pareto Front ||
o o, l l l l l l
2.86877A:F’:,,L ,,,,,, - - [ - [T, [T _
§$ | | | | | | |
| = | < | | | | |
L__ JE e v A e L ye o _____ o [ [ _|
=0 | ST | | |
,,,,,,, [ A N A W [ o S
2.864 | | | %zﬂi aN & % N
> 862 l l l l l l l
210 220 230 240 250 260 270 280 290
Loss (kW)
Fig. 2. Best compromise solution and Pareto optimal front in case |
4500 ------ T
| | | | | ] FCS |
40001 - - - - — - : ,,,,,, 4‘ ,,,,,, 4‘ ,,,,,, J, o % A EV Load Point J‘
| T |
| |
| |
3500 : 777777777777777777777777777777 J‘
| |
| |
3000 : ———————————— J‘
| |
~ | |
£ 2500 4 - -~ 1 4
E, | |
c |
g 2000 --_MF-1“4 - — 7202 1 [0 _ 6 —: —————— J‘
| |
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1500 ---% -V -----J- - [Tl L2 o — - —: ——————— : —————— J‘
| | |
| | |
1000 - - - -\a o — — I 1L gy — - - — : : —————— J‘
| | |
| | |
500 47 77777777777 L - - — - — — — — — - — - — — — -
| | | | | | |
| | | | | | | |
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-1000 -500 0 500 1000 1500 2000 2500 3000

Long (metre)

Fig. 3.Best compromise location of FCS on IEEE-69-Bus system in case |

Table 2.show minimum value, best compromise solution, and error ratio of Pareto optimal front from all methods.
It can be found that Pareto optimal front of MOHACOBA is closer to true Pareto front.
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TABLE II. minimum value, best compromise solution, and error ratio of Pareto optimal front from all methods

B) Case Il: Fast charging head for the FCS is 60 kW
Set P = 60 kW, P2 = 300 kW and INV = 300,000 RMB, thus P2 = 309.27 kW, Q" =
62.80 kVar and Si" = 315.59 kVA. Fig. 4 show best compromise solution and Pareto optimal front from all

methods. The best compromise solution of true Pareto front can be calculated as 397,467.68 CNY and 224.95
kW at bus [5 19 29 49 56 66].From Fig.4, MOHACOBA can find the best compromise solution of true Pareto

Minimum Value Best Scocizl?gr?mlse E
Method i i r;:i%r
nimum Inimum
Total Cost Loss Total Cost Loss
MOPSO 28658835 | 21545 | 28672275 | 21664 |  1.00
NSGA II 28636033 | 21556 | 28672345 | 21622 | 090
MOACO 286767.86 | 21406 | 28721571 | 21406 | 100
MOHACOBA | 28633056 | 21387 | 28656327 | 21531 | 0.6
Tr”ﬁ Pareto | 50632800 | 21349 | 28656327 | 215.31 0
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[11133247 | [31329
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Fig. 4. Best compromise solution and Pareto optimal front in case 11
C) Case IlI: Fast charging head for the FCS is 100 kW
Set P =100 kW, PP =500 kW and INV =

500,000 RMB, thus P = 515.46 kW, Q

oupt = 104,66

FCS

kVar and SZ2" = 525.98 kVA. Fig. 5 show best compromise solution and Pareto optimal front from all methods.

The best compromise solution of true Pareto front can be calculated as 658,419.22 CNY and 252.23 kW at bus
[5 19 29 49 56 66]. From Fig.5, MOHACOBA can find the best compromise solution of true Pareto front.
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D) The Boxplots of Performance Metric from All Methods for All Cases

Fig. 6show boxplots for the metric of Hypervolume ratio, error ratio, spread and epsilon indicator from all
methods. Regarding to Hypervolume ratio in Fig. 6, MOHACOBA has HV value higher than other methods.
Moreover, HV value of MOHACOBA is close to HV value of true Pareto front (HV ratio = 1).Clearly, error ratio and
epsilon indicator of MOHACOBA is lower than other methods. Finally, spread value of MOHACOBA is close to
spread value of true Pareto front (Case | = 1.23, Case Il = 1.14, Case Il = 1.15). The results from these metric show
that MOHACOBA has performance in finding Pareto optimal front better than other combinational multiobjective
optimization for FCS planning problem.

ilypervehase ratin
" - T T T T = = ﬂl:—__
- R L S e T R = N
o8- | - oM [ N R N s o §
; ! I I e ! .
! ! P et I
es- 1 1 ; =it s = 4 1
o ! e T I,
POPUE o N o N R N I D _
[ S T () I I = '
= L 1 |
0al || H | " |
1 |
ol i 1 |
Casa [1 ] 2] [ = =] A = E_] 1 = ]
MOS0 MG E IAOACO (il it i
B rulin
A = = . e -+ + +
O A
S AR n -]
+
sl U7
oe| e ool
a4 Lo ! - %
i -+
02 I 4
o + + E
Cawe {7 2 3] [1 > 2] [T = 35 [T 2 =)
MOPSO NZGA E RAOACO BEOHACDEA,

DOI: 10.21817/ijet/2016/v8i6/160806405

Vol 8 No 6 Dec 2016-Jan 2017 2441



ISSN (Print) :2319-8613
ISSN (Online) : 0975-4024 Prakornchai Phonrattanasak et al. / International Journal of Engineering and Technology (IJET)

22} i
=
18 E
16+ + o
14l & . ; + :F'
wHE & S
eal ] B o =]
e-s—T T E ) - _T_-
Ceme [3 2 3] [ 3 )
OSSO

i ot e - " :
I R T |

R _
R :

nH B OHH |

ol i ! T i - - |

= - =] 2 3] [ = 3

S B PALALCO AL MRS,

Fig. 6.Boxplots for the metric of Hypervolume ratio, error ratio, spread and epsilon indicator

V. CONCLUSION

This paper proposes hybrid ant colony optimization and bees algorithm (MOHACOBA) to minimize
simultaneously both cost associated with fast charging station (FCS) and real power loss on distribution network
under many constraints of the power distribution system and traffic condition. The IEEE-69-test system is used to test
the proposed approach with three case studies on fast charging head size. Hypervolume ratio, error ratio, spread and
epsilon indicator is applied for measuring quality of Pareto optimal front of MOPSO, NSGA I, MOACO and
MOHACOBA. From the numerical results and boxplots of four metrics, it shows that the performance of
MOHACOBA is better than other methods. It can be concluded that MOHACOBA has effectiveness and robustness
to find multiobjective optimal placement of FCS on distribution network.
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