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Abstract—A dominating set of G is a set of vertices of G such that every vertex in V – D is adjacent to a 
vertex in D. The domination number of G, denoted by  ( G ), is the minimum cardinality of a dominating 
set. Different kinds of graph operations have different outcomes on the domination number of a graph. In 
this paper we present a brief survey on the impact of different kinds of graph operation on the 
domination number of a graph. 
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I. INTRODUCTION 

The study of domination number in graph theory was introduced by Claude Berge in 1958, on his book 
“Theory of Graphs and its Applications” [1].  But domination number was studied in the name of coefficient of 
external stability. At the first time the name dominating set and domination number was used by Oyestein Ore in 
[2]. At the beginning stage the domination number was denoted by d ( G ). Later, in 1977, the notation  ( G ) is 
used to denote the domination number in [3], by E. J. Cockayne and S. T. Hedetniemi. The literature on 
domination has been surveyed in detail in two famous books by T.W. Haynes, S.T. Hedetniemi, and P.J. Slater 
[4][5]. 

Since the evolution of domination theory, types of domination are also established and studied by many 
researchers. But the original dominating set is the base for all types of domination. Different kinds of graph 
operations change the graphs and hence influence the domination number of the graph also. In this survey we 
concentrate on the effect of various kinds of graph operations on the domination number. There are several 
results relating graph operations and different types of domination. But we restrict our survey only to graph 
operations and dominating sets. Several results are available in this regard, and many have been omitted in this 
brief survey. We apologize to the authors for the omission. Many results omitted here can be found in [4][5] and 
in the articles in the reference section. This survey is restricted to presentation of possible results that describe 
the effects of the graph operations on the domination number of a graph. 

II. GRAPH THEORY TERMINOLOGY AND CONCEPTS 

All graphs in this paper are undirected and simple. Let G = ( V, E ) be a graph with the vertex set V of order | 
V ( G ) | = n and edge set E of size | E | = m, and let v be a vertex in V. The open neighborhood of v is N ( v ) = 
{ u  V ( G ) | ( u v )  E ( G ) } and the closed neighborhood of v is N [ v ] = { v }  N ( v ).  We indicate that 
u is adjacent to v by writing u  v. 

The degree of v in G is denoted by d ( v ). The vertex v is said to be isolated if deg ( v ) = 0 and it is a pendant 
vertex if deg ( v ) = 1, while a support vertex of T is a vertex adjacent to a pendant vertex. A vertex which is 
adjacent to two or more leaves is called a strong support vertex. A cut vertex of a graph is one whose removal 
increases the number of components, that is if v is a cut vertex of a connected graph G , then G – { v } is 
disconnected.  A maximal connected subgraph without a cutvertex is called a block. A block of a graph G 
containing only one cut vertex is called an end block of G. 

The connectivity k = k ( G ) of a graph G is the minimum number of vertices whose removal results in a 
disconnected or trivial graph. A set of independent edges in a graph G is called a matching of G. A 1 – factor or 
a perfect matching of a graph is a partition of its vertices into adjacent pairs.  

Pn, Cn, Kn, denotes the path, cycle and complete graph with n vertices respectively. The wheel graph is 
denoted by Wn, and it is defined as K1 + C n – 1.  We denote the radius and diameter of G by rad( G ) and diam 
( G ), respectively.  The minimum and maximum degree on the vertices of G is denoted by  ( G ) and  ( G ) 
respectively. If   ( G ) =  ( G ) = r, then all points have the same degree and G is called regular of degree r. 

The regular graphs are those of degree 3, such graphs are called cubic. The complement G  of a graph G also 

has V ( G ) as its vertex set, but two vertices are adjacent in G  if and only if they are not adjacent in G.  

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Yamuna M et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i6/160806234 Vol 8 No 6 Dec 2016-Jan 2017 2749



A bipartite graph G is a graph whose vertex set V ( G ) can be partitioned into two subsets V1 ( G ) and V2 
( G ) such that every edge of G joins V1 ( G ) with V2 ( G ). If G contains every vertex joining V1 and V2, then G 
is a complete bipartite graph. If V1 and V2 have m and n vertices, it is denoted by Km, n. 

 A planar graph is a graph that can be embedded in the plane, that is, it can be drawn on the plane in 
such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no 
edges cross each other. A planar graph is outerplanar if it can be embedded in the plane so that all its vertices lie 
on the same face. We usually choose this face to be the exterior face. For an inner face f of G, f is said to be an 
internal triangle if it is not adjacent to the exterior face.  An outerplanar graph G is maximal outerplanar if no 
line can be added without losing outerplanarity.  

A hamiltonian path of G is a path passing exactly once through every vertex of G. A hamiltonian cycle is a 
closed hamiltonian path. The circumference c ( G ) is the length of a longest cycle of G. A graph G is 
hamiltonian if its circumference is equal to n. For details of on graph theory we refer to [6]. 

A dominating set, denoted by DS, of G is a set of vertices of G such that every vertex in V – D is adjacent to 
a vertex in D. The domination number of G, denoted by  ( G ), is the minimum cardinality of a DS.  The 
cardinality of any minimum dominating set ( MDS ) for G is called the domination number of G and it is 
denoted by ( G ).  - set denotes a dominating set for G with minimum cardinality.  

A vertex v is said to be selfish in the  - set D, if v is needed only to dominate itself. A vertex v is said to be 
good if there is a  - set of G containing v. If there is no  - set of G containing v, then v is said to be a bad 
vertex. A graph G is said to be excellent if every vertex of G is good. A vertex v is said to be a, down vertex if   
( G − v ) <  ( G ), level vertex if  ( G − v ) =  ( G ), up vertex if  ( G − v ) >  ( G ). The private neighborhood 
of v  D, denoted by pn[ v, D ], is defined by pn[ v, D ] = N [ v ] – N [ D − { v } ]. 

A domatic partition of a graph G = (V, E) is a partition of V into disjoint sets V1, V2, ...,VK such that each Vi 
is a dominating set for G. The domatic number is the maximum number of such disjoint sets and it is denoted by 
d ( G ). A dominating set D is said to be an independent dominating set if no two vertices in D are adjacent. A 
set of vertices D in a graph G is called a clique dominating set if every two vertices in D are adjacent. A vertex 
in V – D is k – dominated if it is dominated by at least 2 – vertices in D, that is | N ( v ) ∩ D | ≥ 2. If every 
vertex in V – D is k – dominated then D is called a k – dominating set. For details of on domination we refer to 
[4]. 

Graph Operations 

A new graph can be built from the original graph with some special property. Graphs can be modified by 
deleting or adding elements using unary operation, or they can be built by combining multiple graphs using 
some binary operations. 

In this section we study the effects on the domination number when the graph is modified by another graph 
by using the following operations.  

1. Unary operations 

2. Binary operations 

Unary operations create a new graph from initial one. It can be classified into two categories  

i. Elementary operations 

ii. Advanced operations 

Elementary operations create a new graph from on initial one by simple change, such as vertex deletion, an 
edge deletion or addition, edge contraction and edge subdivision. 

Let G – v  ( respectively, G – e ) denote the graph formed by removing vertex v ( respectively, removing an 

edge e ) from G. Let G + e denote the graph formed by adding an edge e, where e  E ( G  ). 

 In [7], J. R. Carrington, F. Harary, and T. W. Haynes surveyed the results of characterizing the graphs G in 
the following six classes. They used the following acronyms to denote the following classes of graphs. 

C – changing, U – unchanging, V – vertex, E – edge, R – removal, A – addition. 

The six classes of graphs are listed below: 

 ( G – v )   ( G ) for all v  V ( G ) –       CVR , 

 ( G – e  )   ( G ) for all e  E ( G ) –       CER , 

 ( G + e )   ( G ) for all e  E ( G  ) –       CEA , 

 ( G – v ) =  ( G ) for all v  V ( G ) –       UVR , 

 ( G – e ) =  ( G ) for all e  E ( G ) –       UER , 
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 ( G + e ) =  ( G ) for all e  E ( G  ) –       UEA . 

It is useful to write the vertex set of a graph as a disjoint union of three sets according to how their removal 
affects  ( G ). Let V ( G ) = V0  V +  V –  for 

V0 = { v  V:  ( G – v ) =  ( G ) } 

V+ = { v  V :  ( G – v ) >  ( G ) } 

V –  = { v  V :  ( G – v  ) <  ( G ) }. 

Similarly, the edge set can be partitioned into 

E0 = { ( u v )  E ( G ):  ( G – ( u v ) ) =  ( G ) } 

E+ = { ( u v )  E ( G ):  ( G – ( u v ) ) >  ( G ) }. 

