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Abstract: H21 steel is one of the hot work tool steel, which exhibits superior red hardness, high 

mechanical strength and difficult-to-machine. Wire electrical discharge machining (WEDM) always 
demands high-speed and high-precision machining to fulfill productivity and accuracy of machining hard 
materials. Cutting speed determines the productivity of machining and the width of kerf determines the 
tolerance of finished product. Two methodologies viz. response surface method (RSM) and artificial 
neural network (ANN) are compared for their modeling, sensitivity analysis and optimization abilities. 
The predictability of ANN model is better than RSM which indicating the advantage of ANN in mapping 
the nonlinear behavior of the system. Finally, the ANN fitness function is integrated with particle swarm 
optimization (PSO) algorithm to optimize the process parameters of the WEDM process. 
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I. INTRODUCTION: 

Hot work steels are mostly used in die making industries due to their capability to retain hardness at elevated 
temperature, with sufficient strength and toughness [1]. AISI H21 grade steel is a hot working tool steel, which 
contains Tungsten, chromium and vanadium, with the characteristics of high harden-ability, excellent toughness, 
red hardness, high compressive strength and wear resistance at elevated temperatures. It is widely used in 
making tool, dies, extrusion mandrels, moulds, cores, hot work punches etc. Machining of such steel in 
conventional machine is very tough. So, when accuracy and productivity both are considerable factors, WEDM 
will be the best alternative for machining such steel. Wire electrical discharge machining is extensively used in 
machining of any conductive materials to realize productivity and improved accuracy for manufacturing [2]. 
Machining with this machine is treated as a challenging task because improvement of more than one machining 
performance measures like metal removal rate, surface roughness, and kerf width is required to obtain a 
precision work [3]. In WEDM, an ionized channel between the nearest points of the work-piece and the wire 
electrode is created by the applied voltage. Here, an ignition delay is needed to evaporate the eroded particles in 
the gap. It is known that the energy in the spark gap increases with increased pulse current, pulse on-time and 
voltage. The depth and diameter of the WEDM craters are determined by the factors like energy in the spark 
gap, thermal conductivity, melting temperature, heat of fusion, thermal diffusivity and other thermo-physical 
properties of the electrode [4]. 

Very few literatures have been found to have cast the glances on machining of H21 tool steel or similar 
material in WEDM. Narcis et al. [5] carried out certain experiments in H13 tool steel by varying EDM 
parameters using different geometries of copper electrodes. Material removal rate, surface roughness, different 
dimensional and geometrical micro-accuracies are analyzed through statistical methods. Ramakrishnan et al. [6] 
narrated the effect of various WEDM parameters such as pulse on time, pulse off time, wire tension, wire feed 
speed and ignition current intensity on heat-treated tool steel considering MRR, surface roughness and wire 
wear ratio as responses. Ikramet et al. [7] reported the effect and optimization of eight control factors on MRR, 
surface roughness and kerf in WEDM process for D2 tool steel. It has been confirmed that pulse on-time is the 
most significant factor affecting the surface roughness, kerf and material removal rate. When pulse duration is 
high, the intensity of discharge becomes high, resulting the high cutting speed and poor surface finish and wider 
the width of kerf [8, 9].  

Selection of the optimal machine settings plays an important role to achieve high quality and performance in 
any machining process. As WEDM is an expensive and widely used process, optimization of the WEDM 
process parameters is very essential to achieving good quality and high productivity [10]. It can be concluded 
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that EDM/WEDM are random and stochastic in nature so there are several number of variables that control the 
performance of WEDM process [11, 12]. Cutting speed (CS) determine the economy and productivity whereas 
kerf width (KW) denote the degrees of precision. In previous literatures, very few attempts were made to 
improve the quality and productivity of wire EDM process. In this present article, both CS & KW are taken into 
consideration so that overall accuracy and performance of machining get improved. It is very difficult to map all 
the conflicting objectives and optimize the process parameters. The main goal of this study is to maximize the 
cutting speed and minimize the Kerf. To achieve the abovementioned objectives, RSM and artificial neural 
network are used to map the input/output relationships with the help of the experimental data. Then best fitted 
model is hybridized with particle swarm optimization (PSO) to search the best combination of WEDM 
parameters that will fulfill both objectives at a time. 

