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Abstract - In India and across the globe, liver disease is a serious area of concern in medicine. Therefore, 
it becomes essential to use classification algorithms for assessing the disease in order to improve the 
efficiency of medical diagnosis which eventually leads to appropriate and timely treatment. The study 
accordingly implemented various classification algorithms including linear discriminant analysis (LDA), 
diagonal linear discriminant analysis (DLDA), quadratic discriminant analysis (QDA), diagonal 
quadratic discriminant analysis (DQDA), naive bayes (NB), feed-forward neural network (FFNN) and 
classification and regression tree (CART) in an attempt to enhance the diagnostic accuracy of liver 
disorder and to reduce the inefficiencies caused by false diagnosis. The results demonstrated that CART 
had emerged as the best model by achieving higher diagnostic accuracy than LDA, DLDA, QDA, DQDA, 
NB and FFNN. FFNN stood second in comparison and performed better than rest of the classifiers. After 
evaluation, it can be said that the precision of a classification algorithm depends on the type and features 
of a dataset. For the given dataset, decision tree classifier CART outperforms all other linear and 
nonlinear classifiers. It also showed the capability of assisting clinicians in determining the existence of 
liver disorder, in attaining better diagnosis and in avoiding delay in treatment. 

Keyword-Liver disease diagnosis; classification algorithms; classification and regression tree; linear 
discriminant analysis; quadratic discriminant analysis; naïve bayes classifier; feed-forward neural network; 
computational biology. 

1. INTRODUCTION 

Liver is one of the most vital part and is the largest internal organ in human body. It carries out several 
metabolic functions like producing bile, making certain proteins for blood clotting, filtering blood, helping in fat 
digestion, decomposing red blood cells and most prominently detoxifying harmful chemicals [1]. Liver disease 
is defined as the improper functioning of complex metabolic functions which further leads to serious health 
ramifications. Liver disease can be acute (for short time) or chronic (for long time) that can put the life at risk 
[2]. It is generally caused by accumulation of fat in excess, inherited disorders, virus infected damaged 
hepatocytes, bacteria or fungi, contaminated food and acute consumption of alcohol or drugs [3–5]. The severity 
of disease may begin from a healthy individual to viral hepatitis infection, to cirrhosis and more seriously to 
liver cancer. Its wide and hidden presence worldwide makes it a serious area of concern in medicine. Liver 
disorders have been persistently listed as one of the top ten fatal diseases around the globe costing millions of 
lives every year. 