Sticking on the characterization of J. R. Carrington et al. [7], we proceed with our survey in the following 
fashion 

Elementary Operations 

By using elementary operation we can generate a new graph from the original one by applying some small 
changes on initial graph.  In this section we present some of the attractive results on elementary operations with 
the domination number like, CVR, CER, CEA, UVR, UER, UEA, edge contraction, and edge subdivision. 

Advanced Operations 

By using advanced operations we can create a new graph from the original graph by applying some complex 
changes on the initial one. In this section we provide some fascinating results on advanced operations with the 
domination number like, complement graph, line graph, and graph minors.  

Binary Operations 

By applying advanced operation we can generate a new graph from the two initial graphs. In this section we 
present some interesting results on advanced operations with the domination number like, cartesian product, 
tensor product of graphs, rooted product graph, and corona product of graphs. 

The main aim of this paper is to present a survey of some possible results on the effect of graph operations on 
the domination number of a graph. The rest of the paper is ordered as follows.  

i. Elementary operations 

ii. Advanced operations 

iii. Binary operations 

III. ELEMENTARY OPERATIONS 

A. Changing Vertex Removal ( CVR ) 

Removing a vertex can increase the domination number by more than one. For example, the center vertex of a 
wheel graph Wn , n > 4.  But it can be decreasing by at most one. For example, an end vertex of a path P3. In 
general,  if  ( G – v )   ( G ) for all v  V ( G ), then  ( G – v ) =  ( G ) – 1,  for all v  V ( G ). A 
characterization of vertices whose removal increases the domination number as described by D. Bauer, F. 
Harary, J. Nieminen, C. L. Suffel [8]. 

Theorem[8]  

A vertex v  V+ if and only if 

1. v is not an isolate and is in every  - set of G and 

2. no subset S  N – V [ v ] with cardinality  ( G ) dominates G – v.  

Furthermore D. Bauer  et al. have characterized vertices in trees satisfying the property [8]. 

Theorem[8]  

For any tree T with at least three vertices  ( T – v ) >  ( T ) if and only if v is in every  - set for T. 

A slight modification of this result strengthens the result further to cut vertices [8]. 

Theorem[8]  

If a cut vertex v of G is in every  - set for G, then  ( G – v ) >  ( G ). 

In [9], R. C. Brigham, P. Z. Chinn, R. D. Dutton, characterized the vertices in V –.  They defined, vertex 
domination critical, or  - critical, or simply critical, if for any vertex v of G,  ( G – v ) <  ( G ). They have 
provided the following results. Note that the graphs in CVR are precisely the critical graphs.  

Theorem[9] 

A graph G  CVR if and only if each block of G is CVR. 
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Using induction on the number of blocks the domination number of G is determined by R. C. Brigham et al. 
[9]. 

Theorem [9] 

Let G have b blocks B1, B2, …, Bb. If G  CVR, then  ( G ) = 
b

i
i 1

( ( B ) )


  –  b + 1. 

In [10], E. Sampathkumar and P. S. Neeralagi characterized the vertices in V –. 

Theorem[10] 

A vertex v is in V – if and only if pn [ v, S ] = { v } for some  - set S containing v. 

Once the necessary and sufficient conditions are known it is of interest to determine the bounds of the CVR 
graphs. We present few bounds of these graphs in terms of minimum degree and maximum degree, in terms of 
order, degree, and diameter. 

1)   Bounds in CVR Graphs:  

R.C. Brigham et al. have provided the following bounds on CVR graphs in terms of its minimum degree and 
maximum degree [9]. 

Theorem[9] 

If G  CVR, then n  (  ( G ) + 1 ) (  ( G ) - 1 ) + 1. 

Also they have provided the bounds on CVR graphs in terms of its edges, domination number and maximum 
degree. 

Theorem[9] 

If G CVR with e edges, then 
( 2e 3 ( G ) ( G ) )

n
3

   
 . 

In 1995, J. Fulman, D. Hanson and G. MacGillivray, have discussed results on CVR graphs [11]. 

Theorem [11] 

If a graph G  CVR has order n = (  ( G ) + 1 ) (  ( G ) – 1 ) + 1, then G is regular. 

Theorem [11] 

If a graph G  CVR and  ( G )  2, then diam( G )  2 (  ( G ) – 1 ). 

J. Fulman et al. characterized all CVR graphs with domination number 3 or 4 whose diameter achieves the 
upper bound in the above theorem [11]. 

Theorem [11] 

1. A graph G  CVR with  ( G ) = 3 and diam ( G ) = 4 if and only if it has two blocks, each of which is 
CVR with  ( G ) = 2. 

2. A graph G  CVR with  ( G ) = 4 and diam ( G ) = 6 if and only if it has three blocks, two of which 
are end blocks and all of which is CVR with  ( G ) = 2. 

We now present NG type results related to CVR graphs  

Theorem[9] 

For any graph G, every pair of vertices has at least  ( G  ) – 2 common neighbors and, if  ( G  )  3, diam( G ) 
  2 and  ( G )  k ( G ). 

Theorem[9] 

For any graph G with  ( G  )  3,  ( G ) +  ( G )  k ( G ) + 3. 

The following result applies to nontrivial CVR graphs, for which G  is also CVR. 

Corollary[9] 

For any graph G with  ( G )  3 and  ( G )  3,  ( G ) +  ( G )   min { k ( G ),  k ( G ) } + 3. 

Properties of vertices help in characterizing graphs that are not CVR. Results regarding this classification are 
discussed by various authors.  

Theorem[9] 

If G has a non isolated vertex v such that N ( v ) is complete, then G  CVR. 

Theorem [11] 

If there exists vertices u and v such that N [ u ]  N [ v ], then G  CVR. 
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In 1991, J. R. Carrington et al. determined the properties of V + and V – in CVR graphs [7]. 

Theorem[7] 

For any graph G, 

1. If v  V +, then for every  - set S of G, v  S and pn [ v, S ] contains at least two nonadjacent vertices, 

2. If x  V + and y  V –-, then x and y are not adjacent, 

3. | V0 |  2 | V + |, 

4. ( G )   ( G – v ) for all v  V if and only if V = V – and 

5. If v  V – and v is not an isolate in G, then there exists a  - set S of G such that v  S. 
As a consequence of the above result, the following classification is further provided.  

Corollary[7] 

A graph G  CVR if and only if for each vertex v  V, pn [ v, S ] = { v } for some  - set S containing v. 

In [8], D. Bauer et al. have defined + ( G ) and  –  ( G ). + ( G ) denotes the minimum number of vertices 
whose removal increases the domination number and  –  ( G ) the corresponding number whose removal 
decreases the domination number. Some basic results on + ( G ) and  –  ( G ) are discussed below [8].  

Theorem [8] 

1. For any graph G,   –  ( G ) = 1 if and only if  ( G ) = 0. 

2. For any graph G,   –  ( G )    ( G ) + 1. 

3. For any graph G, min{  +  ( G ),  –  ( G ) }   ( G ) + 1. 

4. Let T be a tree. Then  + ( T ) = 2 if and only if there are vertices u and v such that 

i.  every  - set contains either u or v. 

ii. v is in every  - set for T – u and u is in every  - set for T – v.  

iii.  no vertex is in every  - set. 

B. Changing Edge Removal ( CER ) 

Removing an edge from any graph either leaves the domination number unchanged, for example Complete 
graph Kn, where n  3, or increases it by exactly one, for example a star. In general,  if  ( G – e )   ( G ) for all 
e  E ( G ), then  ( G – e ) =  ( G ) + 1,  for all e  E ( G ). Thus a graph for which the domination number 
changes when an arbitrary edge is removed has the property that  ( G – e ) =  ( G ) + 1, for every e  E ( G ). 
The graphs in CER are called +

 –  critical graphs.  

In [8], D. Bauer et al. characterized the following results in CER graphs. They have defined bondage number 
b ( G  ),  which they called the edge stability number, to be the minimum number of edges whose removal 
increases the domination number. The degree of an edge ( u v ) is defined by deg ( u ) + deg ( v ) and ' ( G ) 
denotes the smallest degree of any edge.  

Theorem [8] 

A graph G  CER if and only if G is the union of stars K1, n.  

1)  Bondage Number of Graphs: 

In 1990, J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts [12] have provided the bondage number for 
different kind graphs like, complete graphs, cycle and paths. 

Theorem[12] 

1. The bondage number of the complete graph Kn ( n  2 ) is b ( Kn ) = 
n

2
 
  

. 

2. The bondage number of the n – cycle is 

b ( Cn ) = 
3 if n 1( mod 3)

2 otherwise.





 

3. The bondage number of the path of order n, ( n  2 ) is given by 

b ( Pn ) = 
2 if n 1( mod 3)

1 otherwise.





 

Hu and Xu [13], have obtained the bondage number for ( n – 3 ) regular graphs of order n  4. 
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Theorem[13] 

b ( G ) = n – 3 for any  ( n – 3 ) – regular graph of G of order n  4. 