II. EXPERIMENTAL DETAILS 
During this study, a series of experiments were conducted in H21 tool steel by using ELEKTRA 

SPRINTCUT CNC wire electrical discharge machine. Soft brass wire (0.25 mm diameter) has been used as tool 
electrode. During the experimentation, deionized water is used as a dielectric fluid to submerge the work 
electrode.  Wire running speed is 4.0 m/min. Flushing pressure is 10.0 L/min. The specification of work material 
is shown below in Table 1. The basic properties of H21 tool steel that makes it suitable for wire electric 
discharge machining is shown in Table 2. 

In the present study, the experiments are designed on the basis of the central composite design (CCD) 
technique. The process variables and their levels are shown in Table 3. The full factorial CCD is designed with 
47 combinations of the factors at five levels and composed of 32 cube points, 5 center points in cube, and 10 
axial points as shown in Table 4. 

TABLE I Chemical composition of H21 tool steel 

Elements C Cr Mn Ni P S Si W V Fe 
Contribution (%) 0.31 3.18 0.23 0.14 0.021 0.005 0.16 8.52 0.33 Balance 

TABLE 2 Basic physical properties of H21 tool steel. 

Properties of H21 
Density 8.28 G/M3 
Melting Point 1423ºC 
Thermal Conductivity 27 W/M/K 
Electrical Resistivity 0.52 µΩm 
Specific Heat Capacity 460 J/Kg-K 
Hardness Around 50 HRC 

TABLE 3 WEDM parameters used in the experimentation. 

parameters Symbol Unit Level 
-2 -1 0 1 2 

Pulse on time Ton *mu/µsec 105/0.35 110/0.6  115/0.85 120/1.1 125/1.35 
Pulse off time Toff mu/µsec 30/9.5 37/12.5 44 /17 51/28 58 /46 
Current IP A 140 160 180 200 220 
Servo voltage SV V 20 30 40 50 60 
Wire Tension WT mu/kg 2/0.4 4/0.5 6/0.7 8/1.0 10/1.4 
     *mu = machine unit 

TABLE 4 Central composite design of experiments and results 

Run Ton Toff Ip SV WT CS (m/min) KW (µm) 
1 0.6 12.5 160 30 0.5 1.228 326.2 
2 1.1 12.5 160 30 0.5 1.978 346.4 
3 0.6 28 160 30 0.5 0.840 322.9 
4 1.1 28 160 30 0.5 1.667 336.7 
5 0.6 12.5 200 30 0.5 1.248 326 
6 1.1 12.5 200 30 0.5 1.978 345.2 
7 0.6 28 200 30 0.5 0.893 329.7 
8 1.1 28 200 30 0.5 1.668 343.9 
9 0.6 12.5 160 50 0.5 1.284 337 
10 1.1 12.5 160 50 0.5 1.987 353 
11 0.6 28 160 50 0.5 0.683 339.9 
12 1.1 28 160 50 0.5 1.345 341.1 
13 0.6 12.5 200 50 0.5 1.259 339.3 
14 1.1 12.5 200 50 0.5 1.952 348.1 
15 0.6 28 200 50 0.5 0.709 339.1 
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16 1.1 28 200 50 0.5 1.389 344.9 
17 0.6 12.5 160 30 1 1.424 316.5 
18 1.1 12.5 160 30 1 1.978 338.1 
19 0.6 28 160 30 1 0.893 320.3 
20 1.1 28 160 30 1 1.856 345 
21 0.6 12.5 200 30 1 1.619 322.6 
22 1.1 12.5 200 30 1 2.000 337.7 
23 0.6 28 200 30 1 0.962 322.7 
24 1.1 28 200 30 1 1.875 341.8 
25 0.6 12.5 160 50 1 1.362 325.4 
26 1.1 12.5 160 50 1 1.996 345.9 
27 0.6 28 160 50 1 0.680 326.7 
28 1.1 28 160 50 1 1.308 343.4 
29 0.6 12.5 200 50 1 1.366 323.9 
30 1.1 12.5 200 50 1 2.000 348.7 
31 0.6 28 200 50 1 0.669 325.8 
32 1.1 28 200 50 1 1.402 340.8 
33 0.35 17 180 40 0.7 0.674 317.8 
34 1.35 17 180 40 0.7 1.944 357 
35 0.85 9.5 180 40 0.7 1.931 339.6 
36 0.85 46 180 40 0.7 0.787 334.9 
37 0.85 17 140 40 0.7 1.571 326.3 
38 0.85 17 220 40 0.7 1.721 329.2 
39 0.85 17 180 20 0.7 1.935 329.2 
40 0.85 17 180 60 0.7 1.333 346.5 
41 0.85 17 180 40 0.4 1.711 339.6 
42 0.85 17 180 40 1.4 1.833 326.1 
43 0.85 17 180 40 0.7 1.860 337.3 
44 0.85 17 180 40 0.7 1.741 339 
45 0.85 17 180 40 0.7 1.718 338.5 
46 0.85 17 180 40 0.7 1.812 336 
47 0.85 17 180 40 0.7 1.757 336.9 

A. Machining Performance Evaluation 

Cutting speed has been used to evaluate machining performance. Cutting speed, under each cutting condition 
is calculated by dividing ‘length of cut of each cut’ by ‘the time of machining’. The unit of cutting speed is 
mm/min. 

