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Abstract—Performance analysis of thermal enhancement for cooled microchannel heat sink (MCHS) 
using nanofluidsmathematical formulation was investigated and presented in this paper. Heat transfer 
capability in terms of thermal conductivity, heat transfer coefficient, thermal resistance, heat flux and 
required pumping power were evaluated on the effectiveness of copper oxide (CuO), silicon dioxide (SiO2) 
and titanium dioxide (TiO2) with water as a base fluid. The results showed that thermal performance 
augmented by 12.2% in thermal conductivity at particle volume fraction of 4% to CuO-water nanofluid, 
11.8% for SiO2-water and 10.0% for TiO2-water. The maximum heat transfer coefficient enhances of 
12.4% for CuO, SiO2 is 8.22% and 7.4% for TiO2 with the same inlet velocity of 3 m/s. The addition of 
nanoparticle concentration significantly enhances the heat transfer, but elevates the expenses of higher 
required pumping power to increase the pressure drop. The maximum enhancement of heat flux in CuO-
water was found to be 2575 kW/m2, 2501 kW/m2 for SiO2-water and 2485 kW/m2 for TiO2-water 
nanofluid at 4% of volume fraction. The pressure drop is increased with the mass flow rate of 1021 kg/m3 
for CuO-water at 0.5% of volume fraction and 47925 Pa to 54314 Pa pressure drop at 4% of volume 
fraction. The CuO-water pumping power was found to be the highest at 4% of volume fraction with 102.3 
W at 3 m/s inlet velocity compared to SiO2 and TiO2 also increased the pumping power of 75.0 W  to 90.6 
W with increasing volume fraction and pressure drop. The positive thermal results implied that 
CuOnanofluid is a potential candidate for future applications in MCHS.Further analysis is recommended 
to be done with various Reynolds number, pumping power and flow rate of nanoparticles to obtain better 
heat transfer performance of cooling fluids. 

Keywords: Electronics cooling, nanofluids, microchannel heatsink 

I. INTRODUCTION 

In the last three decades, the emergence of nanotechnologyis rapidly approaching, were utilized to improve the 
heat transfer rate to apply on the electronicdevices in order to reach a satisfactory level of thermal efficiency. 
The heat transfer rate can passively be improved by changing the geometry’s flow, boundary conditions or by 
improving thermo physical properties such as increasing the thermal conductivity of fluid [1]. To meet the high 
dissipation rate requirements and maintain a low junction temperature in electronic devices, many cooling 
technologies have been pursued. Among of these, the microchannel heat sink (MCHS) was introduced because 
of its ability to produce high heat transfer coefficient, small size and volume per heat load and small coolant 
requirements [2]. 

Working fluids was applied to enhance the heat transfer by changing the fluid transport properties and 
flow features in MCHS. Recently, this concept has focused on heat transfer enhancement by using a nanofluid 
that has a nanoscale metallic or non-metallic particles in the base fluids.Besides, nanofluids has become a 
concern because they display higher potential as heat transfer fluid than normally utilized base fluids and micron 
sized particle-fluids. This is due to clogging in pumping and flow apparatus which is caused by rapid settling of 
the micron sized particle. Nanofluids do not indicate this behavior. This makes nanofluids a better choice as heat 
transfer fluid [3]. Nanofluids (1-100nm-size particles), often called as ultra-fine solid particles, engineered 
colloidal suspension, are stable and prepared by dispersing a certain percentage of nanoparticles in base 
fluids[4-6]. 

 The factors that causes heat transfer enhancement are solid particles and host fluids chemical 
composition, size, shape and concentration of nanoscale particles, thermal condition and surfactants. Some of 
these factors also affect the stability of the nanofluids. There are three strategies to attain good stability, namely 
addition of surfactants, pH control and ultrasonification [7]. From the literature, heat transfer coefficient 
depends on Reynolds number, volume fraction of the nanofluids (concentration), temperature, base-fluid 
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thermal properties and nanofluids purity. Generally, nanofluids are highly potential to be used as coolant in 
electronic packaging since their heat transfer coefficient exceeded the predicted value in laminar flow region in 
many analyses and from the famous Dittus-Boelter correlation in turbulent correlations [8]. 

Zakaria et al.[9] has studied on numerical analysis of thermal enhancement for a single Proton 
Exchange Membrane Fuel Cell (PEMFC) cooling plate by using a low concentration of Al2O3 in Water-
Ethylene Glycol mixtures as a coolant. It shown that the higher volume percent concentration of Al2O3 the better 
the heat transfer enhancement but at the higher expense of pumping power. 

