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Abstract-Association rule mining is one of the important data mining techniques. It finds correlations 
among attributes in huge dataset.  Those correlations are used to improve the strategy of the future 
business. The core process of association rule mining is to find the frequent patterns (itemsets) in huge 
dataset. Countless algorithms are available in the literature to find the frequent itemsets. Most of the 
algorithms introduced in the literature finds all frequent itemsets for a given specified minimum support 
value. But in rare occasion, it is needed to check the occurrence of some predefined few frequent patterns 
in large dataset to improve the strategy of the future business. For this purpose, we previously introduced 
SIFPMM (Selective Itemsets Frequent Pattern Mining Method) method. FP-tree is one of the important 
methods for finding frequent patterns using two database scans. So this proposed TM-PIFPMM 
(Transaction Merging – Predefined Itemsets Frequent Pattern Mining Method) finds frequent patterns 
from predefined frequent itemsets using one database scan and it is compared with FP-tree and 
SIFPMM. The practical study of TM-PIFPMM proves that this method outperforms than FP-tree and 
SIFPMM. 
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I. INTRODUCTION 

As with the invention of IT technologies, the amount of accumulation of data is constantly increasing. So it 
stores large volume of data in secondary storage. Thus the Data mining approaches come into picture to explore 
and analyse the database to find the exciting hidden patterns. So the data mining is motivated as decision 
support problems for most business organizations and is described as core area of research [1]. It has recently 
attracted significant care from database professionals, because of its applicability in numerous areas such as 
decision support, banking, insurance, retail, fraud detection, market strategy and financial forecasts. Later it has 
been implemented in pharmaceutics, health, government and all sorts of e-businesses [2]. 
A transaction in database usually holds the transaction id, transaction date and the items bought in the 
transaction. Any enterprise has commenced to identify that the information collected over years is an important 
strategic advantage and it also recognizes that there are prospective intelligences secreted in the enormous 
amount of data. So it needs techniques to mine the most valued information from warehoused data [3], [4]. The 
data mining contributes such methods to find useful unknown information. Data mining is a group of 
approaches for effective automated finding of formerly unknown, valid, novel, prized and clear pattern in huge 
database [4],[5].  
Data mining tasks deal with the kind of patterns that can be mined. On the basis of the kind of data to be mined, 
there are two categories of tasks involved in Data Mining such as descriptive and predictive. The descriptive 
function mines with the general properties of data in the database. The descriptive techniques comprise of tasks 
like clustering, association and sequential mining. Predictive data mining jobs are those that do implication on 
input data to achieve at hidden knowledge and create exciting and useful estimate. The predictive mining 
methodologies include jobs like classification, regression and deviation.  
Essential research areas in data mining are performance, mining approach, user interactions and data diversity. 
So the data mining approaches must be skilled and scalable well to the size of database and their execution times 
[6][7][8]. Association rule mining is a famous descriptive data mining techniques [7]. Since its introduction [9], 
association rule mining has advanced into one of the central data mining tasks and has involved notable 
attention among data mining researchers and specialists [10]. So this is a good method for finding correlations 
between variables in big database. For example, it has to find out how many of customers buy bread and jam 
together. Domain professional can utilize this detail for detecting the customer buying behaviours to maximize 
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the profit of the organization. So the core problem of association rule mining is frequent itemsets mining. The 
correlation rule of above said problem can be written as 

ݔ∀ ∈ ,ݎ݁݉݋ݐݏݑܿ breadሻ,ݔሺݏݕݑܾ → ,ݔሺݏݕݑܾ ݆ܽ݉ሻ 
Where x is a variable and buy(x, y) is a predicate that defines that consumer x buy item y. This rule specifies 
that a high percentage of people who purchase bread also buy jam [11]. Association rule mining can be 
described as follows. Let I = {i1, i2, …,im} is a set of items. A non-empty subset of I is called itemset and it is 
made as X= {i1, i2,…,in}.  Let D = {t1,t2,….,tk} be a set of  tuples.  Each tuple T is a set of items such that T  I. 
The total number of items in T is called size of the itemset and an itemset of size L is referred as L-itemset [12].  

Let R, S be a set of items, Association rule has the form  

ܴ → ܵ ܽ݊݀ ܴ ^ ܵ ൌ ∅  

Where R is an antecedent and S is the consequent of the rule.  It applies two statistical methods that control the 
activity of association rule mining is support and confidence [4]. Firstly, it describes frequent itemsets based on 
least support threshold. After that, it uses least confidence to determine correlation between frequent itemsets. 
The support and confidence can be written as equations as follows [13].  