Ability of liver to function normally even when partially damaged resists its early presence and makes it 
more alarming as by then it has suffered significant or permanent eternal damage. This designates that early 
diagnosis of liver disorder is crucial so that timely treatment can take place [2,3]. Clinical interpretations from a 
collection of symptoms, risk factors, laboratory examination tests and other vital examination figures is a highly 
demanding task in medical diagnosis. The task even becomes more complex if the existing figures are fuzzy. It 
also stretches the decision time of clinicians even if they are experienced and if they are novice then it may take 
years for physicians to gain substantial expertise in analyzing the uncertain medical records of patients. 
Moreover, the accurate diagnosis is still not guaranteed as humans are prone to errors no matter whatever may 
the reason be like abundant clinical workload or a poor health. Hence, to interpret multifaceted datasets, to avoid 
clinical inexperience and to reduce the evaluation time, computer-aided systems are built using a diversity of 
intelligent classification algorithms for liver disorder diagnosis. 
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Literature study showed that classification algorithms have been frequently applied to assist clinicians in 
liver disorder diagnosis. These algorithms include artificial neural network (ANN), artificial immune system 
(AIS), case-based reasoning (CBR), classification and regression tree (CART), C4.5 and C5.0 decision trees, 
fuzzy logic (FL), rule-based reasoning (RBR) and support vector machines (SVMs) [1]. ANNs have been used 
by Hamamoto et al. (1995) to predict early prognosis of hepatectomised patient with hepatocellular carcinoma 
[6], by Hayashi et al. (2000) to diagnose hepatobiliary disorders [7], by Ozyilmaz and Yildirim (2003) to 
diagnose hepatitis disease [8], by Lee et al. (2005) to classify liver cyst, hepatoma and cavernous haemangioma 
[9], by Yahagi (2005) to diagnose types of cirrhosis [10], by Azaid et al. (2006) to classify fatty liver, liver 
cirrhosis and liver cancer [11], by Revett et al. (2006) to perform mining of primary biliary cirrhosis [12], by 
Icer et al. (2006) to determinate cirrhosis disease with power spectral densities of portal venous doppler signals 
[13], by Autio et al. (2007), Su and Yang (2008), Perez et al. (2012) and Babu and Suresh (2013) to classify 
liver disorder as sick and healthy [14–17], by Dong et al. (2008) to calculate optimal value of cost parameter in 
order to minimize classification error [18], by Rouhani and Haghighi (2009), Ansari et al. (2011) and Sartakhti 
et al. (2015) to diagnose hepatitis disease [19–21], by Uttreshwar and Ghatol (2009) to specifically diagnose 
hepatitis B [22], by Bucak and Baki (2010) to classify liver disorders as hepatitis B, hepatitis C and cirrhosis [2], 
by Hashem et al. (2010) to predict hepatic fibrosis extent in patients with HCV [23], by Revesz and Triplet 
(2010) to diagnosis primary biliary cirrhosis [24], by Arsene and Lisboa (2012) to analyze medical survival of 
primary biliary cirrhosis [25], by Elizondo et al. (2012) to quantify level of complexity of dataset [26], and by 
Jeon et al. (2013) to identify focal liver lesion. C4.5 decision tree was used by Yan et al. (2008) to analyse 
relationship between child-pugh degree and examinations of traditional chinese medicine based on liver 
cirrhosis [28]. C5.0 was used by Floares (2009) to classify hepatitis C and B [29]. Fuzzy logics were used to 
differentiate diffuse liver disorders, to classify liver disorders as alcoholic liver damage, primary hepatoma, liver 
cirrhosis and cholelithiasis, to categories healthy and unhealthy liver patients, to diagnose hepatitis and to 
perform semi-automatic liver tumour segmentation [30–34]. 

In addition to individual classifiers, hybridization of classification algorithms has also been widely 
employed. ANN-CBR integration was used to examine the existence of liver disorders and to determine the 
types of liver disorders [4]. ANN and decision tree combination was used by Calisir and Dogantekin (2011) to 
diagnose hepatitis [35], by Bologna (2003) to diagnose liver disorders [36] and by Hashem et al. (2012) to 
predict liver fibrosis degree in patients with chronic hepatitis C [37]. AIS-FL was used by Polat et al. (2007) to 
classify liver disorders [38] and by Mezyk and Unold (2011) to assess prediction accuracy of liver disorders 
[39]. CBR-GA was used by Park et al. (2011) to find total misclassification cost of CSCBR in hepatitis patient’s 
records [40]. FL-GA was used by Wang et al. (1998) [41] and Chowdhury et al. (2007) [42]; AIS-ANN-FL was 
used by Kahramanli and Allahverdi (2009) [43] and ANN-CBR-RBR was used by Obot and Uzoka (2009) [44] 
to diagnose hepatitis disease. ANN-FL integration was deployed by Dogantekin et al. (2009) to diagnose 
hepatitis [45], by Li et al. (2010) to deal with class imbalance problem with medical datasets and to enhance the 
classification accuracy [46], by Ceylan et al. (2011) to diagnose liver cirrhosis [47], and by Comak et al. (2007), 
Celikyilmaz et al. (2009), Neshat and Zadeh (2010), by Li and Liu (2010), and by Kulluk et al. (2013) to 
diagnose liver disorders [48–52].  

In recent years, medical diagnostic systems have been widely practiced in hospitals and have been 
comprehensively assisted physicians in analyzing patients’ therapeutic history. Large data centers are created 
with the use of hardware and software technologies for resourcefully storing medical records in great amount. 
For experimentation and learning, classification algorithms are being applied on these records which can be 
quickly retrieved any time with the help of computer processing systems. Although, it is proved from literature 
study that most famous and widely applied classifiers come under non-linear classification but yet the rest also 
have their own significance in providing comprehensive information as per the scalability and diversity of data. 
Each classifier follows distinctive steps for data processing and computation which makes them distinct in 
producing results. This study accordingly provides a contribution to the liver disorder diagnosis process by 
shortening the time through the use of distinctive linear, nonlinear and decision tree classification algorithms. 
These algorithms help physicians to evaluate complex cases that are otherwise hard to perceive. The classifiers 
include linear discriminant analysis (LDA), diagonal linear discriminant analysis (DLDA), quadratic 
discriminant analysis (QDA), diagonal quadratic discriminant analysis (DQDA), naive bayes (NB), feed-
forward neural network (FFNN), and classification and regression tree (CART). Linear classification includes 
LDA and DLDA, nonlinear classification includes QDA, DQDA, NB and FFNN and decision tree classification 
includes CART.  