 Moraveji et al. [10] used a model of MCHS with 20 x 20 mm bottom with five nanoparticle volume 
fractions in five inlet velocities for two types of nanoparticle containing TiO2 and SiC.By using different value 
of Reynolds Numbers, the effect of a nanoparticle volume fraction on the convective heat transfer coefficient 
was investigated. The modelling results was compared to analytical calculations and it showed that, it was 
accurate for the correlated equations that were obtained for Nusselt number and friction factor were acceptable. 

The numerical simulations is studied on the laminar and turbulent forced convection heat transfer in a 
MCHS with a mixture of nanofluid consisting of CuO-water [11]. The method used to solve the continuity, 
momentum and energy equations was the finite volume method with the parameters of the particle volume 
faction (߶ ൌ 0.204%, 0.256%, 0.294% and 0.4%), and the volumetric flow rate ( ሶܸ ൌ 10 mL/min, 15mL/min 
and 20mL/min). From the comparisons of thermal resistance predicted by the single-phase and two-phase 
models with the experimental results, it revealed that, two-phase model was more accurate than the single-phase 
model. Other than that, the thermal resistance of nanofluids is smaller than that of water, which decreases as the 
particle volume fraction and the volumetric flow rate increase in laminar flow. In addition, the pressure drop 
increases slightly for nanofluid-cooled MCHS in the laminar flow case. 

This study deals with three types of nanoparticles which are copper oxide(CuO), silica(SiO2) and 
titanium oxide (TiO2) suspended in a water as a base fluid. The microchannel heat sink (MCHS) operation was 
analyzed with the nanofluids serve as a working fluid.Performance of nanofluids as coolant is predicted in terms 
of thermal conductivity, heat transfer coefficient, thermal resistance, heat flux and required pumping power. 

II. METHODOLOGY 

The performance of CuO-water, SiO2-water and TiO2-water nanofluids has been analyzed by using 
mathematical formulation to compare the performance of cooling of electronics. Thermophysical properties of 
the water and nanoparticles (CuO, SiO2, TiO2) at 30oC areas shownin Table I. 

TABLE I.  Thermophysical properties of the base fluid and nanoparticles [10, 12] 

 
 
 
 
 
 
 
 
 
 
 

A. Nanofluid Properties 

The thermophysical properties of the nanofluidswiththe volume fractions, ߶, of nanoparticles and base fluid 
were used; 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%, 3.5% and 4.0%  are determined by utilizing the following 
equations: 

Density of nanofluid is calculated by the use of Pak and Cho [13]correlation: 

ߩ ൌ ௦ߩ∅  ሺ1 െ ∅ሻ(1)          ߩ 

Effective thermal conductivity is given by Hamilton and Crosser [13] equation, can be expressed as follow: 

݇ ൌ
ାሺିଵሻିሺିଵሻ∅൫ି൯

ାሺିଵሻା∅൫ି൯
݇        (2) 

Nanofluid specific heat equation is evaluated from Xuan andRoetzelcorrelation [14] which shown below: 

൫ܥߩ൯ ൌ
ሺ1 െ ∅ሻ൫ܥߩ൯  ∅൫ܥߩ൯        (3) 

Effective viscosity of nanofluid is given by Einstein equation as suggested for particle in volume fractions 

less than 5.0 vol.% and is defined [15]: 

Fluid/Nanoparticles Properties 

ρ(kg/m3) µ(N.s/m3) Cp(J/kg.K) k(W/m.K) 

Base Water, H2O 994.2 724.6 x 10-6 4178 0.6248 

Copper Oxide, CuO 6320 - 385 76.5 

Silica Dioxide, SiO2 3970 - 765 36 

Titanium Dioxide, TiO2 4157 - 710 8.4 
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ߤ ൌ ሺ1ߤ  2.5∅ሻ          (4) 

Where subscript f, p, nf are correspond to fluid, particle and nanofluids respectively. Nanoparticle shape factor, 
n, was assumed to be 3 for spherical particles as tabulated in Table II. 

