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Abstract—The machining of fibre reinforced composites is an important activity for optimal application 
of these advanced materials into engineering fields. During machining, any excessive cutting force has to 
be avoided in order to prevent any product reject in the last stages of production cycle. Therefore, the 
ability to predict the cutting forces is essential to select the process parameters necessary for an optimal 
machining. The aim of this paper is to analyse the cutting forces in CFRPmilling; in particular, this work 
highlights the reliability and potential of a numerical model as a forecasting tool for the real signal of the 
cutting force componentsof a multi-insert tool, obtained starting from the experimental signal of a tool 
with a single cutting insert. The signal components of the cutting force, as a function of the number of 
inserts, has been numerically analysed and then it has been validated by experimental tests.  
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I. INTRODUCTION 

Composite materials milling is a rather complex task owing to material heterogeneity and to some problems, 
such as surface delamination appearing during the machining process, associated with material characteristics 
and cutting parameters. Milling is the machining operation most frequently used in manufacturing of fibre-
reinforced plastics parts as a corrective operation to produce well defined and high quality surfaces that require 
the removal of excess material to control tolerances [1]. The machinability of fibre-reinforced plastics is 
strongly influenced by the type of fibre embedded in the composite and by its properties. Mechanical and 
thermal properties have an extremely importance on fibre reinforced plastic (FRP) machining. The kind of fibre 
used in the composites has a great influence in the selection of cutting tools (cutting edge, material and geometry) 
and machining parameters. It is fundamental to ensure that the tool selected is suitable for the material. The 
knowledge of cutting mechanisms is necessary to optimize the cutting mechanics and machinability in milling 
[1,2]. Composite materials, such as carbon fibre reinforced plastic (CFRP), made of carbon fibres used for 
reinforcing resin matrices, such as epoxy, are characterised by excellent properties as lightweight, high strength 
and high stiffness. These properties make them especially attractive for aerospace applications [2]. Surface 
roughness is a parameter that has a great influence on dimensional precision, on mechanical performance and on 
production costs. For these reasons, research developments have been carried out on purpose of optimising the 
cutting conditions to reach a specific surface roughness [3,4]. The required quality of the machined surface 
depends on the mechanisms of material removal and on the kinetics of machining processes affecting the 
performance of the cutting tools [5]. The works of a number of authors [6–12], reporting on milling of FRP, 
show that the type and orientation of the fibres, the cutting parameters and the tool geometry have an essential 
influence on the machinability. Everstine and Rogers [6] presented the first theoretical work on the machining of 
FRPs in 1971, since then the research carried out in this area has been based on experimental investigations. 
Koplev et al. [7], Kaneeda [8] and Puw and Hocheng [9] established that the principal cutting mechanisms are 
strongly correlated to fibre arrangement and tool geometry. Santhanakrishman et al. [10] and Ramulu et al. [11] 
carried out a study on machining of polymeric composites and they concluded that an increasing of the cutting 
speed leads to a better surface finish. Hocheng et al. [12] studied the effect of the fibre orientation on the cut 
quality, cutting forces and tool wear on the machinability. W. Hintze [13] investigated the case of delamination 
of the top layers during CFRP tape milling and he showed that delamination depends highly on fibre orientation 
and tool sharpness.D. Liu et al. [14] summarized an up-to-date progress in mechanical drilling of composite 
laminates reported in the literature; they covered drilling operations (including conventional drilling, grinding 
drilling, vibration-assisted twist drilling, and high speed drilling), drill bit geometry and materials, drilling-
induced delamination and its suppressing approaches, thrust force and tool wear. 
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Enemuoh et al.  [15] realized that with the application of the Taguchi technique and a multi-objective 
optimization criterion, it is possible to achieve cutting parameters that allow the absence of damage in FRP 
drilling. Paulo Davim et al. [16] studied the cutting parameters (cutting velocity and feed rate) under specific 
cutting pressure, thrust force, damage and surface roughness in drilling Glass Fibre Reinforced Plastics (GFRPs). 
A plan of experiments, based on the Taguchi technique, was established considering drilling with prefixed 
cutting parameters in a hand lay-up GFRP material. Sheikh-Ahmad et al. [17] studied the comprehensive model 
for orthogonal milling of unidirectional composites at various fibre orientations. Devi Kalla [18] studied the 
mechanistic modelling techniques for simulating CFRP cutting with a helical end mill. A methodology was 
developed to predict the cutting forces by transforming specific cutting energies from orthogonal cutting to 
oblique cutting. T. Yashiro et al. [19] confirmed that the measurement of the cutting temperature is important 
when dealing with CFRP: temperatures higher than the glass-transition temperature of the matrix resin are not 
favourable as they damage the laminate. In J. Liu et al. [20] a heat transfer model is developed to investigate the 
temperature distribution of CFRP workpiece in helical milling process. The relationship between cutting speed 
and temperature of processing is pointed out. In summary, it can be noticed that the works carried out on the 
machinability of FRP are basically related on the wear of cutting tools and on the quality of the surfaces, as a 
function of the cutting conditions, of the fibres distribution and of theinclination angle of fibres in the polymeric 
matrix.The purpose of this work has been to analyse the cutting forces of multi-insert tools in milling of CFRPs 
through the use of a simple numerical model. In particular, the aim has been to highlight the reliability and 
potential of a numerical model as a forecasting tool forthe real signal of the cutting force componentsof a multi-
insert tool, obtained starting from the experimental signal of a tool with a single insert, using the superposition 
principle.In particular, the signal acquired in the case of a milling with a single insert wasanalysed 
experimentally and the signal relating to a multi-insert milling (with 2, 4, 6, 8 inserts)wasnumerically 
reconstructed from it. The simulated signals werecompared with those experimentally obtained to evaluate the 
reliability of the numericalmodel.A conclusion of the work, the force signals werederivedas a function of 
different process parameters varying the number of inserts,by means of the numerical model. 

