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Abstract—The multiobjective hybrid ant colony optimization (ACO) and bees algorithm (BA) is 
proposed to solve multiobjective optimal placement of public fast charging station (FCS) for battery 
electric vehicle (BEV) on power distribution system. This new algorithm is named as MOHACOBA. It is 
used to minimize simultaneously both total cost associated with FCS and feeder loss on distribution 
network under many constraints of the power distribution system and traffic condition. The IEEE-69-bus 
in Tianjin Development Zone is the test system for the proposed approach with three case studies on fast 
charging head size. In order to verify performance of algorithm, four performance metrics (Hypervolume 
ratio, error ratio, spread and epsilon indicator) is applied to measure quality of Pareto optimal front of 
proposed method and it is compared with other multiobjective optimization methods i.e. MOPSO, NSGA 
II and MOACO. From the results, quality of Pareto optimal front of proposed approach is better than 
other methods. It can be summarized that MOHACOBA algorithm has effectiveness and robustness to 
obtain multiobjective optimal placement of FCS on power distribution system. 

Keyword-Fast charging station, Battery electric vehicle, Ant colony optimization, Bees algorithm, Power 
distribution system 

NOMENCLATURE   

FCSn  Number of fast charging stations SN  Number of branches in the power 
distribution system 

EVn  Total number of BEVs to be 
charged per day  

m axD  
Maximum limit of distance between the 
FCS and the EV load point (meter) 

 

EVpn  Number of BEVs in the pth EV 
load point  FCSD  Distance between two adjacent FCSs 

(meter) 

CHGt  Average charge time of an BEV 
(hr) 

min
FCSD  Minimum distance limit of two adjacent 

FCSs (meter) 

St  Service hours of FCS each day 
(hr) 

max
FCSD  Maximum distance limit of two adjacent 

FCSs (meter) 

Hq  Number of fast charger head in a 
FCS Fl  Load factor of FCSs 

 ceiling  Ceiling function output
FCSiP  Rated power output of a FCS at the thi bus 

(kW) 

 rand  Random function input
FCSiP  Active power input of a FCS at the thi bus 

(kW) 

Cost  Total cost associated with FCS 
(CNY) 

input
FCSiQ  Reactive power input of a FCS at the thi

bus (kVar) 

CINV  
Initial investment cost of FCSs 
(CNY) 

input
FCSiS  Apparent power input of a FCS at the thi

bus (kVA) 
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CO&M  

Annual operating and 
maintenance cost of FCSs 
(CNY) 

output
HiP  

Rated power output of fast charging head 
of a FCS at the thi bus (kW) 

TRVC  Annual travelling cost of all 
BEVs for recharging (CNY) SUBP  Active power supplied from the 

distribution substation (kW) 

h  FCS number SUBQ  Reactive power supplied from the 
distribution substation (kVar) 

hINV  Investment cost of the hth FCS 
(CNY) 

max
SUBP  Permitted maximum active power supplied 

from the distribution substation (kW) 

ri  Interest rate (%) max
SUBQ  

Permitted maximum reactive power 
supplied from the distribution substation 
(kVar) 

pi  Investment period (yr) EVkWh  Battery capacity or size of an BEV (kWh) 

  Conversion coefficient iV  Voltage magnitude at the thi bus of the 
power distribution system (pu) 

  Road twist coefficient BN  Number of buses in the distribution system 

  Smooth traffic coefficient of the 
road 

S
j
 Apparent power flow in the thj line (MVA) 

  Travelling cost rate of an BEV 
(CNY/km) 

S
j
rated  Rated apparent power flow in the thj line 

(MVA) 

  Annual recharging frequency 
(times/yr) FCSeff  Efficiency of FCS 

  Turnaround coefficient FCSPF  Power factor of FCS 

phG  Service parameter for the 
pthBEV load point of the hth FCS 

  Relative influence of the pheromone trail 
information 

phD  
Distance between the pthBEV 
load point and the hthFCS 
(meter) 