In 1997, U. Teschner has provided the bondage for general graphs [14]. 

Theorem[14] 

If G is a nonempty graph with a unique minimum dominating set, then b ( G ) = 1. 

Some principle results of bondage number for trees plays an important role in the study of bondage number. 
Here we present some results. 

2)  Bondage Number for Trees:  

D. Bauer et al. proved that any tree has bondage number one or two [8].  

Theorem [8] 

If T is a tree with atleast two vertices, then b ( T )  2. 

J. F. Fink et al. have characterized the bondage number of a more general class of graphs, specially, in trees. 
The final outcome of the results is discussed below [12].  

Theorem[12] 

1. If T is nontrivial tree, then b ( T )  2. 

2. If any vertex of a tree T is adjacent with two or more end – vertices, then b ( T ) = 1. 

3. If F is a forest, then F is an induced subgraph of a tree S with b( S ) = 1 and a tree T with b ( T ) = 2. 

U. Teschner has provided the necessary and sufficient condition for the trees having bondage number 1 [14]. 

Theorem[14] 

A tree T has bondage number 1 if and only if T has a good vertex or an edge ( x y ) satisfying 

1. x and y are neither good vertices nor bad vertices. 

2. all neighbors of x and y ( except for x and y ) are bad.    

3)   Bounds on CER Graphs: 

Bauer et al. have provided the following bound on CER graphs in terms of its maximum degree. Also they 
provided a bound in terms of minimum smallest degree [8]. 

Theorem[8] 

If there exist at least one vertex v  V ( G ) such that  ( G – v )   ( G ), then b ( G )   ( G ). 

Theorem[8] 

For any graph G, b ( G )  ' ( G ) – 1. 

In [12], J. F. Fink et al. have established the bounds on the bondage number of a graph that are independent 
of the graph’s structure. 

1. If G is a connected graph of order n  2, then b ( G )   n – 1. 

2. If G is a nonempty graph, then b ( G )  min { deg (u ) + deg ( v ) – 1: u and v are adjacent vertices }. 

3. If G is a nonempty connected graph, then b ( G )    ( G ) +  ( G ) – 1. 

4. If G is a nonempty graph with domination number  ( G )  2, then b ( G )  (  ( G ) – 1 )  ( G ) + 1. 

5. If G is a connected graph of order n  2, then b ( G )  n –  ( G ) + 1. 

Finally they conclude with the following conjecture. 

Conjecture[12] 

If G is a nonempty graph, b ( G )   ( G ) + 1. 

In 1994, B. L. Hartnell and D.F. Rall have provided some improved upper bounds for b ( G ) [15].  

Theorem [15] 

1. If G is a nonempty graph, then b ( G )  
u V, x N ( u )

min {deg ( u ) e ({ x }, V N[ u ])}
 

  . 

2. b ( G )   deg ( u ) + e ( { v }, V – N [ u ] ) for every pair of non – adjacent vertices u and v in G for 
which  ( G + ( u v ) ) =  ( G ). 

B. L. Hartnell et al. proved that, the bondage number of any graph with edge connectivity two will then 
necessarily satisfy that bound J. F. Fink’ s  et al. conjectured in [12]. 

Theorem[15] 

If G has edge connectivity k, then, b ( G )   ( G ) + k – 1. 
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In [16], Yue – Li Wang has provided an improved upper bound for bondage number. 

4)   Bondage Number of NP – Hard Problem:  

In 2012, Fu-Tao Hu and Jun-Ming Xu showed that the problem for determining the bondage numbers of 
general graphs is NP-hard. They stated the following decision problem [17]. 

Bondage problem: 

Instance: A nonempty graph G and a positive integer k. 

Question: Is b ( G ) ≤ k?  

Based on this problem, they have provided the following theorem. 

Theorem[17] 

The bondage problem is NP – hard. 

In 2014, Fu – Tao Hu, Moo Young Sohn have proved that the bondage numbers of general graphs is NP-hard 
for the same decision problem [18]. 

Theorem[18] 

The bondage problem is NP – hard even when restricted to bipartite graphs and k = 1. 

Many contributions in CER graphs are related to determining bounds on bondage number. We present few 
results in this section. 

C. Changing Edge Addition ( CEA ) 

Adding an edge to a graph cannot increase the domination number, for example, a star, and can decrease it by 
at most one, for example, adding an edge between an end vertex and a vertex of degree at least 2 in a corona. In 

general,  if  ( G + e )   ( G ) for all e  E ( G  ), then  ( G + e ) =  ( G ) – 1,  for all, e  E ( G  ). In 1983, D. 
P. Sumner, P. Blitch have characterized the graphs in CEA and they called them as “edge domination critical 
graphs”. The initial characterizations on CEA graphs were determined in [19]. 

Theorem[19] 

1. A graph G with  ( G ) = 1 is in CEA if and only if G is Kn. 

2. A graph G with  (G ) = 2 is in CEA if and only if G is the union of stars K1, n. 

In 1990, D. P. Sumner characterized CEA graphs [20].  

Theorem[20] 

G  CEA is a connected graph with  ( G ) = 3 if and only if G = A  B where either A is trivial and B  
CEA with  ( G ) = 2 or A is complete and B is a complete graph minus 1 factor. 

As observed earlier, the maximum, minimum degree, order, diameter of a graph help in determining graph 
bounds. Established results on bounds of CEA graphs are presented in this subsection. 

1)  Bounds on CEA Graphs: 

Let dk denote the number of vertices in G of degree at most k. Bounds based on dk is provided in [19] 

Theorem[19] 

1. Let G  CEA be a connected graph with  ( G ) = 3. Then for k  1, dk ≤ 3k. 

2. Let G  CEA be a connected graph with  ( G ) = 3 and | V ( G ) | = n, with n  k, then dk ≤ k + 1. 

3. If G is in CEA with  ( G ) = 3, then the diameter of G is at most 3. 

D. P. Sumner has provided an improved bound for CEA graphs [20].  

Theorem[20] 

1. Let G  CEA be a connected graph with  ( G ) = 3 and | V ( G ) | = n. Then d2 ≤ 2 for n  2. 

2. Let G  CEA be a connected graph with  ( G ) = 3 and | V ( G ) | = n, | E ( G ) | = m, then m ≤ 
n 2

2

 
 
 

. 

D. P. Sumner has describe a conjecture related to CEA graphs with  ( G ) = 3. 

Conjecture[20] 

Let G  CEA be a connected graph with  ( G ) = 3 and | V ( G ) | = n, then the number of edges in G is 

atleast 
n 2 k k 4

min
2 2 2

           
     

. 
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In 1994, O. Favaron, D. Sumner, and E. Wojcicka  have provided the results on CEA graphs with  ( G ) = k 
[21]. 

Theorem[21] 

If G is in CEA with  ( G ) = k, where k  2, then  

1. the diameter of G is at most 2k – 2. 

2. diameter of G is  
3k

1
2

   
, for every k. 

Theorem[21] 

If G is in CEA with  ( G ) = 4, then the diameter of G is at most 5. 

Characterizing hamiltonian graphs has always been a challenging problem for those interested in graph theory. 
Various techniques are devised and used for this purpose. Interestingly CEA graphs have been used in 
classifying hamiltonian graphs. Some classifications of interest is provided here.   

2)  CEA and Hamiltonian Graphs: 

In 1990, E. Wojcicka showed that every connected, CEA graph with  ( G ) = 3 on more than 6 vertices has a 
hamiltonian path [22]. 

Theorem[22] 

1. Let G  CEA be a connected graph, with  ( G ) = 3 and let A = { x  V ( G ): deg ( x ) = 1 }. Then 
G – A  is 2 connected.  

2. If G is in CEA with  ( G ) = 3 on more than 6 vertices, then G has a hamiltonian path. 

In the same paper, E. Wojcicka posed the following conjecture. 

Conjecture[22] 

Let G  CEA be a connected graph with  ( G ) = 3. Every graph G with no end vertex has a hamiltonian 
cycle. In 1991, Y. F. Xue and Z. Q. Chen have classified hamiltonian graphs related to minimum degree [23]. 

Several characterizations using minimum graph degree is credited by various authors. 

Theorem[23] 

If G is in CEA with  ( G ) = 3 and  ( G ) = 1, then G – V1 ( G ) has a hamiltonian cycle, where V1 ( G ) = 
{ v  V ( G ) | d ( v ) = 1 } 

In 1999, F. Tian, B. Wei, L. Zhang have proved the following results with  ( G ) =  + 2 [24]. 