Kerf width determines dimensional accuracy of the machined components. Lower the kerf width, higher the 
dimensional accuracy [9]. The kerf of the workpieces after machining is measured using an Optical microscope. 
For each cut, total 100 kerf width measurements have been taken at different positions along the length of each 
cut and finally, the average values are presented in Table 4. Fig. 1(a) depicts the schematic view and Fig. 1(b) 
depicts the microscopic view of kerf width after wire electro-discharge machining. The unit of kerf width is µm.  

 

(a)  (b)  
Fig. 1. (a) Schematic view (b) Microscopic view of the kerf width machined by WEDM 

III. PREDICTIVE MODELING AND OPTIMIZATION 
The same design of experiment (as shown in Table 4) is used to build the RSM and ANN model. Prediction 

ability of both the models is checked through statistical methods. PSO is used to provide the best parametric 
combination.  
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A. Construction of Response Surface Methodology (RSM) Model 

Response surface methodology (RSM) includes mathematical and statistical techniques for modeling and 
optimization of response variables which are influenced by several process variables [13]. Before applying 
RSM, it is required to check proper selection of process parameters and their ranges from previous studies and 
trial experiments for proper experimental design. Central composite design (CCD) for five independent 
variables at five levels is used to plan experimental design. The behavior of the system is explained by the 
following second order polynomial model presented in Eq. 1, on which the fitted dependent variable is viewed 
as a surface [14]. ܻ = ܾ଴ + ∑ ܾ௜ ௜ܺ௡௞௜ୀଵ +෌ ܾ௜௜ ௜ܺ௡ଶ௞௜ୀଵ +෌ ܾ௜௝ ௜ܺ௡௞௝வ௜ ௝ܺ௡      (1) 

Where Y is the response (CS, KW); b0, bi, bii, bij are the co-efficients; Xin (Ton, Toff, IP, SV, WT); n is the 
number of experiments; k is the number of factor; Xin, Xjn are the iteration numbers. 

B. Construction of Artificial Neural Network (ANN) Model 

Feed forward neural network is highly flexible modeling tool due to its complex and nonlinear behaviors. It 
has the ability to learn the mapping between input and output parameters [8, 15]. In the networks, the neurons 
are interconnected by different layers namely input layer, one or more hidden layer(s) and output layer [16]. The 
information is received by the input layer and passes to output layer through the hidden layer(s). The strength 
between each connection among the neurons is scaled via weights. An extra input is appended to neurons called 
bias. Each neuron in hidden layer and output layer carries a transfer function. Transfer function carries the sum 
of weighted inputs with a bias [15]. In this study, feed forward back propagation neural network with 5 input 
neurons, one hidden layer (13 neurons) and 2 output neurons include CS, KW is used to model the process as 
shown in Fig. 2.  

 
Fig. 2. Configuration of the ANN model with PSO. 

In this network, each summing function collects total net input from all the neurons in proceeding layer(s). 
Summation function used in this study is given in Eq. (2). ݊݁ݐ௝ = ∑ x௜ݓ௜ + ܾ௜௡௞ୀ଴     j=1,2,3…..     (2) 

The output jth neuron of hidden layer is indicated as Hj 
Hj = f(netj)           (3) 
The logistic sigmoid function of the ANN model in this study is given in Eq. (4). The function provides a 
curvilinear match between each layer with proceeding layers. 

Where f(netj) = ଵଵା௘ష೙೐೟;  range [0,1]         (4) 

The experimental data have been used to train the network. In order to make the model quickly converge, the 
parameters have been normalized between 0 and 1. The logistic activation function is used in this network. 
Training the BP-ANN is an iterative way where errors are minimized by backward propagation through network 
to update weight and thresholds between two layers [17]. The following function is used to calculate error 
between target output (Tpk) and calculation output (Opk). 