  Relative influence of heuristic information 

nl  Number of BEV load points in 
the residential area hi  

Heuristic function of the thh station at the 
thi bus 

allEVT  Total travelling time for 
recharging of all BEVs (hr) hi  Trail intensity of the thh station at the thi bus 

av
EVS  Average speed of all BEVs 

(km/hour) hiObj  
Objective function of the thh station at the 

thi bus 

LjP  Active power loss at the thj line 

(kW) 
  Pheromone evaporation coefficient 

LjQ  Reactive power loss at the thj

line (kVar) 
maxObj  Maximum objective functions 

DiP  Active power demand at the thi
bus (kW) 

bestObj  Objective function of the best solution 

DiQ  
Reactive power demand at the 

thi bus (kVar) limitcput  CPU time limit in computation 

I. INTRODUCTION 

Battery electric vehicles (BEVs) are driven by an electric motor powered by rechargeable battery packs. It is 
known that they do not emit the pollution produced with the internal combustion engine car (ICEs). BEVs can 
convert about around 80% of the electrical energy from electric power source to mechanical power. It shows 
that the energy efficiency of BEV is higher than ICE. However, BEVs can run about around 150 kilometres 
before recharging at charging station while ICE can run over 500 kilometres before refuelling [1]. In order to 
release this problem, charging station for electric vehicle (EV) should be installed sufficiently along the street or 
service area. 
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Fast charging station (FCS) could possibly release the speed issue in charging for BEV but it causes some 
negatives effect to the power distribution network like real power loss [2]. Thus, the FCS planner must plan to 
reduce this loss. Moreover, they should consider total cost in traveling from BEV owner house to FCS for 
recharging a day. The investment and operating cost of FCS should be combined as total cost. The optimal 
placement of FCS is studied in many research works [2-4]. Total cost of charging station and feeder loss cost of 
distribution network is combined to be single objective under many constraints and it is solved by the modified 
primal-dual interior point algorithm [2]. The charging station planning with single objective of the total cost 
under traffic constraints is solved by genetic algorithm [3]. The primary investment, operation and mobility cost 
is combined to be single objective for optimization problem solved by program processing [4]. However, the 
multiobjective optimization of both cost associated with FCS and feeder loss in the power distribution system is 
not yet developed subject to factors of traffic condition, electric power supply of FCS, power distribution system. 

Various multiobjective optimization techniques such as multiobjective ant colony optimization (MOACO) [5], 
nondominated sort genetic algorithm II (NSGA II) [6], and multiobjective particle swarm optimization (MOPSO) 
[7] can solve multiobjective problems in electrical system. Also, multiobjective hybrid swarm optimization is 
developed to solve multiobjective optimization problems [8]. However, MOACO is more successful in 
searching Pareto optimal front [5]. From these reason, hybridizing bi-swarm intelligence for the multiobjective 
optimal placement of FCS is proposed in this paper to improve performance and efficient of MOACO with Bees 
algorithm. 

This paper proposes the multiobjective optimal placement of FCS on power distribution system under many 
constraints of the power distribution system and traffic condition. The multiobjective hybrid ant colony 
optimization and bees algorithm (MOHACOBA) for the optimal allocation of FCS is proposed to minimize 
simultaneously both cost associated with FCS and feeder loss of distribution network and compared with other 
multiobjective optimization. The IEEE-69-test system in Tianjin Development Zone is used to test the proposed 
approachwith three case studies on fast charging head size. Hypervolume ratio, error ratio, spread and epsilon 
indicator are brought to find performance of MOPSO, NSGA II, MOACO and MOHACOBA. Numerical results 
and conclusion is presented in last section. 

