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Abstract-This paper presents comparative analysis of metaheuristic algorithms for m-machine No wait 
flow shop scheduling (NWFSS) for finding optimal scheduling sequence considering minimization of total 
flow time (TFT). Such type of analysis for NWFSS is not available in the literature published till date. 
Because of combinatorial optimization behavior, NWFSS is NP Hard problem. In order to find the 
approximate solution, population based technique, evolutionary technique and population based 
evolutionary technique are implemented by considering stochastic input. The computational 
experimentations show that, PSO finds better solution compared with other techniques but the quality of 
solution can be improved by hybridizing PSO with guided random search technique. 

Keywords: No wait flow shop scheduling, Combinatorial optimization, NP-Hard, Total flow time. 
I. INTRODUCTION 

Optimization problems are widely encountered in various fields of science and technology, which can be very 
complex due to the actual and practical nature of the objective function or the model constraints. Flow-shop 
scheduling problem (FSSP) is a combinatorial optimization problem and it is an NP-hard problem as it needs to 
select the optimal sequence of jobs from n!  feasible alternative sequences to meet the objective criterion. One of 
variant of FSSP is NWFSS, which considers optimal sequence of jobs on given number of machine by 
considering fixed processing sequence, which are intrinsically difficult. NWFSS problems has application found 
in many industries such as steel production [1], food processing [2], chemical industry [3], pharmaceutical 
industry [4], production of concrete wares [5] etc.  

For a no-wait flow-shop problem, once a job is started on the first machine it has to be continuously 
processed until its completion at the last machine without interruptions and preemptions. Additionally, each 
machine can handle one job at a time and each job has to be processed by each machine exactly once without 
preemption. In order to meet this constraint it may be necessary to postpone the start of a job on given machine 
so that the completion of the operation coincides the starting of the operation on the next machine. This means 
the difference between the completion time of a job’s last operation and the starting time of its first operation is 
equal to the sum of its operation times on all machines.  During the past few years most researchers have 
proposed various heuristic methods to solve no wait flow shop scheduling problems. Swarm Intelligence 
nowadays getting more attention for solving various optimization problems. It is a computational intelligence 
technique involving the study of collective behavior in decentralized systems. Examples of such systems can be 
found in nature, including ant colonies, animal herding, bird flocking, bee swarms, and many more. PSO is a 
population-based evolutionary technique which can be used to solve the combinatorial optimization problems 
such as the traveling salesman problem, the job shop scheduling problem and transportation problem in network 
design etc [6].  

This paper presents comparative analysis of metaheuristic algorithms for m-machine NWFSS for finding 
optimal scheduling sequence considering minimization of total flow time (TFT). Such type of analysis for 
NWFSS is not available in the literature published till date.  In order to find the approximate solution, 
population based technique – Tabu Search(TS), evolutionary technique - Genetic Algorithm(GA) and 
population based evolutionary technique - Particle Swarm Optimization(PSO) are implemented by considering 
stochastic input. 
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II. RELATED WORK 

The no wait flow shop scheduling problems with more than two machines belong to class of NP-Hard and 
can be solved with constructive heuristic approach and metaheuristic approach. Rajendran and Chaudhari[7], 
Betolissi[8], Aldowaisan and  Allahverdi [9], Sapkal and Laha[10] developed an efficient heuristic algorithm by 
considering Total flow time(TFT) and makespan as objective function under consideration. Yuhui Shi and 
Russell Eberhart[11], B. Liu, L. Wang et al. [12],  Q-K. Pan, M. Fatih Tasgetirenc et al. [13],I.-H.Kuo, S.-J. 
Horng et al.[14],A.G.Rao et al.[15] developed solutions with metaheuristic by using PSO as basic global 
optimization method. 

Yuhui Shi and Russell Eberhart [11] found PSO may suffer in global search at the end of run due to 
utilization of linearly decreasing inertia weight. So, they proposed self adaptive strategy to maintain inertia 
weight and minimize computation time. 

B. Liu, L. Wang et al. [12] proposed hybrid PSO algorithm by using ranked-order-value (ROV) rule based on 
random key representation to convert continuous position of particles to job permutations. Nawaz-Enscore-Ham 
(NEH) heuristic was used to initialize the particle position and velocity. They proposed NEH_1 insertion 
technique to improve the quality of a job permutation. SA is incorporated with adaptive meta-Lamarckian 
learning strategy to avoid premature convergence for local search.  

Q-K. Pan, M. Fatih Tasgetirenc et al. [13] developed DPSO as a variant of PSO. DPSO considers local search 
with variable neighborhood descent (VND) algorithm based on variable neighborhood search (VNS) for 
makespan criterion. 

I.-H.Kuo,S.-J.Horng et al. [14] developed individual enhancement(IE) scheme with PSO for improving local 
search quality and  random encoding scheme to improve global search quality of PSO for minimizing makespan.  

P. Damodaran, A. G. Rao et al. [15] proposed heuristics to modify particle position. Heuristic is improved 
with constructive Knapsack heuristic and batch formation NEH heuristic for particle generation; they achieved 
minimization of makespan. 