Ep = 
ଵଶ௣ ∑ ∑ ( ௣ܶ௞ − ܱ௣௞)ଶ௞௣          (5) 
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C. Assessing the Quality of Model 

The best configuration for the smart system is normally determined based on the minimum value of MSE and 
maximum magnitude of R2. The following statistics are used to assess the quality of RSM and ANN as well as 
comparing the adequacy of the models and data sets. ܴଶ = 1 − ∑ (ଢ଼౟,ు౮౦ିଢ଼౟,ౌ౨౛ౚ)మ౤౟సభ∑ (ଢ଼ు౮౦ିଢ଼)౤౟సభ ଶܴ		.݆݀ܣ (6)          = 1 − (ଵିோమ)(௡ିଵ)(௡ି௠)           (7) 

MSE = 
ଵ௡ ∑ (Y୧,୉୶୮ − Y୧,୔୰ୣୢ)ଶ௡௜ୀଵ          (8) 

The root mean square error (RMSE) is identified through the learning process is defined as follows: 

RMSE = ටଵ௡∑ (Y୧,୉୶୮ − Y୧,୔୰ୣୢ)ଶ௡௜ୀଵ          (9) 

Where, YExp and Ypred represent the experimental value and the prediction value of ith sample for performance 
evaluation respectively and n is the total number of samples used in validation set. MSE is the average of the 
prediction error squares, it can evaluate the deviation of the predicted values of the neural network. The smaller 
of MSE value, the better prediction of the model. 

D. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a stochastic population-based evolutionary computation technique 
which is inspired by the social behavior of bird flocking or fish schooling or swarm of insects [14, 18]. The 
system is initialized with a population of random solution and then it searches the optima through updating 
generation [19]. In every iteration, each particle is updated and stores two best values. The first value is the 
personal best solution in terms of fitness achieved so far called ‘p-best’. Another best value which leads to best 
solution among all the particles of the population is called as global best (g-best). This velocity and position of 
each particle are updated for the next fitness evaluation by accelerating each particle towards the p-best and g-
best. Following formula is used to generate the new swarm particles with improved characteristics [20] - ௜ܸ௧ାଵ = ௧ݓ ௜ܸ௧ + ௕௘௦௧௧݌)ଵݎଵܥ − ௜ܺ௧) + ଶ(݃௕௘௦௧௧ݎଶܥ − ௜ܺ௧)   i=1, 2, 3, …..t     (10) ௜ܺ௧ାଵ = ௜ܺ௧ + ௜ܸ௧ାଵ          (11) ௜ܸ௧ and ௜ܸ௧ାଵ are the velocities of particle i at iteration t and t+1. ௜ܺ௧ and ௜ܺ௧ାଵ are the positions of particle i at iteration t and t+1 
w is the inertia weight; C1 and C2 are cognitive (individual) and social (group) learning rate. r1 and r2 are 
random numbers uniformly distributed within the range of 0 and 1.  ݌௕௘௦௧௧  and ݃௕௘௦௧௧  are the best positions in the current swarm and ith particle over generation t respectively. Then 
the evaluated objective function corresponding to the particles is f[X1(i)], f[X2(i)]…………. f[Xn(i)]. The iteration 
process is continued until all particles are converged to the same optima [17]. 

IV. RESULT AND DISCUSSION 
A. Modeling Result and Analysis 

1) Predictive Modeling with RSM: 

The experimental results are analyzed by using analysis of variance. These are presented in Table 5 and 6. 
The fit summary suggests that the RSM quadratic model is statistically significant for analysis of CS and KW. 
The R2 value (0.9871, 0.9710) and the Adjusted R2 value (0.9820, 0.9596) and predicted R2 value (0.9672, 
0.9366) for the model term CS, KW are indications of good general ability and accuracy of polynomial model. 
The P-values are used as a tool to check the significance of each of the coefficients. The Model P-value of CS, 
and KW is less than 0.0001 which indicates that the model terms are statistically significant. F-value and 
percentage of contribution help to find significant factors and their respective ranks. Most non-significant model 
terms are eliminated by manual elimination of keeping alpha out 0.05 (i.e. confidence level 95%). The lack of fit 
value in Table 5, and 6 is non-significant which is desired.  Fig. 3 (a) and (b) shows the comparison of 
experimental and predicted CS and KW respectively. 
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TABLE 5 ANOVA table for cutting speed 