The remaining paper is arranged as follows. Section 2 presents methodologies containing description of 
techniques used. Section 3 discusses the experimental results. Finally, conclusion is drawn in Section 4. 
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2. METHODOLOGIES 

Certainly clinicians play a decisive role in medical diagnosis and treatment. However, deployment of 
classification algorithms enhances the diagnostic efficiency and also facilitates physicians to make sound 
judgments on the presence of sickness. Therefore, the study deployed a variety of classifiers to diagnose liver 
disorder and also evaluated their performances to find the finest one. The steps involved in finding the best 
prediction model are shown in Figure 1. The classifiers implemented includes linear discriminant analysis 
(LDA), diagonal linear discriminant analysis (DLDA), quadratic discriminant analysis (QDA), diagonal 
quadratic discriminant analysis (DQDA), naive bayes (NB), feed-forward neural network (FFNN), and 
classification and regression tree (CART) which are introduced as follows. 

LDA is a classification method based on covariance matrix originally developed by R. A. Fisher in 1936. It 
works on the concept of searching for a linear combination of variables that best separates two classes. The 
variables are the predictors and the classes are the actual targets in numerical form [53,54]. LDA works 
efficiently for disproportionate within-classes frequencies by maximizes the ratio of between-classes variance to 
within-classes variance for drawing decision region between the given classes. For example, let’s assume that 
the dataset have X classes; class j mean vector is ߤ where j=1, 2, . . X; ܰ is the number of samples within class 
j where j=1, 2, .. X.  
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where N is defined as the total number of samples, Ma is the within-class scatter matrix, Mb is the between-class 
scatter matrix and µ is the mean of entire dataset. On the other hand, DLDA is the extension of linear 
discriminant analysis where covariance matrices are assumed equal across groups.  

QDA is considered as the more generalized version of LDA used for heterogeneous variance-covariance 
matrices. It calculates a quadratic score function for each of the groups. This function belongs to the mean 
vectors of population and the variance-covariance matrices for jth group. The parameters are estimated by 
maximizing joint likelihood of feature and their classes. On the other hand, DQDA is the extension of quadratic 
discriminant analysis where covariance matrices are used in which all off-diagonal elements are set to be zero 
[55]. 
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Fig. 1. The overall structure. 

NB classifier follows class conditional independence which means the effect of a value of a feature (a) on a 
given class (t) is independent of the values of other features [56]. NB is based on bayes theorem which describes 
the mode of calculating posterior probability P(t|a) from P(t), P(a) and P(a|t).  
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where P(t|a) is the class probability given the feature, P(t) is the class prior probability, P(a) is the feature prior 
probability and P(a|t) is the feature probability given the class. The reason of multiplying the probabilities of all 
n attributes is because of the class conditional independence. Firstly an occurrence table for each feature is 
constructed against the class. Then the likelihood tables are created by transforming the occurrence tables for 
executing naïve bayes equation in order to calculate the posterior probability for each class. Among all the 
classes, the one with the maximum posterior probability will become the output of prediction.  

ANN based models have wide applicability in medical diagnosis. It works by selecting data, creating and 
training a network, validating and testing the targets and evaluating the performance using confusion matrices 
and mean square error. A feed-forward neural network (FFNN) with sigmoid hidden and output neurons is 
trained with scaled conjugate gradient backpropagation network (BPN) in this study. FFNN is based on 
supervised learning and is a biologically inspired classification algorithm. The hidden layer consisted of eight 
neurons placed in parallel for performing a weighted summation of inputs and then passing an activation 
function through a sigmoid nonlinear transfer function [57]. These inputs are connected to neurons by a weight 
and the weighted sum of inputs calculated by neurons is called as activation. Using nonlinear output neurons 
were found advantageous for classification. Backpropagation algorithm applied for training minimizes the cost 
function which is equal to mean squared difference between actual and desired output values through gradient 
descent technique. Its structure is mainly based on batch learning. The study uses one hidden layer as it is 
discovered that too many hidden layers generate incompetent results. Fitting values for learning rate, momentum 
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coefficient and transfer function interval were used to obtain efficient classification results and to reach optimal 
convergence. 