Theorem[24] 

1. Every graph G  CEA with  ( G ) = 3 and   2,  ( G ) =  + 2  is hamiltonian. 

2. Let G  CEA be a graph with  ( G ) = 3 and   2,  ( G ) =  + 2. Then G has only one vertex with 
degree . 

Let P ( u, v ) be the length of the longest path connecting u and v . A graph G of order n is said to be hamilton 
– connected if d* ( G ) = n – 1, where d* ( G ) = min { P ( u, v ) | u, v   V ( G ) }. In 2002, Y. Chen, F. Tian 
and Y. Zhang have proved the following results on CEA graphs [25]. 

Theorem[25] 

1. Let G  CEA be a 3 – connected graph with  ( G ) = 3 and   2,  ( G ) =  + 2. Then G is 
hamilton connected. 

2. Let G  CEA be a connected graph with  ( G ) = 3 and  ( G ) =  + 2. Then G is hamilton 
connected if and only if   3. 

Theorem[19] 

1. Let G be a CEA connected graph with  ( G ) = 3. If  S is an independent set with | S | = n in G, then 
there is some x in S with  ( x )  n – 2. 

2. Every graph G  CEA, with  ( G ) = 3 contains a triangle. 

3. If G is in CEA with  ( G ) = 3, then no two end vertices of G have a common neighbor. 

In general we have observed that the removal of a vertex from a graph may cause the domination number to 
grow dramatically. This does not happen in CEA graphs with  ( G ) = k is established in [19 ]. 

Theorem[19] 

If G is in CEA with  ( G ) = k, then for any vertex v of G,  ( G – v )  k. 
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In 2008, V. Samodivkin has discussed results on CEA graphs relating  ( G ) and #  ( G ), where #  ( G ) 
denotes the number of all distinct minimum dominating sets of a graph. 

Let G be a graph. An edge e  E( G ) is #  ( G ) – critical if  #  ( G + e ) < #  ( G ). A graph G is #  - edge 

– addition – critical if all edges of G are #  ( G ) – critical [26]. 

Theorem[26] 

1. Let x1 and x2 be two distinct, nonadjacent and nonisolated vertices of a graph G. Then ( x1  x2 ) is  
( G ) – critical if and only if  ( x1 x2 ) is #  ( G )  – critical. 

2. Let G be a graph with no isolated vertex. Then G is  – edge – addition critical if and only if G is #  
- edge – addition – critical. 

In 1990,  J. Kok and C. M. Mynhart defined the reinforcement number r ( G ) to the smallest number of edges 
which must be added to G to decrease the domination number[27]. 

Theorem[27] 

For any graph G,  ( G )  n –  ( G ) – r ( G ) + 1. 

1. If G is a graph with  ( G )  2, then r ( G ) =  ( G ). 

2. If a graph G has  ( G ) =2, then r ( G ) = n –  ( G ) – 1. 

In 2008, J. R.S. Blair, W. Goddard, S. T. Hedetniemi, S. Horton, P. Jones, and G. Kubicki, represented an O 
( k2n ) dynamic programming algorithm for computing the maximum number of vertices that can be dominated 
using  ( G ) – k dominators for a tree [28]. A corollary of this is a linear – time algorithm for computing the k – 
reinforcement number of a tree. In 2010, W. Ananchuen, N. Ananchuen, and R.E.L. Aldred have provided the 
structure of CEA graphs with  ( G ) = 4 and a cut vertex. Also they established some graphs of even order 
containing a perfect matching [29].  

D. Unchanging Vertex Removal ( UVR ) 

As discussed earlier, vertex removal from a graph results in changing or unchanging the dominating set of a 
graph. We now present few results on UVR.  

In 1983, D. Bauer et al. have proved that V0 is never empty for a tree and hence no tree is in CVR [8]. Hence 
the following theorem is true. 

Theorem[8]  

For any tree T with n  2, there exists a vertex v  V such that  ( T – v ) =  ( T ). 

In 1979, H. B. Walikar and B. D. Acharya have provided the following theorem on UVR graphs [30]. 

Theorem[30] 

A graph G  UVR if and only if G has no isolated vertices and for each vertex, either 

1. There is an  - set S' such that v  S' and for each  - set S such that v  S, pn [ v, S ] contains at 
least one vertex from V – S, or 

2. V is in every  - set and there is a subset of  ( G ) vertices in G – N [ v ] that dominates G – v. 

E. Unchanging Edge Removal ( UER ) 

The graphs for which the domination number is unchanged when an arbitrary edge is removed, that is  ( G – 
e ) =  ( G ),  for all e  E ( G ) are termed UER graphs.  Unlike other kinds of operations, more results are 
dedicated to types of domination, rather than on the usual dominating set. In  1979, H. B. Walikar et al. have 
provided a classic characterization of UER graphs [30].  

Theorem[30] 

A graph G  UER if and only if for each e = ( u v )  E ( G ), there is a  - set S such that one of the 
following conditions is satisfied. 

i. u, v  S. 

ii. u, v  V – S. 

iii. u  S and v  V – S implies | N ( v )  S |   2. 

For a generic property p, graphs with the minimum number of edges and having property p are called 
extremal graphs. The graph G will be called edge domination insensitive if  ( G ) =  ( G – e ) for any edge e of 
G and it is denoted by E ( n,  ). The minimum number of edges in any ( , k ) – insensitive graph of order n is 
denoted Ek( n,  ). In 1988, R. D. Dutton and R. C. Brigham have established the following results on extremal 
graphs and insensitive graphs [31].  
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Theorem[31] 

1. Any extremal graph is bipartite with partite sets V1 and V2. Furthermore each vertex of V2 has degree 2. 

2. Any extremal graph must have at least 4 ( G ) – 4 edges. 

3. Extremal graphs exist for  ( G )  2 and n  3 ( G ) – 2. 

4. E ( n,  ) = 2n – 2 ( G ) for   ( G )  2 and n  3 ( G ) – 2 and is undefined otherwise. 

5. If n  3 ( G )  6, then E ( n,  ) = 2n – 3. 
In 1988, T. W. Haynes, R. C. Brigham and R. D. Dutton determined the value of E2 ( n, 2 ) [32]. 

Theorem[32] 

If G is a ( 2, 2 ) – insensitive graph with n  11, then E2( n, 2 ) =
5n 10

2

 
 
 

. 

In 1992, B. L. Hartnell, D. F. Rall have provided a constructive tree characterization on E0 [33]. In 1993, T. 
W. Haynes, R. C. Brigham, R. D. Dutton have characterized ( , k ) – insensitive graph [34]. Results based on 
insensitive graphs is presented in this section. 

Theorem[34] 

1. For k  1,  Ek( n, 1 ) = ( 2k +1 )( n – k – 1 ), if n > 2k and is undefined if n  2k. 

2. Let k + 1    2k and n   ( k +1 ). Then 
2

k
( k 3)n ( k 3) 2kr r r

E ( n, )
2 2

     
   . 

Let Ni be the maximum number of vertices of degree at most k having atleast i common neighbors in a ( , k ) 
– insensitive graph, 1  i  k. Let f ( k ) represent the number of vertices in V – D having degree at most k, 
where D is a dominating set.  

Theorem[34] 

 Let G be a ( , k ) – insensitive graph. Then, Nk  2. 

Theorem[34] 

Let G be a ( , k ) – insensitive graph where k  2,   3 and n  2 + 2 + f ( k ). Then   
2

k
( k 3)n 2( k 2 ) ( k 1) ( f ( k ))

E ( n, )
2 2

      
   . 

When k + 1    2k, Ek( n,  ) is asymptotically equal to ( k + 3 )n / 2 as n approaches infinity.  

F. Unchanging Edge Addition ( UEA ) 

The graphs for which the domination number is unchanged when an arbitrary edge is added, that is  ( G + e ) 

=  ( G ),  for all, e  E ( G  ), were characterized in terms of their vertex sets by J. R. Carrington et al. [7]. 

Theorem[7] 

A graph G  UEA if and only if V– is empty. 

The other two elementary graph operations edge contraction and subdivision have contributed more to 
domination theory. Various graph theorists have investigated, explored properties related to these operations.  

G. Edge Contraction 

In graph theory, an edge contraction is an operation which removes an edge from a graph while 
simultaneously merging the two vertices that it previously joined. For a pair of vertices u, v of G, denote by G  
uv the graph obtained by identifying u and v. Let ( uv ) denote the identified vertex. So G  uv may be viewed as 
the graph obtained from G by deleting the vertices v and u and appending a new vertex, denoted by ( uv ), that is 
adjacent to all the vertices of G – v – u that were originally adjacent to either of u or v [35]. Identifying vertices 
cannot increase domination number and can decrease domination number by at most one or retain the same 
domination number.  