Source Df Seq SS Contribution (%) Adj MS F-Value P- Value 
Model 11 8.802 97.17 0.8 109.33 0.000* 
Ton (A) 1 4.692 51.80 2.434 332.54 0.000* 
Toff (B) 1 2.978 32.88 3.012 411.53 0.000* 
Ip (C) 1 0.012 0.13 0.012 1.58 0.217 
SV(D) 1 0.365 4.03 0.422 57.68 0.000* 
WT(E) 1 0.07 0.77 0.06 8.20 0.007* 
A2 1 0.418 4.62 0.454 62.06 0.000* 
C2 1 0.04 0.44 0.046 6.33 0.017* 
D2 1 0.054 0.59 0.054 7.33 0.010* 
AB 1 0.036 0.39 0.036 4.86 0.034* 
BD 1 0.113 1.25 0.112 15.24 0.000* 
Error 35 0.256 2.83 0.007   
Lack-of-Fit 31 0.243 2.68 0.008 2.36 0.210 

Pure Error 4 0.013 0.15 0.003 *significant 

TABLE 6 ANOVA table for kerf width 

Source DF Seq SS Contribution (%) Adj MS F-Value P-Value 
Model 12 4093.40 94.23 341.116 46.25 0.000* 
Ton (A) 1 2809.88 64.68 100.287 13.60 0.001* 
Toff (B) 1 9.58 0.22 34.610 4.69 0.037* 
Ip (C) 1 11.81 0.27 11.811 1.60 0.214 
SV(D) 1 462.21 10.64 28.828 3.91 0.056 
WT(E) 1 380.89 8.77 70.562 9.57 0.004* 
C2 1 136.14 3.13 138.878 18.83 0.000* 
A × B 1 49.90 1.15 52.232 7.08 0.012* 
A × D 1 47.13 1.08 47.132 6.39 0.016* 
A × E 1 100.07 2.30 100.069 13.57 0.001* 
B × D 1 22.30 0.51 21.472 2.91 0.097 
B × E 1 34.62 0.80 34.618 4.69 0.037* 
D × E 1 28.87 0.66 28.870 3.91 0.056 
Error 34 250.76 5.77 7.375   
Lack-of-Fit 30 244.53 5.63 8.151 5.23 0.059 
Pure Error 4 6.23 0.14 1.558 *significant 

 

 
Fig. 3. Effect plots for (a) cutting speed, (b) kerf width. 

The control parameters Ton and Toff on CS are found to be statistically more significant than other by 
contributing 51.80% and 32.88% of total contribution. At high pulse on time, pulse current is applied for long 
time and the plasma channel becomes denser and wider. At shorter Toff, more numbers of sparks strike on the 
surface which may cause higher cutting speed. It is also observed from the Fig. 3 (a) and Table 5 that the cutting 
speed varies with the variation of servo voltage, while it remains almost constant for variation of current and 
wire tension. So cutting speed can be improving by taking higher value of pulse on time and lower value of 
pulse off time and servo gap voltage. After eliminating the non-significant terms, the final equation obtained for 
cutting speed is given as follows:  

Cutting speed (mm/min) = -4.70 + 4.406 × Ton - 0.0171 × Toff + 0.0364 × IP + 0.0475 × SV                 
+ 0.000606 × WT- 1.981 × Ton × Ton - 0.000099 × IP × IP - 0.000425 × SV × SV + 0.01692 × Ton × Toff -
 0.000749 × Toff × SV - 0.000011 ×SV × WT.       (12)  
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Table 6 explains the analysis of variance (ANOVA) table of the kerf width. It is observed from Table 6 that 
the maximum percentage of contribution of Ton over kerf width is 64.68%. Servo voltage (10.64%) and wire 
tension (8.77%) have also significant contribution over kerf width. When pulse duration is high, the intensity of 
energy discharge becomes high resulting the wider width of kerf. Fig. 3 (b) reveals that increase in average gap 
voltage also leads to increase in kerf width. Wire stability also affects the kerf width. High wire tension in wire 
increases the stability which in turn reduces wire vibration that subsequently results narrow kerf width. After 
eliminating the non-significant terms, the final model obtained for kerf width is given as follows: 
Kerf width (µm) = 106.2 + 45.4 × Ton + 0.475 × Toff + 1.946 × IP + 1.250 × SV - 0.0307 × WT- 0.00533 × IP × 
IP - 0.631 × Ton × Toff - 0.498 × Ton × SV + 0.02770 × Ton × WT- 0.00996 × Toff × SV + 0.000539 × Toff × WT-
 0.000391 × SV × WT.         (13) 

 

Fig. 4 Experimental (a) CS and (b) KW Vs predicted result 

2) Predictive Modeling with ANN: 