CART is one of the key methods of data mining and had dominated the field of advance analytics. It is a 
nonparametric method that automatically performs variable selection. It increases the performance by revealing 
the important relationships of features in dataset and represents them in the form of tree [4]. It can easily handle 
both categorical and numerical variables. It worked in three parts that includes building of maximum tree also 
known as tree growing, right tree selection also known as tree pruning and classification of testing data using 
built tree. The tree growing was done through splitting the learning data using a gini impurity criterion. In the 
growing stage, splitting of training samples up to last observations was recursive until the gini diversity index 
was minimized in each terminal node. The impurity function used by gini splitting rule is as follows. 

݃ሺ݊ሻ  ൌ ሺݔ|݊ሻሺݕ|݊ሻ

௫ஷ௬

                                   ሺ7ሻ 

where n is a node, x, y are class labels, ሺݔ|݊ሻ is the conditional probability of observing a sample from class y 
at node n. After minimization, optimal tree is selected by tree pruning procedure. The gini splitting criteria 
(∆݃ሺݑ, ݊ሻሻ is defines as follows.  
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where  and ோ are probabilities left child node ݊ and right child node ݊ோ correspondingly. Cost-complexity 
function (ܥఈሺܰሻ) finds the optimal proportion between the misclassification error and tree complexity where 
,ሺܰሻ is the misclassification rate in tree Nܥ   ܰ  sum of terminal nodes in the tree, ߙ൫ ܰ൯  is the complexity 
measure. CART methodology uses surrogate split methods for dealing with missing data in attributes but if the 
dependent attribute in a subject is missing or all the attributes in a subject is missing than the specific sample 
will be ignored.    

3. EXPERIMENTAL RESULTS 

For experimental evaluation, Indian Liver Patient Dataset was taken from UCI (University of California at 
Irvine) machine learning repository. The dataset characteristic is multivariate and it includes 10 attributes, 2 
classes and 583 samples. The attributes are age, gender, total bilirubin, direct bilirubin, albumin and globulin 
ratio, alkaline phosphotase, albumin, alamine aminotransferase, aspartate aminotransferase and total proteins. 
The two classes are categorized as normal and diseased. Among 583 instances, 416 are liver patients and 167 
are healthy individuals. These records were collected from north east of Andhra Pradesh, India. Each line in the 
data file constitutes a record of a single male or female individual. In total there are 441 male and 142 female 
records. The basic attributes/indices for liver disorder are described in Table 1. 

In general, performance of a classifier depends upon the structure of a dataset. It was observed from the 
experiments that LDA, DLDLA, QDA, DQDA and NB had not shown adequate results. ANN performed better 
than the mentioned algorithms and CART was superior among all. In ANN based model, a three layered FFNN 
was deployed having input, hidden and output layers. The structure was designed with ten inputs, one hidden 
and one output layer. Initially multiple number of nodes (4, 6, 8, 16, 17, 21) were tested in the hidden layer. The 
range of epochs was set from 10 to 1000. Based on output results, the best architecture finalized was 10-8-1 
which means 10 neurons in input layer, 8 neurons in hidden layer, and 1 neuron in output layer with 27 epochs. 
Mean squared error (MSE) and receiver operating characteristics (ROC) of training, validation and testing data 
are presented for examining the convergence of the architecture in Figure 2, 3, 4, 5 and overall ROC is 
presented in Figure 6. The computation of finding differences between desirable output and actual output, 
squaring the differences and finding the averages of all classes and internal validation leads to describe MSE. 
The diagnostic accuracy rate of best FFNN architecture was 75.90%. 
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Table 1.  Basic indices for liver disorder diagnosis 

Indices  Descriptions  

Age  Age of the patient 

Gender  Gender of the patient 

TB Total bilirubin 

DB Direct bilirubin 

ALP Alkaline phosphatase 

Sgpt  Alamine aminotransferase 

Sgot Aspartate aminotransferase 

TP Total proteins  

ALB Albumin 

A/G ratio Albumin and globulin ratio 

Selector Field used to split data into two sets  

 

 

Fig. 2. The mean square error tendency. 

