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Abstract— Human society is living in the age of high speed development and increase of high volume of 
visual data. It has become a necessity to evaluate the quality of these visual data or images in many 
applications. This approach of quality assessment focuses on collecting feature vector from Natural Scene 
Images that reflects the shape parameter and correlation between adjacent pixels. A set of 36 features is 
collected from each image and training is done on images available in the data set. Then, three learning 
approaches – General Classification, KNN approach, and Distortion Specific approach are done on this 
feature vector. The 0training is done by taking the Mean Opinion Score (MOS) values available at the 
TID data set. Each method reflected its applicability and accuracy. It has been observed that distortion 
specific method out performs the other two. Specifically, the area where each one of these methods can be 
applied is also identified which is of great help to image manipulators. 
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I. INTRODUCTION 

The age we live in is a highly digital world. Progresses in technology have helped in images and videos to be 
captured, stored, shared and viewed easily. All these types of manipulations happening to the image gradually 
lead to a reduction in quality or content in the image. This led to an increase in development of tools for 
assessing image quality. Image Quality Assessment (IQA) tools help in rating the way humans perceive the 
quality of images. It is now a challenge for research community to develop the most accurate quality assessment 
tool. Investigators in quality assessment of images have endeavored to explore how the existence of these 
distortions disturbs the viewing experience. The best measure of quality assessment is to exhibit the images to a 
large sample of human population and to collect their opinion. The average of those opinions will give the 
average quality measure commonly indicated by subjective assessment. In objective assessment, the evaluation 
of quality is done using algorithms. The subjective assessment of quality takes lot of time and is impractical. 
Current IQA methods can be categorized into three based on the presence of the original image: i) complete/full 
reference IQA [15]; ii) less/reduced reference IQA; and 3) without/no reference/Blind IQA [18] (BIQA). BIQA 
is applied more in real world. 
Human eyes can easily distinguish the distortions or noises in natural images. This is because of the fact that 
there exist particular structures that separate the unnatural from the natural scenes.  Such structures are called 
Natural Scene Statistics (NSS) [11]. Also, natural images are highly non-random with interdependencies within 
them [19], [20]. 

Earlier work in BIQA was based on knowledge of the type of distortion happened to the image and then, as 
developments happened , the distortion detecting algorithm determined the type of distortion and based on that, 
quality was assessed [5],[7]. Recently, techniques have been established to directly plot features in images to 
quality scores without looking into the type of distortion [10]. For example, Saad et al. [5] has developed the 
methods BLIINDS and BLIINDS-II [12] to degenerate the image features to quality scores. 

Quality Assessment Based on DCT: Michele Saad, Alan C. Bovik, Christophe Charrier developed a method 
called by the name BLIINDS [5] to effectively assess quality in Natural Scene Statistics (NSS). The algorithm 
relies on Discrete Cosine Transform (DCT) for feature extraction. The local DCT contrast value is calculated 
and is used for determining the distortion. The histogram pattern of distorted images exhibits a higher peak at ‘0' 
and the variance value also gets transformed accordingly. The DCT coefficient Kurtosis value is computed for 
this. The degree of this peak and tail weight are quantified to get the distortion index. 

Anush Krishna Moorthy and Alan C. Bovik [4] in 2011 devised a method for blind image quality assessment 
using wavelet transform coefficients (DIIVINE). Here a loose wavelet transform is applied on to the image and 
the scale-space-orientation of the image is noted. They supply a set of statistical features and they are stacked to 
form a vector. Using this feature vector, the distortion type is determined and the quality score is calculated. 
Here, a regression model is developed for each distortion category and mapping is done from distortion to 
quality value.. 
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In 2013, Xinbo Gao and Xuedong Li [1] successfully implemented a method of Image Quality Analysis by 
multiple Kernel Learning. The authors have used the secondary and tertiary properties of wavelet transform to 
get the features. Secondary properties of Wavelet transform gives Non-Gaussianity, Clustering and Persistency. 
Tertiary properties give Exponential Decay Characteristics (EDC). Feature vector was created by the marginal 
distribution of coefficients. The histogram of wavelet coefficients in different sub bands was calculated and all 
those were collected to get the long feature vector. 

The EDC show that at finer scales the energy decays exponentially.  The EDC variations are observed and 
based on that authors concluded that EDC can replicate the types of distortions. Thus the feature vector included 
Non-Gaussianity, Local dependency and EDC characteristics.  