The CCD experimental input and output values are utilized to train the BP-ANN model (depicted in section 
3.2) developed using MATLAB. The 5 inputs, 2 performances and 47 combinations of parameters are adopted 
as training data shown in Table 4. To test these models 7 sets of random combination experimental qualities are 
shown in Table 9. Initially the weights and bias are selected randomly for training data. The appropriate neural 
network structure for predicting all response variables was chosen by trial-and-error method. The final 
architecture of the neural network 5-13-2 is able to predict all responses with desired accuracy. The neural 
network is trained for 5,000 iterations. Network performance is evaluated using Mean Square Error (MSE) 
method. The errors of training datasets are computed through program and network with the smallest MSE has 
been considered to be optimum. The training process of the BP neural network and its performance are shown in 
Fig. 5. The model converges to 0.0003498 (MSE) in 5000 iterations. It is seen that the model can successfully 
predict the CS, and KW with RMSE 0.03312, 0.9524 respectively. The coefficients (weights) and the constants 
(bias) are given in Table 7 for ANN with therteen neurons. The log-sigmoidal function is used as a transfer 
function between input to hidden and hidden to output layer. 

 
Fig. 5. Performance evaluation of neural network 

 

 

 

 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Bikash Choudhuri et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i6/160806267 Vol 8 No 6 Dec 2016-Jan 2017 3108



TABLE 7 The weights and bias used for training of ANN  

Hidden 
Nodes 

Input to Hidden (Wij) Hidden to outputs (Who) 
Ton Toff Ip WT SV Bias CS KW 

1 1.9272 2.3112 -2.3256 2.5862 -3.0524 0.7074 0.1249 3.5621 
2 -2.4176 -1.2287 -3.9967 -0.422 2.027 0.2313 -1.4718 -2.8504 
3 -1.2368 -0.4318 -1.7238 0.4342 -0.6402 0.428 1.288 1.0819 
4 -0.3948 2.3649 0.0797 -3.0018 0.6613 -1.1113 1.7655 0.2717 
5 -6.3288 -0.4971 0.7943 -1.9219 -0.8338 1.9139 -3.8333 0.8035 
6 1.7735 0.0884 1.7377 -4.2534 2.8658 -1.0782 0.0013 2.3216 
7 1.2305 3.3443 -0.2086 0.8668 -0.1003 -1.5643 -1.6849 1.7026 
8 -0.3254 -1.9747 -0.2251 3.1508 -3.7506 -0.3935 0.4978 2.5857 
9 2.9141 -3.8993 2.9177 -2.7766 -1.3654 0.4618 0.6959 1.2875 
10 0.5202 0.3864 -1.23 0.7518 -0.3782 -1.3611 0.3858 0.8316 
11 -2.0831 4.6102 1.829 1.2893 -3.9495 0.001 -1.876 -2.6124 
12 -0.1452 -1.156 -4.0364 -2.5554 -0.155 1.21 -2.0244 -2.5166 
13 2.7124 -2.8245 0.5085 -3.078 -0.9122 2.9238 3.7666 -1.6999 

Bias  -0.9654 -3.4753 

3) Checking Adequacy of Model: 

The developed RSM and ANN model is well satisfied as adequacy measured by R2, adjusted R2 and RMSE 
explained in section 3.3 gives satisfactory results. From the equations 6 and 8, correlation of determination (R2) 
and mean square error (MSE) of CS, and KW are calculated and shown in Table 8. The comparison predicted 
values of CS, and KW of the WEDM of H21 tool steel using RSM and back-propagation neural networks along 
with the actual experimental values are shown in Figs. 4 (a) and (b); 6 (a) and (b) respectively. It can be seen 
that the ANN model is better fitted than RSM model with the experimental values. Since ANN is more accurate 
and more generalized model than quadratic RSM, it has better ability to find the global optimum. The best 
developed model is used for the optimization of process parameters of the WEDM of H21. 

   
Fig. 6. Experimental Vs ANN predicted results (Training case) (a) CS, (b) kerf. 

TABLE 8 Comparison of predictive capacity of RSM and ANN (training set) 

Statistic CS KW 
RSM ANN RSM ANN 

R2 0.9871 0.9946 0.9710 0.9906 
Adjusted R2 0.9820 0.9944 0.9516 0.9904 
RMSE 0.1868 0.0331 1.3692 0.9524 

4) Testing of ANN Model 

After testing of data as shown in Table 9, it can be concluded that the neural networks appear to constitute a 
correct model for predicting the CS, and KW within the range of experimental conditions. The error of both 
responses in testing cases are very less, which proves that ANN model is successful to predict correctly all the 
responses.  
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TABLE 9 Testing data of experimental result and neural network model 

