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Abstract - In this article, a fast and reliable technique using MultikernelSparse Representation for 
Image Classification in Remote Sensing.  For higher dynamics remote detecting picture and the limitation 
of image segmentation, obtaining asatisfying Image classification result is difficult. In this paper, an 
evolution-based algorithm for contour detection has been developed to create templates from the original 
image. The templates thus extracted from the original image would act as inputs to the Particle Filter 
Framework (PFF).Features are extracted and fused using multiple kernels, the fused output is optimized 
with the Multikernel Sparse Representation technique. To achieve substantial reduction in execution 
time, template matching algorithm is used. The robustness of the implementation is focused to avoid 
misclassifications during variations in the illumination, size and direction of the image. 

Keyword- Image Classification, Distance Regularization, Particle Filter Framework, Sparse Representation, 
Multikernel Sparse Representation  

I. INTRODUCTION 

Remote Sensing Classification is a complex process, due to several factors affecting the accuracy of the 
information extracted from the remote sensing data. Some of the factors influencing the accuracy of information 
extraction are; improper data selection, inadequate resolution, noises in the satellite data and cloud cover in the 
image.[1,2] Besides these factors, an efficient and effective performance of remote sensing image classification 
is surely a challenging task. The major steps to be followed for achieving an improved classification without 
much of information loss are; suitable classification system selection, better training sample selection, followed 
by image pre-processing and feature extraction, and finally the accuracy calculation.  

In general, the classification techniques are broadly classified as either pixel-or object-based. Pixel-
based classification is less preferred for high-resolution data because it produces some disagreeable 
classifications in extracting the targeted class. The pixel-based classification approach is proven to be thriving 
with low to moderate spatial-resolution data. In the case of high-resolution data, the approach produces 
numerous unacceptable classification accuracies. Also pixel by pixel based classification methods is highly time 
consuming and consumes more computational cost[3]. 

To overcome the limitation of the pixel-based classification approach in high-resolution remote 
sensing, the object-based classification approach is recommended in which the processing units are ‘images’. 
Object-based classification is practical and broadly preferred in overcoming the object variation in remote 
sensing images which leads to pixel-based misclassification. Object-based classification method can take 
entirebenefit of multi-dimensional features of objects, so it is appropriate for high-resolution remote sensing 
image[4]. Because of the complication of remote sensing data and the constraint of image segmentation, it is 
often difficult to attainaacceptable segmentation result. 

The evolution based algorithmfor contour detection with distance regularization[5] is preferred to 
overcome the difficulty of segmentation. To achieve speed template matching algorithm which is based on 
DRLSE is used[6]. Sparse representation is an ideal procedure for image classification in remote sensing 
because of its transparent and powerful capacity to gain a  precise information in depth from the data  
available[7]. To achieve robustness which is a major task in image classification Multikernel sparse 
representation is carried out. 
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C.Optimization Algorithm 

 
Fig3: Optimisation Algorithm 

In order to reduce more expensive computation, we introduce kernel sparse representation, 
[12]whichprovidea very fast and simple method of sparse representation. This is achieved by kernel trick, a 
function referred as φ(·) which would map a feature vector into the kernel space.  φ(·) which satisfies 
φ(xሻ்φ(x)=1 when ‖ܺ‖ଶ

ଶ ൌ 1, which is the condition for convexity. 

The KSR can be written as[1]  

መߚ ൌ min
ఉ
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Recently, the KSR model is used for image classification [6]. In kernel method,we need to find inner 
product, so the formula can be rewritten as following[12] 

መߚ ൌ min
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2
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where K is an n × n kernel matrix satisfying 

 K=൥
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and K(i,y)=࣐ሺ࢏ࢄሻ
 .ሻis an n×1 vector࢟ሺ࣐ࢀ

Multiple features can be easily introduced in KSR by applying multikernel fusion. Weighted 
multikernel fusion is one of the most preferredmethod among all the multikernel fusion methods, in which a 
weighted summation is used to obtain a kernel [13-15] 

K=∑ ߱௜ܭ௜                                                                                                              
௡
௜ୀଵ (5) 

Where K is the fused kernel;ܭ௜is the kernel of ith feature and ߱௜ is its corresponding weight, satisfying ∑ ߱௜
௡
௜ୀଵ = 

1 and ωi≥ 0. Similarly, the kernel vector [13-15] 
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The MKSR algorithm is also applied on the two datasets under different illumination conditions. The OA 
and kappa coefficient under illumination variation condition are found to be approximately equal when 
compared with the original image without illumination variation. The results are shown in Table 2. 

TABLE 2.  Performance comparison of the proposed MKSR for various databases with illumination variation 

Proposed MKSR With Illumination Variation Images For Aviris Dataset 

Class 
Number 

Indian Pines Image Salinas Database 

Overall 
Accuracy in 
% 

Kappa 
Coefficient 
in % 

Execution 
time in secs 

Overall 
Accuracy 
in % 

Kappa 
Coefficient 
in % 

Execution 
time 
In secs 

Class1  90.635179 90.457566 12.163336 91.7 90.457566 19.99 

Class2 90.471513 90.348052 6.705922 90.471513 90.348052 9.7112 

Class3 89.072848 88.611308 10.735412 89.072848 88.611308 19.5412 

Class4 94.210729 93.687681 6.980669 94.210729 93.687681 60.00066 

Class5 85.282523 85.176564 8.076532 85.282523 85.176564 9.0732 

Class6 82.845188 82.833085 3.786678 82.845188 82.833085 10.786678 

Class7 81.413613 81.380076 6.651305 81.413613 81.380076 8.605 

Class8 83.404255 83.392935 3.813821 83.404255 83.392935 9.821 

Class9 89.518414 89.502268 2.310441 89.518414 89.502268 9.3141 

Class10 81.413613 81.380076 6.810555 81.413613 81.380076 9.855 

The proposed MKSR algorithm is applied on the two datasets under different size variation conditions, 
and the OA and kappa coefficient under size variation condition are found to be approximately equal when 
compared with the original image without size variation. The results are shown in Table 3. 

TABLE 3.  Performance comparison of the proposed MKSR for various databases with size variation 

Proposed MKSR With Size Variation Images For Aviris Dataset 

Class 
Number 

Indian Pines Image Salinas Database 

Overall 
Accuracy 
in % 

Kappa 
Coefficient 
in % 

Execution 
time in secs 

Overall 
Accuracy 
in % 

Kappa 
Coefficient 
in % 

Execution 
time 
in secs 

Class1  81.64 91.46 12.386554 93.7 92.7566 18.89 

Class2 82.57 94.37 69.7577 99.41513 99.34052 9.712 

Class3 85.03 89.61 130.849989 88.2848 87.68 18.512 

Class4 88.22 92.69 9.956842 93.2129 92.681 62.0669 

Class5 98.29 88.19 9.1724 86.2523 89.176564 8.8732 

Class6 91.85 83.83 5.059 86.888 81.8485 11.78 

Class7 81.41 84.38 13.70 91.413 91.076 9.605 

Class8 94.40 89.39 12.924398 93.405 93.395 8.821 

Class9 98.8 87.54 9.46 90.577 99.50 8.3 

Class10 81.41 84.33 8.91 83.413 83.389 10.88 
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