II. PROBLEM FORMULATION 

A. Location Graph of FCS Planning on Power Distribution System 

A Tianjin Development Zone of about 10.5 square kilometres as residential area with 3,140 electric vehicles 
and the location of BEV load points can be found in reference [3]. A FCS can be constructedat bus of IEEE-69-
bus system in Tianjin Development Zone and its system data of bus and branch can be found in reference [9]. 
The backward-forward sweep distribution power flow is used to calculate the system operating condition of the 
systems [10]. In this paper, BEVs use a rapid recharged battery and FCS is constructed as 3-phase with many dc 
fast charging head. One bus of the IEEE-69-bus has to be chosen from a set of bus numbers in order to install a 
station of FCS. 

B. Mathematic Model of the FCS Planning on Power Distribution System 

The mathematic model of the FCS planning comprises two objective functions under many constraints as 
follow. 

Objective Functions: 

1) The total cost associated with FCS: The total cost associated with FCS in the residential area can be 
expressed as follows. 

NV O&M TRVCost C C C                                                     (1) 

i) Initial investment cost: Initial investment cost of FCSs is formulated as uniform series capital recovery 
cost or annual payment for recovery [6] as following equation. 

pFCS

p

r r
NV

1 r

(1 )

(1 ) 1

in

h i
h

i i
C INV

i

 
     
                                                  (2) 

Where hINV includes cost of all devices and land cost for constructing a FCS. 

ii) Annual operating cost: Operating and maintenance cost of a FCS includes maintenance costs, material 
costs, staffs’ salary, power consumption cost of electric device in a FCS and other operational costs as 
follows. 

FCS

O&M
1

n

h
h

C INV


                                                                   (3) 

iii) Annual travelling cost of all BEVs in recharging at FCS: Annual travelling cost of BEVs in recharging 
at FCS is the total travelling cost of all BEVs that drives from BEV load point to FCS to recharge the 
battery calculated each year. 
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FCS

TRV
1 1

nnl

ph ph
p h

C G D
 

                                                     (4) 

Where phG  is service parameter of the thp  FCS whetherthe BEV load point selects thh  FCS as a 

candidate station. 
max1 If

0 otherwise

ph
ph

D D
G

  


(5) 

Total travelling time  allEVT for recharging of all BEVs is shown as following equation. 

FCS
EV

allEV
1 1 EV

nnl
p ph ph

p h

n G D
T

S 

                                                       (6) 

2) The total real power loss in the feeder of the power distribution: The total real power loss in the feeder 
of the power distribution system is formulated as follows. 

S

L
1

N

i
i

Loss P


                                                                   (7) 

Constraints:The constraints include the equality and inequality of electric power flow of the power 
distribution, power supply constraints of FCS, power distribution system and traffic constraints as follows. 

1) Active and reactive power flow balance equation as follows:  

S
input

SUB L
1 11

D FCS

BB N NN

i i j
i i j

P P P P
  

                                                       (8) 

S
input

SUB L
1 11

D FCS

BB N NN

i i j
i i j

QQQ Q
  

                                                     (9) 

output output
input FCS H H
FCS

FCS FCS FCS FCS

i i
i

P q P
S

eff PF eff PF
                                                 (10) 

   2 2input input input
FCS FCS FCSi i iQ S P                                                     (11) 

2) Constraint of daily power supplying of FCSs for all BEVs: Electric power consumption of all BEVs 
which select to charge its battery at the FCS once per a day must be less than daily power supplying of 
the FCS as follows. 

output output
H CHG EV FCS S F

1

FCS, (1,2,... )

nl

p ph h
p

P t n g P t l

h n








                                                (12) 

3) System quality constraint of power distribution network: System quality constraint is defined as voltage 
limit and voltage deviation of distribution network due to the connection of the FCSs. The constraints 
of voltage magnitudes of all buses on the distribution network must be within acceptable range and can 
be written as. 

min max ,i i i BV V V i N                                                         (13) 

The summation of voltage deviation is expressed as follows. 