1)  Dot Critical Graphs: 

In 2006 T. Burton and D.P. Sumner have defined domination dot – critical graphs. A graph is domination dot 
– critical if identifying any two adjacent vertices results in a graph with smaller domination number, that is  ( G 
 uv ) <  ( G ) for any two adjacent vertices u and v. G is dot – critical if and only if  ( G  uv )  =  ( G ) – 1 for 
any two adjacent vertices u and v. G is k – dot – critical means that G is a dot critical graph with  ( G ) = k. Let 
G' be the set of critical vertices of G [35]. 
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Theorem[35] 

1. Let a, b  V ( G ) for a graph G. Then  ( G  ab ) <  ( G ) if and only if either there exists and MDS S 
of G such that a, b  S or at least one of a or b is critical in G. 

2. If G is any graph with  ( G ) = k  2, then G is dot – critical if and only if every two adjacent non – 
critical vertices belong to a common MDS. 

3. Let G be any graph and v  G'. Then all of N [ v ] is excellent. 

4. For every graph G, if G is dot critical, then G is excellent. 

5. G is dot – critical if and only if each of its components is dot – critical. 

6. A connected 3 – dot – critical graph G with G' =  has a diameter of at most three. 

A graph G is said to be spiked if G = H o K1, the corona of a connected graph H with a single vertex. 

Theorem [ 35 ] 

Let G be a graph with n  4 vertices. Then G is 2 – dot – critical if and only if G is not complete, but every 

component of G  is spiked or a complete graph Km, m  2. 

. A graph G is domination totally dot – critical ( just totally dot – critical ) if and only if  ( G  uv )  =  ( G ) 
– 1 for any two vertices u and v. In 2008, Zhao Chengye, Yang Yuansheng and Sun Linlin have extended this 
study on k – dot – critical graphs [36]. It was then followed by contributions by various authors.  

Theorem[36] 

1. There exists a totally k – dot – critical graph with no critical vertices for any k  4. 

2. A connected 4 – dot – critical graph G with G' =  has a diameter of at most five. 

In  2009, Xue – Gang Chen and Wai Chee Shiu have proved the following result [37]. 

Theorem[37] 

G is a 1 – connected 2k – dot – critical graph with G' = . 

Let G be a k – connected non – complete graph ( where k  2 ). An edge of G is called k – contractible if its 
contraction results also in a k – connected graph. An edge that is not k – contractible is called a non – 
contractible edge. If G does not have a k –  

contractible edge, then G is called contraction critical k – connected. In 2009, Tingting Li and Jianji Su have 
provided an improved bound for contraction critical 5 – connected graph [38]. 

Theorem[38] 

Let G be a contraction critical 5 – connected graph. Then G has at least 
3

2
 | G | trivially noncontractible 

edges. 

In 2013, M. Furuya characterized the connected k – dot – critical graphs with diameter of G [39]. 

Theorem[39] 

1. The only k – dot – critical graph with diameter 3k – 3 is the path on 3k – 2 vertices. 

2. Let k  2 and let G be a connected k – dot – critical graph. If G is 2 – connected, then diam ( G )   2k 
– 2. 

2)    - Stable Graphs: 

In 2013, M. Yamuna and K. Karthika have defined  - stable graphs. A graph G is said to be  - stable graph 
if  ( Gxy ) =  ( G ), for all, x, y  V ( G ), x is not adjacent to y. The following results were proved in [40]. 

Theorem[40]  

1. A graph G is  - stable if and only if every  - set D of G is a clique. 

2. A  - stable graph is a tree if G has a unique  - set such that  ( G ) = 2. 

3. If G is a  - stable tree, then every v  V – D is a pendant vertex. 

We recollect our very famous Kuratowski’ s theorem, perhaps the best ever result on planarity which states 
that  “A graph G is planar if and only if it contains neither K5 nor K3, 3 as a topological minor”. So edge 
contraction is challenging, as it is used to identify planarity of graphs. Algorithms and results on characterizing 
planar graphs are developed, but it still remains as a challenging and tough problem, of course of interest to 
researchers. Similarly it is obvious that, maximal outerplanarity identification uses edge contraction. This 
section provides some interesting results relating edge contraction, planarity and graph domination.  
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Edge Contraction and Graph Planarity 

 In 2013, C. N. Campos and Y. Wakabayashi, have proved the interesting result on maximal outerplanar 
graph [41]. 

Theorem[41] 

1. Let G be a maximal outerplanar graph of order n  4. If G has k internal triangles, then G has k + 2 
vertices of degree 2. 

2. Let G be a maximal outerplanar graph with k internal triangles and n  3 vertices. Then 
n k 2

( G )
4

 
  . 

In 2016, Zepeng Li, Enqiang Zhu, Zehui Shao, and Jin Xu, proved the following results on maximal outer 
planar graph by using edge contraction [42]. 

Theorem[42] 

Let G be an n – vertex maximal outer planar graph. If G has k > 0 bad vertices, then  ( G )  
n k

4


.   

In 2014, a characterization of planar graphs when G and G  are  - stable graphs were provided in [43]. 

Theorem[43] 

For any graph G such that  ( G  ) = k, G is   - stable if and only if  

1. there is atleast one set of k – independent vertices S  V ( G ) such that there is no v  V – S, v 
adjacent to all vertices in S. 

2. for all k – non – independent vertices S in G, there is atleast one v  V – S, v adjacent to all vertices in 
S. 

Theorem[43 ]   

1. If G and G  are  - stable graphs such that  ( G )  4 and  ( G  ) = 4, then G is nonplanar. 

2. If G and G  are  - stable graphs such that  ( G )  4 and  ( G ) = 3, then G is nonplanar. 

3)  Domination Dot Stable Graphs: 

A graph G is said to be domination dot stable ( DDS ) if  ( G uv ) =  ( G ), for 

all u, v  V ( G ), u  v. A necessary and sufficient condition was proved in [44].  

Theorem[44]  

A graph G is DDS if and only if every  - set of G is an independent dominating set. 

A method of generating a DDS graph from a graph G which is not DDS by using edge contraction is 
discussed in [45]. 

Theorem[45]   

Let G be a graph which is not DDS. Then there exist a graph G' generated by identifying the vertices of G 
such that G' is DDS. 

4)  Domatic Dot Stable Graphs: 

A graph G is said to be domatic dot stable ( dds ) if d ( G uv  ) = d ( G ), for all u, v  V ( G ) such that u  v 
[46]. A necessary condition for a graph to be dds is provided in [ 46 ].  

Theorem[46] 

Let G be a graph and let V1, V2, …,Vm be a domatic partition for G such that d ( G ) = m. If for u  Vi, v  
Vj , i, j = 1, 2, …, m and i  j such that u  v, d ( G )  d ( G  uv ) if either 

1. Vi  { v } is a dominating set for G, and Vj – { v } is a dominating set for G.  or  

2. Vi  { v } is a dominating set for G and if Vj – { v } is not a dominating set for G then there is some w  

 Vk such that Vk – { w }, k  j, k = 1, 2, …, m is a dominating set and Vj – { v }  { w } is a 
dominating set for G,  

for all u, v  V ( G ),  then G is dds. 

Theorem[46] 

Any tree with n – vertices is dds where n  3. 
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A method for verifying some domination parameters like DDS and  - stable graphs using binary matrices are 
discussed in [47]. Also they provided a MATLAB code for the same [47]. 

H. Subdivision   

A subdivision of a graph G is a graph resulting from the subdivision of edges in G. The subdivision of some 
edge e with endpoints { u, v } yields a graph containing one new vertex w,  with an edge set replacing e by two 
new edges, { u, w } and { w, v }.  

In [48], S. Arumugam has defined the domination subdivision number of a graph G, denoted by  sd ( G ) to 
be the minimum number of edges that must be subdivided ( each edge in G can be subdivided at most once ) in 
order to increase the domination number. S. Arumugam has proved the following result for trees. 

Theorem[48] 

For any tree T of order n  3, 1  sd ( T )   3. 

Although he stated that he has not been able to classify the trees for which sd ( T ) = 1, sd  ( T ) = 2 or sd  
( T ) = 3, S. Arumugam has stated the following conjecture.  

Conjecture[48] 

For any graph G or order n  3, 1  sd ( T )   3. 

In 2000, T.W. Haynes, S.M. Hedetniemi,  and S.T. Hedetniemi, have provided an upper bound for the 
domination subdivision number for any graph G in terms of its degrees [49]. 

Theorem[49] 

For any connected graph G and edge ( u v ), where deg ( u )   2 and deg ( v )  2, 

sd ( G )  deg ( u ) + deg ( v ) – 1. 

Theorem[49] 

1. For any k – regular graph G where k   2,  1  sd ( G )   2k – 1. 

2. For any cubic graph G, 1  sd ( G )  5. 

In 2001, T.W. Haynes, S.M. Hedetniemi,  S.T. Hedetniemi, D. P. Jacobs, J. Knisely, and  L. C. V. D. Merwe 
have presented the results on domination subdivision number [50]. 