ሺܴ ݐݎ݋݌݌ݑܵ → ܵሻ ൌ ∑ሺܴ ∪ ܵሻ/ܰ 

ሺܴ ݂݁ܿ݊݁݀݅݊݋ܥ → ܵሻ  ൌ ∑ ሺܴ ∪ ܵሻ/ ∑ܴ 

Where, N denotes the number of transactions in D.  

Number of researches have been introduced  [1],  [2],  [3], [6], [7], [10], [11], [12], [13], [14], [15], [16], [17], 
[18], [19], [20], [21], [22], [23], [24]  [25] in evolving competent method for finding frequent patterns after 
introducing Apriori by Agrawal et al. [9].  Among those techniques, FPTree [17] is one of the important and 
commonly used techniques for finding frequent itemsets. So the SIFPMM [25] and FPTree [17] are the 
important algorithms to prove the performance of this proposed TM-PIFPMM. This paper presents the TM-
PIFPMM method to find significant frequent itemsets with less computing time than FP-tree and SIFPMM. 

The rest of the paper is prearranged as follows: Related works are explained in section 2. The proposed method 
is debated in section 3. Experimental results and discussions are given in section 4. The conclusions and the 
ideas for future enhancements are written in section 5. 

II. RELATED WORKS 

The core task of association rule mining is to find the frequent itemsets from large database. It is very useful in 
market basket analysis. So many methods are introduced in the literature to find frequent itemsets. Usually all of 
them can be categorized into two types such as candidate generation [9] and pattern growth [17]. 

The very first algorithm was introduced for finding frequent itemsets is the AIS (Agrawal, Imielinski and 
Swami) algorithm presented by Agrawal et al. [9] which uses candidate generation technique. So it is the 
forerunner of all the methods to discover the frequent itemsets and confident association rules. The name of this 
algorithm was renamed as Apriori by Agrawal et al. [3], [19]. Several algorithms were introduced to improve 
the efficiency of Apriori. But Apriori algorithm regrets from many numbers of database scans necessary to find 
the frequent itemsets and take more time if the dataset size is enlarged [20]. 

In 2000 Han proposed a new algorithm named as FP-tree which represents pattern growth method and it uses 
FP-tree data structure. It finds frequent itemsets using two database scans by constructing and using FP-tree. If 
the database is very large, the construction of FP-tree is very difficult because the full FP-tree should be 
maintained in main memory until all necessary frequent itemsets to be found.  So it suffers from the time 
required to build the FP-Tree structure for huge database. The rise in the size of the FP -tree with respect to the 
growth of database leads to difficult in making, search and insert operation on bulky FP-tree [17]. 

The SIFPMM [25] was introduced by us to find the frequent patterns from important frequent itemsets given by 
domain experts to improve the strategy of the future business. It works better than Apriori and FP-tree. Even 
though it works better than FP-tree for specified constrained frequent pattern mining, it further needs proficient 
algorithm with customized data structures to catch timely outcomes from ever growing database. So this paper 
introduces the TM-PIFPMM technique to find significant frequent itemsets from specified important frequent 
itemsets so that to decrease computing time than SIFPMM. 

III. PROPOSED APPROACH 

A. Dataset Size Reduction 

Usually the dataset for finding frequent itemset contains identical transactions. Those identical 
transactions are merged as single transaction with the count for number of transaction merged [26].  This action 
decreases the total number of transactions in dataset as less than or equal to 2I -1 transactions where I denotes 
the total number of different items in the shop. So this significantly reduces computing time of discovering 
frequent itemset. 

 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Saravanan.Suba et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i5/160805413 Vol 8 No 5 Oct-Nov 2016 1872



B. Selection of Predefined Itemsets  

Let K= {K1, K2… Km} be the set of frequent patterns found last time for the future strategic decision   and L= 
{L1, L2… Ln} be set of patterns collected from K based on condition stated by the proficient domain expert for 
finding the presence of its frequency in current large dataset to decide the future profit of the enterprise. This 
can be mathematically said in tuple relational calculus as 

ሼL|ConditionOnሺKሻሽ 

L comprises set of all patterns which fulfils the domain expert conditions on K to improve the future business 
strategy. Usually those patterns are caught early by domain expert and saved in the text file before executing this 
proposed method. 