 Another assessment algorithm using Deep Learning was developed recently by Weilong Hou and Xinbo Gao 
[9], [17]. They evaluated the quality of NSS image by means of collecting linguistic description rules. Normally, 
subjects are used for providing linguistic descriptions; this method learns the evaluation on quality and gives 
numerical marks for comparison [16], [13]. 

Each of the above methods throws light on different approaches to quality prediction. Section II discusses the 
proposed method of quality assessment of NSS image by feature extraction, Section III gives its comparison 
with three different feature learning and quality assessment method and section IV gives an analysis of the result. 
This study attempts to give the accuracy of the method under two conditions; (i) when the distortion type is 
known and (ii) when it is unknown to the application. Hence real world applications find the proposed method 
useful by having awareness about the approach to be applied for quality prediction. 

II. PROPOSED METHOD-OPINION AWARE BLIND-QUALITY ASSESSMENT 

Most of the existing quality assessment methods concentrate on mapping the image domain from spatial to 
another and doing processing on that. We are processing in spatial domain since we consider that the visual 
cortex of human beings responds well in the spatial domain. 

The normalized luminance value of the image offers a good knowledge about the amount of distortion 
happened to the image and also the amount of naturalness presented in the image under consideration. In this 
paper, we examine the quality of an NSS image by inspecting the normalized luminance value [4] and then the 
pairwise product of these coefficients are modeled to compute the quality score. We then demonstrate how the 
statistical features obtained from the image can represent quality and that the representation confirms well with 
human observation of quality. The normalized luminance value of an image can be computed as 
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where, w = {Wk,l |k = −K, . . .  K, i = −L, . . . L}  is a 2D circularly-symmetric Gaussian weighting function. In 
our implementation, K and L are taken as 3. 
 

 
 

Fig. 1. Undistorted original NSS image 
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Fig. 2.  Two Low Quality distorted version (by high and medium white noise distortion) of Fig. 1. 
 

Careful Observations shoes that the luminance values give a unit Gaussian distribution in the lack of any 
distortion for NSS images [4].These normalized luminance values are also termed as Mean Subtracted Contrast 
Normalized values (MSCN).Our experiments are based on the theory that these coefficients have statistical 
features that are altered by the occurrence of distortion and that enumerating the deviations will help in 
predicting the distortion occurred in an image and also its quality. To see the variations of MSCN coefficient, 
the coefficient values were plotted for an undistorted pristine image and on a distorted low quality image. The 
MSCN coefficients clearly show the distinction between a good quality undistorted natural image and a low 
quality distorted image as shown in Fig. 1 and Fig. 2.The shape of the curve is perfectly Gaussian for an 
undistorted NSS image and is exhibiting peak around zero for its distorted version. The shape of the curve varies 
based on the type of distortion happening to the image i.e. each type of distortion changes the shape of the curve 
in its characteristic way.  Studies have revealed that a Generalized Gaussian Distribution (GGD) can capture 
characteristics of distortion from the MSCN coefficients [2]. A zero mean GGD is given by  
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             and π(.)  is the gamma function 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The distribution of MSCN coefficients of Fig. 1 

 
 
 
 
 
 
 
 
 
 

Fig. 4. The distribution of MSCN coefficients of Fig. 2. 
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Even though Fig. 1 and the second image in Fig. 2 does not show much difference in human perception, the 
MSCN coefficients clearly show the distortion difference using difference in shape. 

The ‘shape' of the distribution is controlled by shape parameter, α and variance by σ2. The shape parameter α 
also denotes the rate of decay: the smaller α, the more peaked is the distribution, and the larger α, the flatter is 
the distribution, so it is also called as the decay rate. For NSS images, there exists a statistical relationship 
between neighboring pixels and these dependencies get disturbed due to distortion. This is modeled by  this by 
computing the pairwise products of MSCN coefficients in the neighborhood [2] along four orientations – 
horizontal (H),   vertical (V), main-diagonal (D1) and secondary diagonal (D2) [6].   
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                                  for i ∈ {1, 2 . . . M} and j ∈ {1, 2 . . . N}.  

The variations of these pairwise products are better represented using the commonly available Asymmetric 
Generalized Gaussian Distribution function (AGGD). To observe the variation, histograms of paired products 
along each of four orientations is plotted. This is done for a good quality image and for its distorted versions.  
The shape parameter and the scale parameters controls the ‘shape' and the spread of the distribution on each side 
of the mode, respectively. The distribution skew is taken as the function of the left and right scale parameters [3]. 
This becomes a GGD if the skew value is same for left and right. AGGD is usually used to model heavy skewed 
distributions. 