            

                               Fig. 3. The training ROC curve.                                                              Fig. 4. The validation ROC curve. 
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                                   Fig. 5. The testing ROC curve.                                                           Fig. 6. The overall ROC curve. 

CART works competently in two type of output based classification as it follows strict binary tree structure 
having two terminal nodes. The binary splitting procedure is recursive until further division is impossible. In the 
proposed CART model, the samples were first split into training and testing groups. Training data was used for 
building the CART model and testing data was used for examining the performance. The built model extracted 
rules from the health examination data and classified it into diagnosed class (class 1) for patients suffering from 
liver disorder or normal class (class 2) for healthy individuals. Each terminal node was associated with a set of 
rules once the optimal tree was built. The optimal decision tree and a set of classification rules extracted from 
the optimal tree built by CART model were mentioned in figure 7 and table 2 respectively. The result of 
validation method used as testing data showed a diagnostic rate of 84.22%. 

Table 2.  The CART model analytic rules 

Terminal 
node 

Rule Class 

1 ALP < 208.5, ALB < 4.15, SGPT < 24.5, Age < 59, A/G ratio < 0.95,  Age < 33.5  2 
2 ALP < 208.5, ALB < 4.15, SGPT < 24.5, Age < 59, A/G ratio < 0.95,  Age ≥ 33.5  1 
3 ALP < 208.5, ALB < 4.15, SGPT < 24.5, Age < 59, A/G ratio ≥ 0.95,  Age < 26 2 
4 ALP < 208.5, ALB < 4.15, SGPT < 24.5, Age < 59, A/G ratio ≥ 0.95,  Age ≥ 26 1 
5 ALP < 208.5, ALB < 4.15, SGPT < 24.5, Age ≥ 59 2 
6 ALP < 208.5, ALB < 4.15, SGPT ≥ 24.5, SGOT < 19.5 2 
7 ALP < 208.5, ALB < 4.15, SGPT ≥ 24.5, SGOT ≥ 19.5, TP < 6.6, Age < 25.5  2 
8 ALP < 208.5, ALB < 4.15, SGPT ≥ 24.5, SGOT ≥ 19.5, TP < 6.6, Age ≥ 25.5, ALB < 

3.8  
1 

9 ALP < 208.5, ALB < 4.15, SGPT ≥ 24.5, SGOT ≥ 19.5, TP < 6.6, Age ≥ 25.5, ALB ≥ 
3.8  

2 

10 ALP < 208.5, ALB < 4.15, SGPT ≥ 24.5, SGOT ≥ 19.5, TP ≥ 6.6 1 
11 ALP < 208.5, ALB ≥ 4.15 2 
12 ALP ≥ 208.5, Age < 15 2 
13 ALP ≥ 208.5, Age ≥ 15, TB < 0.55 2 
14 ALP ≥ 208.5, Age ≥ 15, TB ≥ 0.55, ALB < 4.25, ALK < 1315, TB < 0.85, SGPT < 

31.5  
2 

15 ALP ≥ 208.5, Age ≥ 15, TB ≥ 0.55, ALB < 4.25, ALK < 1315, TB < 0.85, SGPT ≥ 
31.5, TP < 7.7  

1 

16 ALP ≥ 208.5, Age ≥ 15, TB ≥ 0.55, ALB < 4.25, ALK < 1315, TB < 0.85, SGPT ≥ 
31.5, TP ≥ 7.7 

2 

17 ALP ≥ 208.5, Age ≥ 15, TB ≥ 0.55, ALB < 4.25, ALK < 1315, TB ≥ 0.85 1 
18 ALP ≥ 208.5, Age ≥ 15, TB ≥ 0.55, ALB < 4.25, ALK ≥ 1315 1 
19 ALP ≥ 208.5, Age ≥ 15, TB ≥ 0.55, ALB ≥ 4.25 2 
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Fig. 7. The optimal decision tree for liver disorder diagnosis 