1

. 5. 1.0
BN

i
i

VV D


                                                            (14) 

4) Security constraint of distribution system: Security constraints are of feeder line loading limit and 
substation capacity limit. 

max
l l ,j j SS S j N                                                             (15) 

max
SUB SUBP P                                                                (16) 

max
SUB SUBQ Q                                                                (17) 

5) Constraints of the service radius of FCS: The service radius of FCS must be within the maximum limit 
of distance as follows. 

max
phD D                                                                  (18) 
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6) Constraints of distance between two adjacent FCSs: The distance between two adjacent FCSs must be 
within the minimum and maximum limit. 

min max
FCS FCS FCSD D D                                                            (19) 

7) Constraints of service number of FCS: The summation of service parameters of all FCSs must be more 
than or equal to the number of BEV load points as follows. 

FCS

1 1

nnl

ph
p h

G nl
 

                                                               (20) 

III. MULTIOBJECTIVE HYBRID ANT COLONY OPTIMIZATION AND BEES ALGORITHM FOR SOLVING 

PROBLEM 

A) Multiobjective Optimization Principle 

A general multiobjective optimization principle is expressed as follows; 

1 2

1 2

( ) ( ( ), ( ),....., ( ))

, ( , ,.., )

N

T
n

MinF x f x f x f x

subject to x S x x x x



   ..................................  
(21) 

Where 1 2( ( ), ( ),....., ( ))Nf x f x f x  are the N objectives functions, 1 2( , ,.., )nx x x are the n optimization parameters 

and nS R is the solution of problem. Objective vectors,  ( ),F x x S , there is no unique solution to this 

problem.  Thus, the concept of Pareto-optimalitymust be used to characterize the objectives. 

Definition 1.  For  a  problem  having more  than  one  objective function  , any  two  solutions  and  can have 

one  of  two  possibilities, one dominates the other or none dominates the other. Asolution 1x is said to dominate 

the other solution 2x if both the following conditions are true 

1.  The solution 1x  is on worse )the operator  denotes worse)than 2x in all objectives, or 1 2( ) ( )i if x f x for 

all  1, 2,...,i N objectives. 

2. The solution 1x is strictly better (the operator  denotes better) than 2x in at least one objective or 
1 2( ) ( )i if x f x for at least one  1, 2,...,i N . 

If any of the above conditions is violated, the solution 1x does not dominate the solution 2x . 

Definition 2. *x is said to be a Pareto optimal solution of multiobjective optimization problem if there exists no 

other feasible x  such that *( ) ( )i if x f x for all  1, 2,...,i N  and  *( ) ( )j jf x f x for at least one objective 

function jf . 

B) Principle of Ant Colony Optimization 

Ant colony optimization (ACO)is motivated by the collective behavior of a real ant colony in nature.  

Ant colony optimization is a probabilistic technique and an iterative algorithm which can find best paths in 
optimization problem designed in pattern of graph. While an ant walk on the path, it will drop pheromone on 
path. Consequently, accumulated pheromone on the path will continually guide the ants in walking and the path 
which has many pheromones can be the candidate of best path in current iteration of computation. Each ant will 
walk until finishing its tour and the best path will be acquired from these mechanisms at last iteration. 

C) Principle of Bees algorithm 

Bees algorithm (BA) is an optimization technique motivated by the natural forging behaviour of honeybees. 
The process of algorithm can be described as follows. Scout bees initially find the food source. They will return 
to the hive and be raised as an employed forager. Recruited employed foragers will follow an employed forager 
who memorizes the location of the food source. A number of recruited employed foragers of each food source 
will depend on the importance of a food source. They will exploit the nectar around neighbourhood area of the 
food source. After the employed foraging food source, bee loads a portion of nectar from the food source, and 
then returns to the hive. Moreover, bees will abandon food source that has little nectar. Those bees become new 
scout bees to search new food source. BA uses these mechanisms in searching optimal solution. 
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D) Multiobjective Hybrid Ant Colony Optimization with Bees Algorithm for Solving FCS placement 

The computation flow of the proposed MOHACOBA algorithm is described as follows. 