Theorem[50] 

1. If G has a strong support vertex, then sd ( G ) = 1. 

2. If G has adjacent support vertices, then sd ( G )  3. 

3. If G is a graph of order n  3 and  ( G ) = 1, then sd ( G ) = 1. 

4. If G is a connected graph of order n  3, then sd ( G )   ( G ) + 1. 

In 2002, A. Bhattacharya and G. R. Vijayakumar have proved the following bound [51]. 

Theorem[51] 

For a connected graph of large order n, sd ( G )  4 n ln n + 5. 

In 2007, S. Benecke and C. M. Mynhardt have presented a simple characterization of trees with sdγ ( G ) = 1 
and a fast algorithm to determine whether a tree has this property [52]. 

Theorem[52] 

For a tree T or order n  3, sd ( T ) = 1 if and only if T has  

1. a leaf u  N ( T )     or 

2. an edge ( x y ) with x, y  N ( T ). 

A constructive characterization of trees such that sd  ( T ) is 3 is given by H. Aram, S. M. Sheikholeslami, 
and O. Favaron, in 2009 [53]. 

Theorem[53] 

For a path on n  3 vertices, 

sd ( G ) = 

1 if n 0 ( mod 3)

2 if n 2 ( mod 3)

3 if n 1 ( mod 3).


 
 

 

For t   1, a subdivided star SK1, t is obtained by subdividing the t edges of a star K1, t. H. Aram et al. have 
characterized the value of sd ( G ) if G is a subdivided star. 
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Theorem[53] 

If the graph G has a strong support vertex then sd ( G ) = 1 and if G is a subdivided star SK1, t with t  2 then 
sd ( G ) = 2. 

Finally H. Aram et al. characterized the trees whose domination subdivision number is 3 and a linear 
algorithm for recognizing them. 

In 2010, B. Sharada and N. D. Sonar has given a constructive characterization of trees whose domination 
subdivision number is exactly two [54]. In 2011, S. Velammal and S. Arumugam, have obtained bounds for 
subdivision number [55]. 

Theorem[55] 

1. Let G be a connected graph of order n  2. Then  ( G )   sd ( G ) and equality holds if and only if G = 
K2. 

2. sd ( Km, n ) = 
2 if 3 m n

3 if m 2 and n 2.

 
  

 

3. Let G be a connected graph with  = n / 2. Then sd ( G )  3. 

Theorem[55] 

For any tree of order n  3, sd ( T )  3. 

If there exists a vertex of a tree T which is adjacent to at least two pendant vertices, then sd ( T ) =1 [55]. 

1)  Multisubdivision Number: 

In 2013, Magda Dettlaff, J. Raczek, and J. Topp have defined msd ( u v ) to be the minimum number of 
subdivisions of the edge (u v ) such that  ( G ) increases. Domination multisubdivision number of a graph G, 
m > 0, denoted by msd( G ) and it defined by msd ( G ) = min { msd ( uv ): uv  E ( G ) }. 

Magda Dettlaff et al. have provided the decision problem of domination subdivision and the multi subdivision 
problem stated as follows [56]. 

Theorem[56] 

Domination Subdivision Number (DSN) 

Instance: Graph G = ( V, E ) and the domination number  ( G ). 

Question: Is sd ( G ) > 1? 

Theorem[56] 

Domination Subdivision Number is NP – complete even for bipartite graphs. 

Theorem[56] 

Domination Mulitsubdivision Number (DMN) 

Instance: Graph G = ( V, E ) and the domination number  ( G ). 

Question: Is msd ( G ) > 1? 

Observation[56] 

Let G be a graph. Then sd ( G ) = 1 if and only if msd ( G ) = 1. 

Theorem[56] 

1. Domination multisubdivision number is NP – complete even for bipartite graphs 

2. If a graph G has a strong support vertex, then sd ( G ) = msd( G ) = 1. 

3. For a connected graph G, 1  msd ( G )   3. 

4. Let T be a tree with n  3. Then sd ( T ) = msd ( T ). 

Magda Dettlaff et al. have provided a tree characterization with the domination multisubdivision number 
equal to 3 and 1 [56]. The graph obtained by subdividing an edge e from G is denoted by Ge. They defined SR – 
graph  and ASR – graph as follows. A graph  G is SR – graph if  ( G – e ) =  ( Ge ) for any edge e of G. A 
graph G is an ASR – graph if  ( G – e )   ( Ge ) for any edge e of G. The set of all support vertices of G is 
denoted by Supp ( G ). In 2014, M. Lemanska, J. Tey, and R. Zuazua, characterized SR – tree and proved that 
ASR – graphs are  - insensitive [57]. 

Remark[57] 

For any edge e of a graph G we have,  ( G )   ( Ge )   ( G ) + 1. 
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Theorem[57] 

1. The path Pn is an SR graph if and only if n = 3 or n  1 ( mod 3 ) for n  4. 

2. Let n  3. If n  1, 2 ( mod 3 ), then the cycle Cn is an SR – graph. Otherwise is an ASR – graph. 

Remark[57] 

1. Let G be a graph and e = ( u v ) be an edge of G where { u, v }  Supp(G).Then  (G – e ) =  ( G ) =  
( Ge ).  

2. If  ( G ) = 1, then  ( Ge ) = 2 for any edge e  E ( G ). 

Theorem[57] 

1. Every graph is an induced subgraph of an SR – graph. 

2. Every graph is an induced subgraph of an ASR – graph. 

3. An ASR-graph has no bondage edges. 

4. Every ASR – graph is  - insensitive. 

2)  Domination Subdivision Stable Graphs: 

A graph G is said to be domination subdivision stable ( DSS ), if the  - value of G does not change by 
subdividing any edge of G. The graph obtained by subdividing any edge uv of a graph G, is denoted by Gsd uv. 
Let w be a vertex introduced by subdividing an edge ( u v ) and it is denote by Gsd uv = w. A necessary and 
sufficient condition for a graph G to be a DSS graph was proved in [58].  

Theorem[58]  

1. A graph G is DSS if and only if for every u, v  V ( G ), either  a  - set containing u and v or  a  - 
set D such that 

i.   PN [ u, D ]  = { v }  

ii.  v is atleast 2 – dominated. 

2. For any graph G,  ( G sd uv ) ≥  ( G )   e = ( u v )  E ( G ). 

In 2012 M. Yamuna and N. Sridharan, had defined a graph G to be Just excellent ( JE ), if it to each u  V 
( G ), there is a unique  - set of G containing u [59]. The domatic number of the subdivision graph of a just 
excellent graph was deteremined in [60]. 

Theorem[60] 

If G is JE, then d ( Gsd uv ) = 2, if d (G) = 3 and d ( Gsd uv )  3, if d ( G )  4. 

3)  Domatic Subdivision Stable Graphs: 

A graph G is said to be domatic subdivision stable( dss ), if d ( G ) = d ( Gsd uv), for all u, v  V ( G ), u  v. 
The following results were proved in [61]. 

Theorem[61]  

Let G be any graph. Then d ( Gsd uv ) ≤ 3. 

Theorem[61] 

When d ( G ) = 3, d ( Gsd uv ) = 3 if and only if there is a partition Z = { V1,  V2, V3 } for G such that 

1. V1 and V2 are dominating sets for G such that u  V1, v  V2. 

2. v is 2 – dominated with respect to V1. 

3. u is 2 – dominated with respect to V2. 

4. V3 dominates atleast G – { u } – { v }.  

Theorem[61]  

When d ( G ) = 2, d ( Gsd uv ) = 3 if and only if there is a domatic partition d ( G ) = | { V1 }, { V2 } |, u  V1, 
v  V2 such that 

1. v is 2 – dominated with respect to V1. 

2. V2 = V12  V22, where 

a) v  V12, u is 2 – dominated with respect to V12. 

b) V22 does not dominate atleast one of u or v, that is V22 is a dominating set  

      for G – { u } – { v }. 
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IV. ADVANCED OPERATIONS 

Advanced operations create a new graph from one initial one, by a complex change. Due to the complexity of 
the operations, many operations like graph transpose, graph dual, graph rewriting, power of graph, medial graph, 
Y -  transform and mycielskian are explored less and yet to be used by researchers to relate them to domination. 
Researchers have contributed and related complement graph, line graph, and graph minors with dominating sets. 
Some interesting results on these operations are presented in this section. 

A. Complement Graph 

In graph theory, the complement or inverse of a graph G is a graph G  on the same vertices such that two 

distinct vertices of G  are adjacent if and only if they are not adjacent in G. When relating graph complement 
and domination number, most of the researchers have investigated NG type results. In 1956 Nordhaus and 

Gaddum have presented the relations between G and G  [62]. Any bound on the sum and/or the product of an 

invariant in a graph G and the same invariant in the complement G  of G is called a Nordhaus – Gaddum type 
relation or NG type relation. The relations of NG type for domination in graphs were proved by F. Jaeger and C. 
Payan in 1972, [63].  NG Type result is perhaps one classic result that most of the domination theorists have 
investigated. 