To validate the proposed classification algorithms, selected dataset was partitioned into two parts (training 
set and testing set) for LDA, DLDA, QDA, DQDA, NB and CART and into three parts (training set, validation 
set and testing set) for ANN. Partitioning was done using holdout cross validation method in order to minimize 
the potential bias of samples. Seventy percent data was used for training and thirty percent data was used for 
testing to evaluate and compare the diagnostic accuracy rates of classifiers. Both training and testing data 
remained same for all classifier excluding ANN which used sixty percent for training, 20 percent for validation 
and 20 percent for testing. Partitioning also helped in estimating misclassification probabilities. In order to 
recognize the most efficient predictive model for liver disorder diagnosis, obtained experimental results of 
classifiers (LDA, DLDA, QDA, DQDA, NB, ANN and CART) were compared with each other. Table 2 shows 
the achieved diagnostic accuracy rates and CART model appears to take the lead, followed by FFNN as the 
runner-up model.  

Table 3.  The comparison results of classification algorithms 

Classification 
algorithm 

LDA DLDA QDA DQDA NB (Gaussian 
distribution) 

NB (Kernel 
distribution) 

FFNN CART 

Accuracy rate 
(%) 

64.67 62.95 56.78 55.33 56.32 66.67 75.90 84.22 
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Based on the literature study, it is proved that performance of a classification algorithm differs from one 
data structure to another. For instance, Yildirim (2003) found the performance of ANN based model better than 
decision trees, naive bayes and bayesian networks while Floares (2009) developed a decision tree based model 
which was superior to SVMs, bayesian networks and various neural networks architectures. This study also 
scrutinized number of data mining methods for attaining adequate results in diagnosing liver disorder. For 
example, a variety of ANN models with n number of hidden nodes and learning parameters were examined to 
select the best architecture. CART also achieved significant results and was considered as an optimal classifier 
for assisting physicians by forming a path through clinical rules to conclude whether an individual is sick or 
healthy. Its interpretation and structure is simple that makes the complex clinical co-relations easy to 
understand.  

4. CONCLUSION 

Liver disease is one of the major causes of mortality in India as well as around the world. Its wide and 
hidden presence makes it a serious area of concern in the universal set of medicine. It has been consistently 
listed as one of the top ten fatal diseases around the globe costing millions of lives every year. Lack of timely 
diagnosis and appropriate treatment is visible with the registered cases of liver disorders in hospitals. Accurate 
assessment is therefore highly important and obligatory to save the human lives. Analysis and interpretation 
from a collection of symptoms, risk factors, laboratory examination tests and other vital examination figures is a 
highly demanding task in medical diagnosis and becomes more complex if the figures are fuzzy. It also stretches 
the decision time of clinicians even if they are experienced. Moreover, if they are novice then it may take years 
for the physicians to judge and gain substantial expertise in analyzing the complex and uncertain examination 
data of patients. The accurate diagnosis is still not guaranteed as humans are prone to errors no matter whatever 
may the reason be like abundant clinical workload or a poor health.  

Therefore, to interpret multifaceted datasets, to avoid clinical inexperience and to reduce time period and 
effort needed, the study accordingly deployed a number of linear, nonlinear and decision tree classification 
algorithms and presented a predictive model for liver disorder diagnosis. These algorithms include LDA, 
DLDA, QDA, DQDA, NB, ANN and CART out of which CART was found superior and has taken the lead in 
terms of accuracy rates. Apart from the best performance it has also built a set of rules to provide valuable 
insight into relationships between predictable attributes and target attributes for the diagnosis. Implementation 
of these diagnostic system models has contributed a major transformation in the field of information retrieval, 
and the medical domain has also been widely affected by this renovation. Intelligent classification algorithms 
imitate these diagnostic systems to work like human brain. Number of authors have penned about the role of 
computational intelligence in medicine. Though disease diagnosis primarily relies on physician’s clinical 
experience but computational intelligence does help in making appropriate judgments. A lot of scope seems for 
the future research in recognizing the efficient classification algorithms by changing the structure and increasing 
the samples in dataset. Number of attributes can also be extended for finding decisive correlations between 
them. Two or more classification algorithms can also be integrated to refine and diversify the achieved results. 
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