Step 0:Initialization, the process of this step is the following; 

- Read system data and set initial parameter of MOHACOBA 

- Start iteration; 

- Initial trail intensity on route is set as (0) 1hi  and initial probability distribution on the route is set as 

(0) 1hip   . 

- Calculating two heuristic functions which are defined as visibilities of objective function of the thh station 
at thi the  bus can be expressed as follow. 

1 1
hi

hiCost
                                                                      (22) 

2 1
hi

hiLoss
                                                                      (23) 

Step 1:State transition rule for constructing ant solution; 

Update iteration;  1t t   

The state transition rule guiding the ant k walking, an ant of the thh station chooses bus i by applying the 
pseudo-random proportion rule as given in following equation. 

     1 2

B

1 2argmax ( ) ( ) ( ) if 0

ˆ otherwise

h h

i N hi hi hit t t q q
i

i

     
  


                                         (24) 

The parameter 0q can be set from 0 to 1 and q is a random number in a range of [0,1]. 

Where 1h  and 2h  are computed by using (25) for each station h in order to force the ants to search in 

difference regions of the Pareto front  FCU1,2,..,h n . 

 
 

1 FCS

2 FCS

mod / ,1

mod / 1,1

h

h

h n

h n







 
                                                            (25) 

For FCU( 1, 2,..., )h n and B
ˆ( 1,2,..., )i N , î is a bus to be selected according to the probability distribution 

function expressed as follow. 

     
     

1 2

1 2

1 2
ˆ ˆ ˆ

ˆ
1 2

1

( ) ( ) ( )
( )

( ) ( ) ( )

h h

B
h h

hi hi hi

Nhi

hi hi hi
i

t t t
p t

t t t

   

   

  

  





                                              (26) 

Constructing ant population  , 1, 2...., , ( 1,...., )hk FCUa h n k m  , the selection process on the bus î of the h

station of ant k  is based on discrete spinning the roulette wheel between 1 and BN  with the probability 

calculated in (25). 

Step 2: Evaluating both objective functions and find Pareto optimal solution;Evaluating both objective 
functions of feasible solutions and finding the non-dominated solution this iteration by non-dominated sort 
function: 

The non-dominated solution in this iteration will be set as the Pareto optimal solution 

 , 1,2,..,pPos p np .where np  is the number of the Pareto optimal solutions. 

Step 3:Recruit bees around Pareto optimal solution;The process of bees algorithm is used in this step. The bees 
are recruited from its hive to search around the Pareto front as      FCS, 1,2...., , 1,2...., , 1,2....,hwpan h n w nba p np   . 

Thenumber of bees around the Pareto solution is nba . The bees are recruited to generate the neighbourhood 
solution around Pareto solution as following equation and it build new Pareto optimal front. 

 0,1 ( 1)hwp p Ban Pos rand ngh N    
    

(27) 
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The advantage of this process is to search prudently new Pareto solutions in determined area (controlled by 
patch sizes  ngh ) around the Pareto optimal solution. Consequently, this process can help ant to release from 

trap of local optimal solution. 

Step 4:Combining neighbourhood solution and existing non-dominated solution to find new non-dominated 
solution;The best compromise solution from new non-dominated solution is acquired by using fuzzy-based 
mechanism [7]. 

Step 5:Global updating rule; Global updating is carried out in the best tour from all ants.  For FCS( 1,2,..., )h n  

and B( 1,2,..., )i N , the pheromone update is implemented in following equation. 

bc( 1) (1 ) ( ) ( )hi hi hit t t                                                                   (28) 

bc if ( , ) belongs to thebest compromise solution at iteration
( )

0 otherwisehi

kb h i t
t


  


                                               (29) 

Where kb is a positive number. 

Step 6: Stopping criteria 

If l imit_cpu time cput  then end; else go to Step 1. 

Fig. 1 shows the flowchart of the proposed MOHACOBA algorithm to solve the FCS planning problem. 

 
Fig. 1.  Flowchart of the proposed MOHACOBA 

Merit of the proposed multiobjective algorithm techniquescan be found as follow. 