Theorem[63] 

For any graph G with at least two vertices, 3   ( G ) + ( G )    n + 1 and 2   ( G ) ( G )   n. 

In 1976, M. Borowiecki has given the following results in terms of vertices [64]. 

Theorem[64]  

1. For any graph G on n  1 vertices,  2   ( G ) + ( G )    n + 1 and 1   ( G ) . ( G )  n. 

2. If G is a graph on n  2 vertices, then  ( G ) + ( G )  = 3 if and only if there exist two vertices v1 and 

v2 in G such that d ( v1 ) = n – 1 and d ( v2 ) = 1 or d ( v1 ) = n – 2 and d ( v2 ) = 0, where d ( v ) denotes 
the degree of the vertex v in G.  

3. For every positive integer n, a graph G such that | V ( G ) | = n,  ( G ), ( G ) > 4 and  ( G ) ( G )  = 

n does not exist. 

Characterizing extremal graphs was studied by different authors in several topics in domination. M. 
Borowiecki and E. J. Cockayne, S. T. Hedetniemi have characterized the following necessary and sufficient 
condition for sum of extremal graph and its complement [64] [65]. 

Theorem[64][65] 

 ( G ) + ( G )  = n + 1 if and only if { G, G  } = { Kn, nK }, where Kn is the complete graph on n vertices.  

A partial result about the upper bound on the sum in terms of minimum degree was proved by C. Payan in 
1975 [66]. 

Theorem[66] 

If G is a graph such that ( G )   3, then  ( G ) + ( G )    ( G ) + 3. 

In 1985 R. Laskar and K. Peters improved the above bound for the case when both G and G  are connected 
[67]. 

Theorem[67] 

When G and G  are both connected,  ( G ) + ( G )    n with equality if and only if G = P4. 

In 1995, J. P. Joseph and S. Arumugam have improved the upper bound for  ( G ) + (G )  in graphs G and 

G , which does not contain isolated vertices [68]. 

Theorem[68]  

If G and G  have no isolated vertices, then  ( G ) + ( G )    
2

 
  

n
 + 2. 

Moreover, if n  9, the bound is attained if and only if {  ( G ), ( G ) } = , 2
2

  
    

n
. 
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In 2005, J.E. Dunbar, T.W. Haynes, S.T. Hedetniemi have provided the necessary and sufficient condition for, 

 ( G ), ( G ) , with respect to minimum degree [69]. 

Theorem[69] 

If G and G  are connected graphs of order n   23 with  ( G ),  ( G  )  2, then  ( G ) + ( G )  =  
2

5
 
  

n
 + 

2, if and only if {  ( G ), ( G ) } = 
2

, 2
5

  
    

n
. 

The following results were studied by L. Volkmann in 2011 [70]. 

Theorem[70]  

1. If G is a graph of order n  16 with  ( G ),  ( G  )  5 , then   ( G ) + ( G )    
5

14
 
  

n
 + 2. 

Moreover, if n  { 12, 13, …, 19 }  { 21, 22, 25 }, equality holds if and only if {  ( G ), ( G ) } = 

5
, 2

4

  
    

n
. 

2. If G is a graph of order n with  ( G ),  ( G  )  6 , then  ( G ) + ( G )    
6

17
 
  

n
 + 2. Moreover, if n 

 { 13, …, 19 }  { 21, 22, 25 }, equality holds if and only if {  ( G ), ( G ) } = 
6

, 2
17

  
    

n
. 

In1988, R.C. Brigham, P.Z. Chinn, R.D. Dutton provided an upper bounds in terms of connectivity, with 

( G )   3 [71]. 

Theorem[71] 

1. For any graph G with ( G )   3,  ( G ) + ( G )    k ( G ) + 3. 

2. For any graph G with  ( G ) , ( G )   3,  ( G ) + ( G )    min { k ( G ), ( )k G  } +  

B. Line Graph 

The line graph of an undirected graph G is another graph L( G ) that represents the adjacencies between edges 
of G. A set of lines in a graph G is a line dominating set ( written as LDS ), if every line not in S is adjacent to at 
least one line in S. N ( e ), the open neighbourhood of a line e is the set of all lines adjacent to e in G. In 1987 S. 
R. Jayaram has provided the following results in [72]. 

Theorem[72] 

1. A LDS S is minimal if and only for each e  S, one of the following two conditions holds 

i. N ( e )  S =  

ii. there exists a line f  E – S, such that N ( f )  S = { e }. 

2. If G is without isolated lines, then for every minimal LDS, E – S is also a LDS. 

C. Graph Minor 

A minor of graph G is a graph which can be obtained from G by deleting vertices and deleting or contracting 
edges. Again, as discussed earlier whenever contraction comes into picture, the operation plays an important 
role in planarity and outerplanarity. Given a graph H, a graph G is H – minor free if no minor of G is isomorphic 
to H. It is well known that a simple graph G is outerplanar if and only G is both K4 – minor free and K2, 3 – 
minor free. In 2013, C.N. Campos, Y. Wakabayashi provided the following theorem [73]. 

Theorem [73] 

If G is a maximal outer planar graph of order n  3 having k vertices of degree 2, then  ( G )  
4

n k
. 

In 2015, Tingting Zhu, Baoyindureng Wu have discussed the following results [74]. 
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Theorem[74]  

Assume that G is a maximal K2, 3 – minor free graph or a maximal K4 – minor free graph of order n   3. If ki 

is the number of vertices of degree i in G for i = 1, 2, then 1 22
( )

4


  
  
 

n k k
G . 

Corollary[74] 

If G is a maximal K4 – minor free graph of order n  3 having k vertices of degree 2, then ( )
4


 

  
 

n k
G . 

Theorem[74] 

If G is a maximal K2, 3 – minor free of order n  2 and size m, then m = 2n – 2 – t, where t is the number of 
blocks in G that are outerplanar. 

V. BINARY OPERATIONS 

Binary operations create a new graph from two initial ones G1 = ( V1, E1 ) and G2 = ( V2, E2 ). Binary 
operations are next level operations and hence little complicated to apply than the other kinds. Whenever the 
complexity of the operation increases, exploration is tough and relating them to domination is more difficult and 
challenging, but researchers have contributed a lot in relating all together. Some results are presented in this 
section. Due to the complexity of the binary operations, many operations like, graph union, graph intersection, 
graph join, Hajos construction are explored less and yet to be explored by researchers to relate them to 
domination. 

Whenever it comes to binary operations, perhaps the most classic conjecture of graph theory is Vizing’s 
Conjecture is related to Cartesian product. The related discussions are as follows, which ofcourse is familiar to 
most of the domination theorists 

D. Graph Products 

1)  Cartesian Product: 

Given two graphs G and H, the Cartesian product G � H is define as follows: 

1. V  ( G � H ) = V ( G )  V ( H ) and  

2. ( u1, v1 ) ( u2, v2 )  E ( G � H ) if and only if u1 = u2 and v1v2  E ( H ), or  u1u2  E ( G ) and  v1 = v2. 

Vizing’s Results on Domination 

Vizing’s Conjecture[75] 

For any two graphs G and H,  ( G � H )   ( G )  ( H ). 

Also in [75], Vizing established the following bound. 

Theorem[75] 

 ( G � H )  min {  ( G ) | H |,  ( H ) | G | }. 

The domination number of Cartesian product of two path and two cycles are determined in 1995, by S. 
Kalavzar, N. Seifter [76].  

1. 2
( 1)

( )
2


 

  
 

 n
n

P P . 

2. 3( ) , 4
4

  
   

 
 n

n
C C n n . 

3. 4( ) , 4   nC C n n . 

Theorem [76] 

1. Let X = C1 � C2 � … � Cm , where | Ci | = 2m + 1 for each Ci, 1  i  m. Then  ( X ) = ( 2m + 1 ) m – 1. 

2. Let X = C1 � C2 � … � Cm such that all nk = | Ck |, 1 k  m, are multiplies of 2m + 1. Then  ( X ) = 
m

k
k 1

n

( 2m 1)



 
 
 
 




. 

3. m n

m, n

( C C ) 1
lim

mn 5 





. 
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In 1999, R. Cherifi, S. Gravier, X. Lagraula, C. Payan, and I. Zighem posed the following conjecture [77]. 

Conjecture[77] 

For sufficiently “large” k and n n k
( k 2 ) ( n 2 )

( P P ) 4
5

  
   

 
  holds. 

In 2004, Liang Sun has proved the Vizing’s conjecture with  ( G ) = 3 [78]. 

Theorem[78] 

If  ( G ) = 3, then for any graph H,  ( G � H )   ( G )  ( H ). 