Sl 
No 

Ton Toff IP SV WT CS KW 
Exp. ANN Exp. ANN 

1 0.85 14 150 45 0.85 1.768 1.805 333.2 333.6 
2 0.35 14 150 45 0.85 0.712 0.689 315.7 316.4 
3 1 17 150 45 0.85 1.782 1.838 336.4 340.1 
4 0.7 24 180 30 0.60 1.335 1.338 331.4 329.4 
5 1 14 160 45 0.85 1.991 1.942 348.1 343.9 
6 1 14 200 45 0.85 1.987 1.954 346.8 340.4 
7 1 14 150 30 0.85 1.996 1.964 337.5 333.6 

B. Optimization 
In the present work, PSO algorithm is successfully applied to solve the entire conflicting objective problem. 

To convert multi-response problem into single objective one i.e., multiperformance criterion index (MPCI), 
equal weightage is provided for both responses. The BP-ANN fitness function combined with PSO algorithm 
for optimization with objective of maximum MPCI and finally the respective optimized outputs are obtained 
separately. MATLAB programming is used for obtaining the overall objective. The results obtained from the 
optimization algorithm are presented in Table 10. The table presents the optimized parameters for the 
maximized cutting speed and minimized kerf width. 

In this optimization, the critical conditions of PSO namely cognitive parameters (c1) and social parameters 
(c2) are taken as 2. It is also observed that 70 numbers of iteration are taken by PSO for converge to the best 
value as shown in Fig. 7. The initial weight and final weight are taken as 0.95 and 0.05 respectively. The 
population is initialized with random data. The size of the swarm is 20. The PSO initialization is based on the 
finding of each particle’s best position in its history i.e. Pbest, If the new MPCI value is better than the best 
MPCI value of the previous iteration, set the current MPCI value as the new particle best fitness value, and the 
particle position having this particle best value is considered as particle best position (Pbest). Next the positions 
of best MPCI value (Gbest) within all the Pbest position has been chosen. So Gbest is the all particle’s best 
position in their history. Gbest helps its particles to reach around the optimal position very rapidly and 
accurately. The particle velocity and the particle position are calculated by following equation (10) and equation 
(11) respectively.   

 
Fig. 7. Objective function convergence of PSO for the optimization of WEDM process parameter. 

C. Confirmation Tests 

The optimum combination of process parameters, according to RSM-PSO method, is also checked by 
confirmation experiment and the results are reported in Table 10. The error percentages are within permissible 
limits which confirm the adequacy of each model. Optimum parameters: Ton= 0.95 µsec, Toff= 9.5 µsec, Ip= 
165 A, V=20 V, WT= 1.4 kg 

TABLE 10 confirmations run of optimum results. 

Cutting Speed (mm/min) Kerf Width (µm) 

Exp. ANN Exp. ANN 

1.956 1.937 318.54 317.79 
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V. CONCLUSION 
An Investigation on cutting speed and kerf width on the wire electric discharge machining of H21 tool steel 

has been carried out. The relationship between the input parameters such as pulse on time, pulse off time, 
current, servo gap voltage and wire tension with the output parameters is modeled through RSM and ANN 
modeling based on RSM CCD design of experiment. The prediction capacity of ANN model is more accurate 
and more generalized than quadratic RSM to reach the global optimum. Comparisons are made of the above 
approaches by statistical analysis and after testing their performances on 7 randomly selected test cases.  The 
developed ANN model is suitably integrated with particle swarm optimization algorithms to optimize the 
process parameters. It can be used as the theoretical model for the CS, KW in the future. The good agreement 
between the predicted and experimentally obtained CS, KW confirms the applicability of these evolutionary 
computational techniques for optimization of process parameters in the WEDM process. Thus, it can also be 
concluded that even though RSM is most widely used method for non-traditional machining optimization, 
ANN-PSO hybrid methodology may present a better alternative. The optimization is used to exhibit machine 
product with higher quality and lower cost. The optimum combination is pulse on time 0.95 µsec, pulse off time 
9.5 µsec, current 165 A, servo gap voltage 20 v and wire tension is 1.4 kg. Based on the ANOVA and F-test, 
Pulse on-time was found to be the most significant parameter among all machining parameters. Longer pulse 
on-time results in higher cutting speed, and kerf width. Pulse off-time also significant on cutting speed. Current 
was very less effective on cutting speed and kerf width, while a major effect of servo voltage and wire tension 
has been found on kerf width.   