1) It can efficiently overcome the drawback of MOACO that have stagnation behavior in searching. 

2) The candidate paths to be selected by the ants has new alternative paths rather than to be fixed 
because of additional process from bees algorithm. Consequently, the solution will tend to be 
diverse and various in finding Pareto optimal front. 

3) It can find Pareto solutions of multiobjective optimization problems very efficiently. 
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E) Quality Measurement of the Pareto Fronts 

Following four metrics are used in this paper to measure the quality of the Pareto-optimal front obtained  

by various algorithms: 

1. Spread: This metric measures the extent of spread or equal spacing of Pareto-optimal solutions along the 
Pareto-optimal front. As long as the spread is uniform, this metric produces a small value [11]. 

2. Hypervolume ratio (HV): This metric calculates the normalized volume in the objective space covered by 
the members of the Pareto optimal front. It is said that whenever a set of Pareto-optimal solution is better than 
another Pareto set, its hyper volume is higher than the latter one [11]. 

3. Error ratio: This metric uses the true Pareto front as reference set. Lower values of error ratio are 
preferable [12]. 

4. Epsilon indicator: This metric uses the worst-case distance between Pareto front and true Pareto front. 
The metric is harder to meet, if it have a large gap, it will have poorer metric performance [13]. 

This paper uses boxplots to present the statistical data of four performance metrics from all methods. 

IV. NUMERICAL RESULTS 

Numerical examples of three cases of fast charging head as 43, 60, and 100 kW following international 
standards [14] on the IEEE-69-bus test system were performed. The following parameters are set: Set  output

FCSP  = 

215 kW and INV  = 215,000 CNY, thus input
FCSP  = 221.65 kW, output

FCSQ  = 45.01 kVar, output
FCSS  = 226.17 kVA. EVn  

=3,140,  nl  =28, pi  =20, ri  =10%,   =0.12,   =1.1,   =1.5,    =1.1,    =1.3,    =180,  m axD  =1.2, min
FCSD  

=0.15,   max
FCSD  =3.0,  t

s
 = 24,  CHGt  = 1/6,  Hq  = 5,  Fl  =0.9,  St  =24,  FCSeff  =0.97,  FCSPF  =0.98,  av

EVS  =50. FCSn  

= 6 and there are 5 fast charging heads per a FCS. 

The results were computed by using Pentium core2duo, 2.2 GHz processor, 2GB ram coding by Matlab® 
programming language. Enumeration is operated to find true Pareto front on the IEEE-69-bus system. 100 trial 

runs were carried out for all algorithms with limitcput  = 250 seconds. The optimal parameters of MOHACOBA 

and other optimization techniques for all cases can be obtained from trial and error and is shown in Table I. 

TABLE I.  Parameters of MOHACOBA and other Optimization Techniques 

Method Parameter Case I Case II Case III 

MOPSO 

population 600 600 600 

wmax 0.7 0.7 0.7 

wmin 0.2 0.2 0.2 

c1 1.4 1.4 1.4 

c2 1.4 1.4 1.4 

NSGA II 

population 300 300 300 

pc 0.9 0.9 0.9 

nc 20 20 20 

nm 20 20 20 

MOACO 

population 300 300 300 

alpha 1.0 1.0 1.0 

beta 1.0 1.0 1.0 

d0 0.05 0.05 0.05 

MOHACOBA 

population 300 300 300 

alpha 1.0 1.0 1.0 

beta 1.0 1.0 1.0 

nba 120 120 120 

ngh 0.03 0.03 0.03 

d0 0.05 0.05 0.05 
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A) Case I: Fast charging head for the FCS is 43 kW 

Set output
HP  = 43 kW, output

FCSP  = 215 kW and INV  = 215,000 CNY, thus input
FCSP  = 221.65 kW, output

FCSQ  = 45.01 

kVar and output
FCSS  = 226.17 kVA. Fig. 2 show best compromise solution and Pareto optimal front from all methods 

and true Pareto front. The best compromise solution and location of FCS can be calculated as 286,563.27 CNY 
and 215.31 kW at bus [5 19 29 49 56 66] and its location on IEEE-69-Bus system can be shown in Fig.3. 