TABLE II.  Calculated thermophysical properties for nanofluids 

CuO/Water Properties 

Particle Volume Fraction(∅ %) ρCuO kCuO ρCpCuO µCuO 

0.5% 1020.83 0.63399 4145165 0.00073 

1.0% 1047.46 0.64327 4136562 0.00074 

1.5% 1074.09 0.65265 4127959 0.00075 

2.0% 1100.72 0.66211 4119356 0.00076 

2.5% 1127.35 0.67167 4110753 0.00077 

3.0% 1153.97 0.68133 4102151 0.00078 

3.5% 1180.60 0.69109 4093548 0.00079 

4.0% 1207.23 0.70094 4084945 0.00080 
 

SiO2/WaterProperties 

Particle Volume Fraction(∅ %) ρ SiO2 k SiO2 ρCpSiO2 µ SiO2 

0.5% 1009.08 0.63374 4148184 0.00073 

1.0% 1023.96 0.64277 4142600 0.00074 

1.5% 1038.84 0.65189 4137017 0.00075 

2.0% 1053.72 0.66109 4131433 0.00076 

2.5% 1068.60 0.67038 4125850 0.00077 

3.0% 1083.47 0.67977 4120266 0.00078 

3.5% 1098.35 0.68924 4114682 0.00079 

4.0% 1113.23 0.69881 4109099 0.00080 
 

TiO2/WaterProperties 

Particle Volume Fraction(∅ %) ρ TiO2 k TiO2 ρCpTiO2 µTiO2 

0.5% 1010.01 0.63238 4147756 0.00073 

1.0% 1025.83 0.64003 4141745 0.00074 

1.5% 1041.64 0.64773 4135733 0.00075 

2.0% 1057.46 0.65550 4129722 0.00076 

2.5% 1073.27 0.66333 4123710 0.00077 

3.0% 1089.08 0.67123 4117699 0.00078 

3.5% 1104.90 0.67919 4111687 0.00079 

4.0% 1120.71 0.68722 4105676 0.00080 
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B. Microchannel Heat Sink (MCHS) 

The MCHS which typically contains lot of parallel microchannel has the capability of producing high heat 
transfer coefficient, less dimension-volume per heat load and lesser requirement of coolant [2]. There were few 
assumptions have been made in order to simplify this analysis whereby[9]: 

 The flow is incompressible, laminar and in steady state. 
 The effect of body force is neglected. 
 The fluid properties are constant and viscous dissipation is neglected. 
 The fluid phaseand nanoparticles are in thermal equilibrium with zero relative velocity and the resultant 

mixture can be considered as a conventional single phase. 

The geometric configuration of this microchannel is considered based on research of Tsai and Chein[2] 
shown in Fig.1 whereby the nanofluids is forced to flow through the fin slot in x-direction with mean velocities 
of 3 m/s. Table III below shows the details of MCHS dimensions. 

 
Fig. 1. MCHS schematic diagram [2] 

TABLE III.  Dimensions of MCHS [2] 

Symbol Size 

Size Lhs x Whs 1 cm x 1cm 

Channel height, H 365 µm 

Channel width, Wch 57 µm 

Porosity, 0.5 ߝ 

Fin thickness, Wfin 57 µm 

Number of channels,n 25 

Aspect ratio, ߙ௦ 6.4 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Siti Natasha Malik Fesal et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i6/160806219 Vol 8 No 6 Dec 2016-Jan 2017 2629



Parameters like hydraulic diameter and other dimensionless correlations for Reynolds number, Prandtl 
number and Nusselt number are consideredunder the assumption of single phase, constant thermal properties 

applicablefor laminar and turbulent flows in order to analyze the efficiency of MCHS by applying nanofluids to 
achieve the heat dissipation capability [16, 17]. 

The heat transfer coefficient is calculated by using: 

݄ ൌ
ே௨


          (5) 

Where; 

Hydraulic diameter :  ܦ ൌ 
ସௐு

ଶሺௐାுሻ
       (6) 

Reynolds number  : ܴ݁ ൌ 


௩
       (7) 

Prandtl number  : ܲݎ ൌ ቀ
ఓ


ቁ


       (8) 

Nusselt number  : ܰݑ ൌ 0.023ܴ݁.଼ܲݎ.ଷ      (9) 

The calculation for Reynolds, Prandtl and Nusselt number are based on the assumption that the fluid flow with 
the inlet speed of 3m/s for various volume fraction of nanoparticle. 

The efficiency of the microchannel is computed using: 

ߟ ൌ 
୲ୟ୬୦ሺൈுሻ

ሺൈுሻ
         (10) 

Where; 

݉ ൈܪ ൌ ට
ଶ

ೞௐ
ൈ  (11)         ܪ

݇௦is the MCHS thermal conductivity which is 400W/mK. 