C. Occurrence Count Table 

This algorithm apply one table that’s name is Occurrence Count Table (OCT). It has two fields such as 
predefined patterns and occurrence count value. This table holds entries for all patterns in L and frequency count 
of each pattern that are identified in transaction database. The frequency count of each pattern is the count of the 
occurrence of such itemset in transactional database D. This table is formed and may be retained in the memory 
till the specified frequent patterns are not found [21]. The format of Occurrence Count Table (OCT) is shown in 
table 1 

TABLE 1: Structure of Occurrence Count Table (OCT) 

Sl. No. Predefined Patterns Occurrence Count(OC) 

1   

.   

.   

N   

D. Proposed Algorithm 

1. Algorithm: The TM-PIFPMM  

2. Input: A database D, Minimum Support Value, predefined patterns L  

3. Output: The frequent patterns F 

4. begin 

5. build TMT (Transaction Merge Table);  

6.  read the database D record by record until it reaches the end of record 

7.  { 

8. update the TMT; 

9. count the number of different items involved in the data base; 

10.    } 

/* Construction of OCT*/ 

11. for each ti L 

12. { 

13. OCT_PP(i)←ti 

14. OCT_OC(i) ← 0 

15.  } 

16.  F←{  } 

17. for each Xi TMT 

18. { 

19.  for each XjOCT 

20.  { 

21.  If (Xj  Xi) 

22. { 

23.OCT_OC(j)=OCT_OC(j)+1 

24.  } 

25. } 
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26. } 

27. for  each Xj OCT 

28. { 

29. if OCT_OC(j) >=MSV 

30. { 

31. F←{ F U Xj} 

32. } 

33. } 

34. End 

E. Illustration of Proposed Technique 

Let it Consider the transaction set D with 10 transactions, minimum support value as 4 and items I={X, Y, Z}. 
The transaction set is shown in table 2 

TABLE 2: Transactional Database 

Tid Itemset 
T1 X,Y,Z 
T2 X,Y 
T3 Y,Z 
T4 X 
T5 X 
T6 X,Y,Z 
T7 Y,Z 
T8 Y,Z 
T9 X,Y 

T10 X,Y,Z 

The predefined patterns to find its occurrence in the above database is given in table 3 

TABLE 3: Predefined Patterns 

Predefined Patterns 

X,Y 

X,Z 

Y,Z 

The algorithm scans the transactions one by one and merges the identical transactions and store those merged 
transactions into a table called TMT as shown in table 4 

TABLE 4: Transaction Merging Table (TMT) 

Sl. No. Itemset Count 

1 X,Y,Z 3 

2 X,Y 2 

3 Y,Z 3 

4 X 2 

Next step is to construct the OCT with initial values as shown in table 5 
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TABLE 5: Initial Occurrence Count Table 

Sl. No. Patterns Occurrence Count 

1 X,Y 0 

2 X,Z 0 

3 Y,Z 0 

TABLE 6: Updated Occurrence Count Table 

Sl. No. Patterns Occurrence Count 

1 X,Y 5 

2 X,Z 3 

3 Y,Z 6 

It is witnessed from table 6 that the frequent patterns discovered from the given set of predefined patterns are  

F= {X, Y}, {Y, Z}}. 
IV. EXPERIMENTS 

A. Experiments on Synthetic Datasets 

Several experiments were done to evaluate the performance of the proposed method. The intel® core 
™ i5-2450m CPU @2.5 GHZ, 4.0GB RAM ,64bit windows 7 operating system and NetBeans IDE 8.0.2 were 
used  to execute the experiments. The synthetic dataset of 2000, 6000, 11000 and 22000 with 10 items and 8 
selective patterns were created to check the scalability of proposed TM-PIFPMM with implemented version of 
FP-tree [26] and SIFPMM.   

The first experiment was done by applying the above specified four groups of dataset in FP-tree, 
SIFPMM and TM-PIFPMM with 5% minimum support value. The corresponding execution time is shown in 
Table.7.  

 
TABLE 7: Execution Time Comparison for a Few Datasets 

 

Sl. 
No. 

No. of Transactions 
Execution Time in Milliseconds 

FP-tree SIFPMM TM-PIFPMM 
1 2000 150 80 42 
2 6000 289 120 45 
3 11000 330 145 48 
4 22000 450 280 55 

It is seen that the performance time is decreased linearly from FP-tree to SIFPMM to TM-PIFPMM and the 
differences continues even though the number of transactions increases.  

The Fig.1 shows the performance of  FP-tree, SIFPMM  and TM-PIFPMM according to the run time of each 
method for given four datasets. It clearly demonstrates that the TM-PIFPMM outperforms FP-tree and 
SIFPMM. 
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