In 2007, M.H. El-Zahar, S.M. Khamis, and Kh. M. Nazzal have provided the following theorem [79]. 

Theorem[79] 

For any connected nontrivial graph G and all n  0 or 2 ( mod3 ); n  3,  ( Cn  � G ) >  ( Cn )  ( G ). 

A MDS D of G excessive if there exists a vertex v  D such that N [ D – { v } ] = V ( G ) – { v }. M.H. El- 
Zahar posed the following conjecture. 

Conjecture[79] 

If G and H are two connected nontrivial graphs such that  ( G � H ) =  ( G ) ( H ), then each of G and H is 
either K2 or else has an excessive dominating set. 

G is a minimum counterexample to Vizing’s conjecture, if it has the smallest number of vertices among the 
counterexamples. In 2012, M. Pilipczuk, M, Pilipczuk and R. Skrekovski have given the following results and 
also proved that the minimum possible counterexample to Vizing’s conjecture cannot have two neighboring 
vertices of degree two [80]. 

Theorem[80] 

1. For any two graphs G and H,  ( G � H )   ( G )  ( H )/2. 

2. If G has maximum degree G and H has maximum degree H, then 

   2 2
G G H H

1 1
( G H ) 1 ( G ) ( H )

2 1 1

 
               

 . 

3. If G is a minimum counterexample to Vizing’s conjecture, then G does not contain two adjacent 
vertices of degree two. 

Researchers have gone one step ahead in relating Cartesian product to CVR and CER graphs. In 2015, M. R. 
Chithra, A. Vijayakumar, have studied the results of Cartesian product They proved the following results with 
the notation that V ( H1 ) = { u1, u2, …, un1 }, V ( H2 ) = { v1, v2, …, vn2 }. 

Theorem[81] 

Let H1 � H2 be a connected graph. Then 

1. ( H1 � H2 ) = 2 if and only if H1 = K2 and H2 is either a C4 or has a good vertex. 

2. H1 � H2  CVR, with  ( H1 � H2 ) = 2 if and only if G = C4. 

3. H1 � H2  CER, with  ( H1 � H2 ) = 2 if and only if H1 � H2 = C4. 

4. H1 � H2  CVR, with  ( H1 � H2 ) = 3 if and only if H1 = H2 = K3. 

5. H1 � H2  CER, with  ( H1 � H2 ) = 3 if and only if H1 = H2 = K3. 

Theorem[81] 

Let Pn1 � Pn2 be the Cartesian product of the path graphs on n1 and n2 vertices. 

3. Then Pn1 � Pn2 is a vertex critical graph if and only if n1 = n2 = 2. 

4. If n1, n2  4, then a minimum dominating set of Pn1 � Pn2 is disconnected. 

2)  Tensor Product of Graphs: 

Given two graphs G and H, the tensor product G  H is define as follows: 

V  ( G � H ) = V ( G )  V ( H ) and  

( u1, v1 ) ( u2, v2 )  E ( G � H ) if and only if  ( u1  u2 )  E ( G ) and ( v1 v2 ) E ( H ). 

In 1995, S. Gravier and A. Khelladi provided the domination number of tensor product of graphs G and H [82]. 
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Theorems[82] 

1. For every n  2 and k  4, we have  

n k

n if n 0 ( mod 4 ),

( P P ) n 1 if n 1or 3 ( mod 4 ),

n 2 if n 2 ( mod 4 ).


    
  

 

2. For any n > 1 and every graph G we have, n
n

( P G ) 2 ( G ) 1
4

          
. 

Corollary[82] 

Let n and k be integers such that n > 1 and k > 3. For every path - hamiltonian graph H of order n, we have  
( H  kP )   n + 2. 

For every path – hamiltonian graph H of order n and for every graph G, we have 

n
( H G ) 2 ( G ) 1

4

          
. 

Finally S. Gravier et al. concluded that n k n k( P ) ( P ) ( P P )      and also provided the following 

conjecture for the domination number of the cross product of graphs. 

Conjecture[82] 

For all graphs G and H, we have  ( G  H )   ( G )  ( H ). 

In 1999, R. Cherifi, S. Gravier, X. Lagraula, C. Payan, I. Zighem have studied the problem on tensor product 
graphs and determined the domination number of tensor product of two paths Pk and Pn [77]. 

Theorem[77] 

Let D be a dominating set of a graph G = ( V, E ). D is non – minimum if and only if there exists a pair ( X, 
Y ) of subsets of V such that X  D and  Y   V with N [ x ]  N [ Y ] and | X | > | Y |. 

In 1999, R. Cherifi et al. have provided the domination number Pk  Pn for k  8. The results are summarized 
in Table 1 [77]. 

TABLE 1 

k no  ( Pk  Pn ) with n  no 

1 1 N 

2 2 n
2

3
 
  

 

3 2 N 

n                    if n  0 mod 4 

4 4 n + 1              if n  1 or 3 mod 4  

n + 2              if n  2 mod 4 
5 + 6              if n = 7 

5 5 n
4

3
 
  

           if n  1 or 2 mod 3 

n
4

3
 
  

 + 2     if n  0mod 3 

6 6 4n
2

5
 
  

 

9n
2 2

10
    

   if n  0 or 2 mod 10 

9n
2 1

10
    

     if n  1, 3, 5 or 7mod 10 
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7 7 9n
2

10
 
  

         if n  4, 6 or 8 mod 10 

9n
2 1

10
    

   if n  9 mod 10 

6 + 8              if  n = 7  

8 2 2n                  if n  0 mod 4 

2n + 2           if n  1, 2 or 3 mod 4 

E. Other Graph Products 

1)  Rooted Product Graph: 

A rooted graph is a graph with a designated vertex called the root. The rooted product of a graph G and a 
rooted graph H is defined as follows. Take | V ( G ) | copies of H, and for every vertex vi of G, identify vi with 
the root vertex of the ith copy of H. Assume that V ( G ) = { g1, g2, …, gn}, V ( H ) = { h1, h2, …, hm } and the 
root vertex of H is h1. The rooted product denoted by G H is defined as follows. 

 G H = ( V, E ), where 

V= { (gi, hj ), 1  i   n,  1  j   m } and 

E = { ( ( gi, h1 ), ( gk, h1 )): ( gi, gk )  ( E ( G ) }  
n

i j i k i k
i 1

{( ( g , h ), ( g , h ) ) :( h , h ) E ( H )}


   

The rooted product is a subgraph of the Cartesian product of the same two graphs. 

The following results are proved by D. Kuziak, M. Lemanska, and I. G. Yero in [83]. 

Theorem[83] 

1. Let G be a graph of order n  2 and let H be any graph with root v and at least two vertices. If v does 
not belong to any  ( H ) – set or v belongs to every  ( H ) – set, then ( G H )  = n ( H ). 

2. Let G be a graph of order n  2. Then for any graph H with root v and at least two 
vertices,  ( G H ) n ( H ), n ( ( H 1) ( G )       . 

2)  Corona Product of Graphs: 

The corona G H of two graphs G and H is the graph obtained by taking one copy of G of order n and n 

copies of H and then joining the ith vertex of G to every vertex in the ith copy of H. For every v  V ( G ), denote 
by Hv the copy H whose vertices are attached one by one to the vertex v. Subsequently denote by v + Hv the 

subgraph of the corona G H  corresponding to the join  v +  Hv, v  V ( G ). In 2011, Carmelito E. Go, 

S. R. Canoy have provided the following results [84]. 

Theorem[84] 

1. Let G be a connected graph of order m and let H be any graph of order n. Then C   V ( G H ) is a 

dominating set in G H  if and only if V ( v + Hv )  C is a dominating set of v + Hv for every v  V 

( G ). 

2. Let G be a connected graph of order m and let H be any graph of order n. Then  ( G H ) = m. 

VI. SUMMARY AND CONCLUSION 

In this paper we presented some selective results on graph operations with its consequences on the 
domination number of a graph. We established some results on elementary operation, advanced operation and 
binary operation. These results are describing the bond between the normal graph operation and the domination 
number. We also have provided the possible bounds of the different kind of graph operation with respect to 
domination number. We presented some results of graph operation on domination number in different kind of 
graphs like, regular graphs, cubic graphs, complement graph, bipartite graph, complete bipartite graph, planar 
graph, outerplanar graph, hamiltonian graph and extremal graph. 

Domination theory is now well established and is spreading its contributions to different domains in graph 
theory and graph applications. Graph operations favour in solving graph conjectures, and has contribute more in 
characterizing graph planarity and hamiltoninan graphs, as has been understood from this brief survey. The 
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influence of these graph operations on other kinds of dominating sets have also enormous contributed in this 
regard and it has a long way to go in future, breaking conjectures and solving various problems. 
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