Furthermore, total thermal resistance is computed using the summation of all the three resistances: 

ܴ௧ ൌ 
ଵ

ೞ


ଵ

ሶ 


ு

ೞ್
         (12) 

whereܣ is the area of MCHS bottom part and ሶ݉  is the total nanofluid mass flowrate [12]. 

The surface area is calculated by the formula of: ሶ݉ ൌ       (13)ܣߩ݊

whereܣ is the channel area. 

௦ܣ ൌ ݊ ܹܮ௦   ௦        (14)ܮܪߟ 2݊

Number of cooling channels, n = 25 [18]. 

Thus, the total heat transfer (Q) and the bottom heat flux ݍሶ   is computed using: 

ܳ ൌ ்ೌೣି்

ோ
          (15) 

and 

ሶݍ ൌ 
ொ

್
          (16) 

Where, ܶis the fluid temperature at the inlet and Tmax is the largest of bottom temperature of microchannels. 
From Xie et.al [19] the maximumdifferenceof ሺ ܶ௫ െ ܶሻis taken to be 50oC. 

C. Effectiveness  Evaluation of Nanofluid for  Electronics Cooling 

The effectiveness of nanofluid as coolant is evaluated in term of performance of microchannel heat sink. This 
analysis is crucial in order to see the impact of the viscous pressure drop on the performance of MCHS. 

Coefficient of performance, COP for MCHS is defined as the ratio of the dissipated heat to the invested 
pumping power [20]. 

ܱܲܥ ൌ 
ொ


          (17) 

Where; 

ݓܲ ൌ ሶܸ  (18)          ∆
ሶܸ ൌ ߩ݊ ܹܪ ܸ         (19) 

(Ppow: Idealized pumping power and: Volumetric flowrate of nanofluid, n: Number of channels). 

The pressure drop is calculated using [21], 

∆  ൌ ݂ 
ೞఘ

మ

ଶ
          (20) 
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with Darcy friction factor :݂ ൌ ሺ1.82݈ܴ݁݃ െ 1.64ሻିଶ      (21) 

III. RESULT AND DISCUSSION 

Nanoparticle addition in fluid base will result higher thermal conductivity compared to a conventional liquid and 
conventional two-phase mixture coolant. Solid particle are added as they conduct heat much better than a liquid 
on its own. In this study, three types of nanofluids were used as coolant in microchannel heat sink. Performance 
of nanofluids as coolant were predicted in terms of thermal conductivity, heat transfer coefficient, thermal 
resistance, heat flux and required pumping power. The result was compared with conventional liquid which is 
water. Table IV shows the properties of water as coolant in MCHS with inlet velocity of 3 m/s. 

TABLE IV.  Properties of water in MCHS with inlet velocity of 3 m/s. 

Properties Values 

Thermal conductivity, k (W/m.K) 0.6248 

Heat transfer coefficient, h (W/m2.K) 30111.41 

Reynolds No, Re 405.87 

Prandtl No, Pr 4.85 

Nusselt No, Nu 4.75 

The prediction of performance of CuO-water, SiO2-water and TiO2-water nanofluids were calculated 
using Eq. (1)-Eq (21). The calculated data is shown in Table V, Table VI and Table VII.  

TABLE V.  Thermal conductivity, heat transfer coefficient and mass flow rate of CuO-water nanofluid. 

CuO/Water 

Particle Volume Fraction(∅ %) k(W/m.K) h(W/m2.K) ṁ (kg/s) 

0.5% 0.63399 30584 0.01455 

1.0% 0.64327 31055 0.01493 

1.5% 0.65265 31525 0.01531 

2.0% 0.66211 31993 0.01569 

2.5% 0.67167 32460 0.01606 

3.0% 0.68133 32926 0.01644 

3.5% 0.69109 33392 0.01682 

4.0% 0.70094 33856 0.01720 

TABLE VI.  Thermal conductivity, heat transfer coefficient and mass flow rate of SiO2-water nanofluid. 

SiO2/Water 

Particle Volume Fraction(∅ %) k(W/m.K) h(W/m2.K) ṁ (kg/s) 

0.50% 0.63374 30419 0.01438 

1.00% 0.64277 30727 0.01459 

1.50% 0.65189 31037 0.01480 

2.00% 0.66109 31347 0.01502 

2.50% 0.67038 31658 0.01523 

3.00% 0.67977 31970 0.01544 

3.50% 0.68924 32283 0.01565 

4.00% 0.69881 32597 0.01586 
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