 
Fig. 5. An undistorted natural image and its MSCN coefficient 

 
Fig. 6. The horizontal product, vertical product, main diagonal and off diagonal product values of the original image in fig 5. 
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TABLE I: The Set of Features 

Feature ID Feature Description Computation Procedure 

f1− f2 Shape and variance By fitting Generalized Gaussian 
Distribution to MSCN Coefficients 

f3− f6 Shape, mean, left variance, 
right variance 

By fitting  AGGD to Horizontal  
pairwise products 

f7− f10 Shape, mean, left variance, 
right variance  

By fitting  AGGD to Vertical  pairwise 
products 

f11− f14 Shape, mean, left variance, 
right variance 

By fitting  AGGD to Main diagonal  
pairwise products 

f15− f18 Shape, mean, left variance, 
right variance  

By fitting  AGGD to Off diagonal  
pairwise products 

We extract 16 parameters (4 parameters/ orientation × 4 orientations) for each paired product, thus giving the 
next set of features. The same is repeated at two scales - the original image scale, and at adown sampled 
resolution. Increasing the number of scales beyond two did not give much performance increase. Thus 36 
features (18 features in two scale) helped  in learning and converting feature set to a quality score. 

III. LEARNING PROCESS AND QUALITY EVALUATION 

We have considered three learning approaches.  

 The first approach is the General classification model, which involves constructing a general 
classification model from the training data consisting of image features and their quality scores. This 
approach does not take into account the type of distortion in the image. 

 The second approach involves a lazy learner prediction scheme involving k nearest neighbours. The 
quality score of the test image is estimated as the average of quality scores of the k nearest neighbours 
in the feature space from the training data.  

 The third approach is a distortion specific approach.  

 
Fig. 7. The comparison between the accuracies of 17 different distortion types available with TID 2008 

In this approach, we first use a classification model to yield a vector that indicates the probability of the test 
image belonging to each distortion type. A regressor is learnt for each distortion type and quality scores are 
obtained from each regressor [12]. The resultant score is taken to be the dot product of the probability vector 
and the corresponding regressor scores. 

TABLE II. Accuracy of Three Methods 

Method Accuracy 
General prediction 70.22% 

Distortion specific method 73.89% 

Lazy learner approach (KNN) 68.75% 
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IV. DISCUSSION 

The opinion aware image quality assessment system was tested on LIVE II [14] and in TID 2008 [8]. The 
below illustrated test results are based on TID 2008 dataset. A collection of 272 distorted images from the TID 
2008 database was used for training.  The test set had a uniform mix of distortions. Table II shows the summary 
of accuracies of classification under the three adopted schemes. This shows that distortion specific method is 
good in categorizing a distorted image into low quality or degraded quality set. The detailed values of accuracies 
of quality prediction are shown in figure 7. The tables show the percentage of accuracy we obtained while 
comparing our results with the MOS value available at the TID dataset. Here a comparison of three quality 
evaluation approaches is shown against the 17 different distortion types available in the TID 2008 dataset.  

The Mean Opinion Score available at the data set is taken as the subjective basis for comparison of the 
obtained objective result. 

Clearly, the three methods exhibit different accuracies for different distortions. If the type of possible 
distortion is known, then the best option to predict the quality is to select the most suitable one from the table. 
i.e.   for high frequency noise, General prediction gives the accurate result. For JPEG 2000 transmission error, 
KNN approach is the best one. If the type of distortion is unknown, which happens mostly, and then distortion 
specific method is proficient in giving the most accurate opinion. Distortion specific classification method gave 
a prediction score around 74 and as we consider it as the good performing classification scheme.  

V. CONCLUSION 

In this paper, we discussed about finding the feature values of an image for opinion-aware quality evaluation 
method and three ways of interpreting these features to predict the quality of that image. Objective analysis 
result can be taken into account only by verifying its comparison with subjective assessment. Hence the MOS 
scores available at the dataset are taken for calculating the accuracy of the method. The results obtained were 
comparable with human judgment. Also, each of the three methods exposed areas where it can be applied. The 
efficiency of the method depends greatly on the feature set extracted from the image. Here, we found that all 
three methods give promising results and among them, distortion specific method acts as the noticeable one for 
opinion aware, blind Quality Assurance Method.  
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