III. PROBLEM DEFINITION 

 No Wait Flowshop scheduling has a set of n jobs and m machines. Every job is processed on each 
machine for processing time p(i,j) without preemption. Sequence σ given with {σ1, σ2…, σn} is n jobs to be 
processed on m machines.  The problem is to determine a sequence of n jobs which gives minimum Total Flow 
Time (TFT). Given matrix of size n x m with processing time p[i,j] generates  (n!) number of feasible solution 
from which optimal sequence is to be opted. Delay between two machines is calculated by δ time. Where, δ(i,k ) 
is minimum delay time between start of job i and start of job k where job k follows job i. (1≤ i ≤ n, 1 ≤ k ≤n, i ≠ 
k). Delay matrix represents delay time between current job and next job to be submitted. δ(σi-1,σi) denote 
minimum delay on the first machine between the start of two consecutive jobs i and i-1. The formula for total 
flow time (TFT) is given as: ܶܶܨ = ∑ (݊ + 1 − ݅)(i − 1,݅) + ∑ ∑ ,݅)݌ ݆)௠௝ୀଵ௡௜ୀଵ௡௜ୀଶ                   (1) 

δ(i,k)=p(i,1)+max((∑ ,݅)݌ ℎ) − ∑ ,݇)݌ ℎ)),0)௡௞ୀ௜ାଵ௡௜ୀଵ    (2) 

IV. METAHEURISTIC APPROACHES 

The above problem is solved using two classical algorithmic approaches namely, population based technique 
(Tabu Search) and evolutionary based technique (Genetic Algorithm). The results are compared with population 
based evolutionary technique   ( PSO). The approaches are briefed below: 
1. Tabu Search (TS):  TS  works with basic three principles : 

─ Forbidding Strategy: Controls what enters in Tabu List. 
─ Freeing Strategy: Controls what exits from tabu list and when to exit 
─ Short Term Strategy: Manage between forbidding and freeing strategy to select trial solution. 

Algorithm TabuSearch() 
Inputs:Local Search,Neighbourhood, Aspiration condition,Tabu list and moves,stopping condition 
1.Randomly select initial solution i in S0. Set i*=i and k=0 
2.set k=K+1 and generate a subset V* of solution in N(i,k) such that one of the Tabu condition is violated. 
3.Choose a best j in V* and set i=j. 
4.if f(i)< f(i*) then i*=i 
5.Update Tabu list 
6. If not termination condition go to step 2 
End 
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Though TS improves the solution to escape from a local optimum, but global optimum may not be found as it 
depends on parameter setting. The algorithm also suffers from finding too many parameters and requires large 
number of iteration affects overall computation time. 
2. Genetic Algorithm (GA): GA works with basic principle of survival of fittest. The algorithm maintains a 

population of candidates and evolution is possible with crossover, mutation, fitness evaluation stochastic 
operators. 

Algorithm GA() 
1. Produce an initial population of individuals. 
2.Evaluate fitness of all individuals 
3.While not termination 
3.1.find fit individual for reproduction 
3.2 Recombine two individual 
3.3 mutate individual 
3.4 Evaluate fitness of new candidates 
3.5.Generate new candidate population 
End 
End 

  GA is very useful to provide the solutions where the traditional methods failed. But still GA suffers from 
finding global maxima. Time taken for convergence depends majorly on decent sized population and a lot of 
generations. Fine tuning all the parameters for the GA, like mutation rate, elitism percentage, crossover 
parameters, fitness normalization/selection parameters, etc, is often just trial and error. 
3. Particle Swarm Optimization (PSO): PSO is evolutionary population based algorithm incorporates five 

basic principles of swarm intelligence (1) quality principle; (2) proximity principle; (3) principle of diverse 
response; (4) principle of stability; and (5) principle of adaptability. 

Initialize population particles p in search space with random positions and velocities 
Loop  
 Update position of p according to optimization; 
 Update velocity of p according to optimization; 
Vi(k+1) = ω*Vi (k) + c1* rand( ) * (Pi (k) - Xi (k)) + c2* rand( ) * ( g(k) - Xi(k))  
 Xi(k+1) = Xi (k) + Vi (k+1)  
 Where,  
Vi (k) is velocity of particle i at iteration k. 
Xi (k) is the position of particle i at iteration k. 
Vi (k+1) is velocity of particle i at iteration k+1. 
ω is inertia weight 
Xi (k+1) is the position of particle i at iteration k+1. 
rand( ) is random number between (0,1). 
c1 cognitive acceleration coefficient. 
c2 social acceleration coefficient. 
 Map obtained position in solution space; 
 Evaluate fitness function; 
 Update local best, global best; 
End loop  

PSO is less sensitive to the nature of objective function and can handle objective functions with stochastic 
nature. It has the flexibility to be integrated with other optimization techniques to form hybrid tools. It has less 
parameter to adjust unlike many other competing evolutionary techniques. It has the ability to escape local 
minima. It does not require a good initial solution to start its iteration Process unlike population based 
techniques. 