 
Fig. 2.  Best compromise solution and Pareto optimal front in case I 

 
Fig. 3.Best compromise location of FCS on IEEE-69-Bus system in case I 

Table 2.show minimum value, best compromise solution, and error ratio of Pareto optimal front from all methods.  
It can be found that Pareto optimal front of MOHACOBA is closer to true Pareto front. 

 

 

 

 

 

210 220 230 240 250 260 270 280 290
2.862

2.864

2.866

2.868

2.87

2.872

2.874

2.876

2.878

2.88

2.882
x 10

5

Loss (kW)

T
ot

al
 C

os
t 
(C

N
Y
)

 

 

Pareto Optimal Front of MOHACOBA

Best Compromise of MOHACOBA
Pareto Optimal Front of MOACO

Best Compromise of MOACO

Pareto Optimal Front of NSGAII

Best Compromise of NSGAII

Pareto Optimal Front of MOPSO

Best Compromise of MOPSO
True Pareto Front

Best Compromise of True Pareto Front

-1000 -500 0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

ks

ks

ks

ks

ks

ks

Long (metre)

W
id
th

 (
m

et
re

)

 

 

1
2

3
5

9
13

17
21

25
29

33
38

42
46

49
51

53
55

57

69

68

67

66

65

63

61

59

35
31

26
22

18
14

10
6

64
62

60
58

56
54

52
50

48
44

39
34

30

45
40

36
32

27
23

19
15

11
7

4

20
16

12
8

24

28

47
43

37

41

FCS

EV Load Point

Substation

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Prakornchai Phonrattanasak et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i6/160806405 Vol 8 No 6 Dec 2016-Jan 2017 2439



TABLE II.  minimum value, best compromise solution, and error ratio of Pareto optimal front from all methods  

Method 
Minimum Value 

Best Compromise 
Solution Error 

ratio Minimum 
Total Cost 

Minimum 
Loss 

Total Cost Loss 

MOPSO 286588.35 215.45 286722.75 216.64 1.00 

NSGA II 286360.33 215.56 286723.45 216.22 0.90 

MOACO 286767.86 214.06 287215.71 214.06 1.00 

MOHACOBA 286330.56 213.87 286563.27 215.31 0.66 

True Pareto 
Front 

286328.09 213.49 286563.27 215.31 0 

Bus 
[11 13 32 47 

56 65] 
[3 13 29 
36 57 61] 

[5 19 29 49 56 66]  

B) Case II: Fast charging head for the FCS is 60 kW 

Set output
HP  = 60 kW, output

FCSP  = 300 kW and INV  = 300,000 RMB, thus input
FCSP  = 309.27 kW, output

FCSQ  = 

62.80 kVar and output
FCSS  = 315.59 kVA. Fig. 4 show best compromise solution and Pareto optimal front from all 

methods. The best compromise solution of true Pareto front can be calculated as 397,467.68 CNY and 224.95 
kW at bus [5 19 29 49 56 66].From Fig.4, MOHACOBA can find the best compromise solution of true Pareto 
front. 

 
Fig. 4.  Best compromise solution and Pareto optimal front in case II 

C) Case III: Fast charging head for the FCS is 100 kW 

Set output
HP = 100 kW, output

FCSP  = 500 kW and INV  = 500,000 RMB, thus input
FCSP  = 515.46 kW, output

FCSQ  = 104.66 

kVar and output
FCSS  = 525.98 kVA. Fig. 5 show best compromise solution and Pareto optimal front from all methods. 

The best compromise solution of true Pareto front can be calculated as 658,419.22 CNY and 252.23 kW at bus 
[5 19 29 49 56 66]. From Fig.5, MOHACOBA can find the best compromise solution of true Pareto front. 
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