REFERENCES 
[1] Kumar P, Chauhan SR. Machinability Study on Finish Turning of AISI H13 Hot Working Die Tool Steel with Cubic Boron Nitride 

(CBN) Cutting Tool Inserts Using Response Surface Methodology (RSM). Arab J Sci Eng 2015; 40:1471–1485. 
[2] Maher I, & Sarhan AA, Hamdi M. Review of improvements in wire electrode properties for longer working time and utilization in wire 

EDM machining. The International Journal of Advanced Manufacturing Technology 2015; 76:329–351. 
[3] Mahapatra SS, Patnaik A. Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. 

The International Journal of Advanced Manufacturing Technology 2007; 34:911–925. 
[4] Patil NG, Brahmankar PK. Some studies into wire electro-discharge machining of alumina particulate-reinforced aluminum matrix 

composites. The International Journal of Advanced Manufacturing Technology 2010; 48:537–555. 
[5] Pellicer N, Ciurana J, Delgado J. Tool electrode geometry and process parameters influence on different feature geometry and surface 

quality in electrical discharge machining of AISI H13 steel. Journal of Intelligent Manufacturing 2011; 22:575–584. 
[6] Ramakrishnan R, Karunamoorthy L. Multi response optimization of wire EDM operations using robust design of experiments. The 

International Journal of Advanced Manufacturing Technology 2006; 29: 105–112. 
[7] Ikram A, Mufti NA, Saleem MQ and Khan AR. Parametric optimization for surface roughness, kerf and MRR in wire electrical 

discharge machining (WEDM) using Taguchi design of experiment. Journal of Mechanical Science and Technology 2013; 27 
(7):2133-2141. 

[8] Saha P, Tarafdar D, Pal SK, Saha P, Srivastava AK, Das K. Multi-objective optimization in wire-electro-discharge machining of TiC 
reinforced composite through Neuro-Genetic technique. Applied Soft Computing 2013; 13: 2065–2074. 

[9] Yang RT, Tzeng CJ, Yang YK & Hsieh MH. Optimization of wire electrical discharge machining process parameters for cutting 
tungsten. The International Journal of Advanced Manufacturing Technology 2012; 60:135–147. 

[10] Danial Ghodsiyeh, Abolfazl Golshan, S. Izman Multi-objective process optimization of wire electrical discharge machining based on 
response surface methodology. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2014; 36:301–313.  

[11] Mandal D, Pal SK, Saha P. Modeling of electrical discharge machining process using back propagation neural network and multi-
objective optimization using non-dominating sorting genetic algorithm-II. Journal of Materials Processing Technology 2007; 186:154–
162.  

[12] Tosun N, Cogun C, Tosun G. A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi 
method. Journal of Materials Processing Technology 2004; 152:316–322. 

[13] Mandal N, Doloi B, Mondal B. Predictive modeling of surface roughness in high speed machining of AISI 4340 steel using yttria 
stabilized zirconia toughened alumina turning insert. International Journal of Refractory Metals and Hard Materials 2013; 38:40–46. 

[14] Shayan, AV, Afza, RA & Teimouri, R. Parametric study along with selection of optimal solutions in dry wire cut machining of 
cemented tungsten carbide (WC-Co). Journal of Manufacturing Processes 2013; 15(4): 644-658. 

[15] Shiva M, Atashi H, Tabrizi FF, Mirzaei AA, Zare A. The application of hybrid DOE/ANN methodology in lumped kinetic modeling of 
Fischer –Tropsch reaction. Fuel processing technology 2013; 106: 631-640. 

[16] Karaye D. Prediction and control of surface roughness in CNC lathe using artificial neural network. Journal of material processing 
technology 2009; 209: 3125-3137. 

[17] Çaydaş U, Hasçalık A. A study on surface roughness in abrasive waterjet machining process using artificial neural networks and 
regression analysis method. Journal of materials processing technology 2008; 202(1): 574-582. 

[18] Malviya R, Pratihar DK. Turning of neural networks using particle swarm optimization to model MIG welding process. Swarm and 
evolution computation 2011; 1: 223-235. 

[19] Sathiyaa P, Aravindan S, Haq AN, Paneerselvam K. Optimization of friction welding parameters using evolutionary computational 
techniques. Journal of materials processing technology 2009; 209: 2576–2584. 

[20] Arindam Majumder. Comparative study of three evolutionary algorithms coupled with neural network model for optimization of 
electric discharge machining process parameters. Proc IMechE Part B: J Engineering Manufacture. 2014; 1–13. DOI: 
10.1177/0954405414538960.  

 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Bikash Choudhuri et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i6/160806267 Vol 8 No 6 Dec 2016-Jan 2017 3111