V. COMPUTATIONAL EXPERIENCE 

The Metaheuristics under consideration were coded in Java and run on Intel Core i5,8 GB RAM, 2.20 GHz 
PC. The experimentation is carried out in two phases. In first phase, small problem sizes with number of 
jobs(n)=6,8,10,12 and number of machines(m)=5,10,15,20,25 were considered. Second phase comprises of 
large problem sizes with n=20, 40, 60, 80,100 and m=5, 10,15,20,25. Each problem size in both phases has 
thirty independent problem instances. Each problem instance corresponds to a new processing time matrix 
generated randomly using uniform distribution u(1,99) used more often in research community[10]. The 
experimentation measures the performance by average relative percentage deviation (ARPD) (for small problem 
size) and percent of best heuristic solution (for large problem size) 
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ARPD for small number of jobs problems is given by 

ARPD = (100 / k)	∑ ெ௘௧௔௛௘௨௥௜௦௧௜௖ିை௣௧௜௠௔௟ை௣௧௜௠௔௟௞௜ୀଵ                         (3) 

ARPD = (100 / k)	∑ ெ௘௧௔௛௘௨௥௜௦௧௜௖ି஻௘௦௧஻௘௦௧௞௜ୀଵ                              (4) 

Where, Metaheuristici denotes the objective function value obtained for ith instance by a Metaheuristics. 
Optimal is optimal solution value obtained for that instance. Besti is optimal solution value obtained for that 
instance (PSO in this case) and k is the number of problem instances for a problem size. Table I displays 
comparative evaluation of PSO with GA and TS with enumerative method based on ARPD for small problem 
sizes (n=6, 8, 10, 12).The results of table shows that PSO approximates near optimal solution compared to GA 
and TS. PSO performs better than GA and TS in 43 cases out 45 of cases with respect to ARPD. 

TABLE I.  ARPD Obtained for Small Problem Sizes 

Problem Size   ARPD 
n(jobs) m(machines) No. of instances PSO TS GA 

6 

5 30 4.36 12.12 4.54 
10 30 3.81 10.80 8.34 
15 30 1.02 6.82 4.78 
20 30 1.79 8.10 4.54 
25 30 2.13 6.54 5.68 

8 

5 30 4.47 35.34 9.35 
10 30 2.97 15.09 10.32 
15 30 3.43 50.31 5.44 
20 30 5.01 10.83 7.54 
25 30 3.46 8.57 5.44 

10 

5 30 13.92 19.11 17.55 
10 30 46.41 17.67 17.89 
15 30 9.94 12.81 6.74 
20 30 5.19 42.71 7.56 
25 30 3.86 10.23 4.35 

12 

5 30 6.05 19.46 6.45 
10 30 6.79 19.52 7.56 
15 30 6.25 15.41 8.52 
20 30 6.16 14.14 7.95 
25 30 5.48 12.67 8.92 

 
 
 
 
 
 
 
 
 
 
 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Laxmi A.Bewoor et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i6/160806265 Vol 8 No 6 Dec 2016-Jan 2017 3024



TABLE II.  ARPD Obtained for Large Problem Sizes 

Problem Size   ARPD 
n(jobs) m(machines) No. of instances TS GA 

20 

5 30 6.40 0.29 
10 30 22.95 24.65 
15 30 20.68 25.87 
20 30 18.48 27.65 
25 30 18.22 24.56 

40 

5 30 15.86 19.46 
10 30 16.76 24.88 
15 30 15.32 28.43 
20 30 18.45 25.31 
25 30 17.81 35.56 

60 

5 30 13.40 30.65 
10 30 15.44 29.65 
15 30 17.43 30.65 
20 30 16.84 28.59 
25 30 16.61 27.89 

80 

5 30 11.89 29.39 
10 30 13.76 26.84 
15 30 12.49 26.90 
20 30 18.72 25.71 
25 30 14.28 26.78 

100 

5 30 11.17 25.55 
10 30 13.73 25.83 
15 30 14.57 27.89 
20 30 15.72 28.95 
25 30 14.02 40.49 

It has been observed that, ARPD values obtained (as shown in Table I and II) indicates that, PSO algorithm 
converges to near optimal solution for small as well as for large problem size. 

V. CONCLUSION 

This paper has discusses comparative analysis of some metaheuristic algorithms to optimize the total flow 
time of NWFSS problem with stochastic input. The metaheuristic under consideration were population based; 
evolutionary algorithms and population based evolutionary algorithms. The performances of the said algorithms 
are tested with optimum results for small problem size and with best metaheuristic results for large problem 
size. Computational experiences conclude that, PSO has many key advantages over other optimization 
techniques.  

As PSO has no strong mathematical foundation there is wide scope to improve solution quality by hybridizing 
PSO with guided random search for NWFSS. Effectiveness and efficiency of such algorithms can be validated 
further with statistical analysis. 
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