II. MATERIAL AND METHODS 

A CNC milling machine was used to carry out the experiments, see Fig. 1, whose characteristics are a 15 kW 
spindle power and a maximum spindle speed of 15000 rpm. An end mill suitablefor CFRP machining 
wasmounted on the machine spindle. This mill had a diameter of40 mm and itpresented the possibility of 
mounting up to 8 inserts (the single insert was an APMT1135PDER-H1 UTi20T of MITSUBISHI), see Fig. 2. 
Autoclave process was considered to produce the composite material used for the experimental tests carried out 
in this work. The material was made of epoxy matrix reinforced with 50% of carbon fibre and presented a cross-
plyfibre orientation. The laminate had a thickness of 13 mm, that was reached laying down 40 alternating plies 
of prepreg, and thetests were performed withoutcooling fluid.Themachined surfacecan be noticedin Fig. 3: the 
first machiningpass "a" wasexecutedin order to allow the correct tool access for subsequentmachining pass “b,c 
andd”.A single parameter set, representative of general experimental condition, withan axial cutting depth of 1 
mm, a feed for tooth of 0.022mm and acutting speed of 100 m/min, was used to validate the numerical model. 
To reproduce the range of process parameter commonly used in industrial field,two cutting speed levels,five 
mill typologies (with 1, 2, 4, 6 and 8 inserts) and four axial cutting depth values were considered, as visible 
inFig.4. As reported in the plan of experiments shown in Tab. 1, 120 experiment runs were carried out, 
sinceeach parameter setwasconducted for three times. To lowerthe consequence of any systematic error, a 
random sequence was implemented to carry out the experimental runs.A Kistler piezoelectric platform 
dynamometer (Type 9257 BA), visible in Fig. 5, was used to value the cutting force Fx,Fyand Fz.For choosing 
the acquisition parameters leading to the whole force signal data with the minimum time waste,several time 
intervals and frequencies were considered to sample the signals through the dynamometer. The X, Y and Z 
signalswere periodic and 16384 acquisition points were considered adequate to collect the whole signal data. 
Since the output of the dynamometer was collectedby an A/D converter and sampled at 10 kHz by a PC,each 
acquisitioncontaineda time signal ofabout1.6384s [21-24].  
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TABLE I.  Experimental plan 

Factors Levels [#] Value 

pa, Axial cutting depth[mm] 4 1.0 – 1.5 – 2.0 – 3.0 

pr, Radial cutting depth [mm] 1 25 

Vt, Cutting speed [m/min] 2 100–300 

ft, Feed per tooth [mm] 1 0.022 

Mill inserts [#] 5 1 – 2 – 4 – 6 – 8 

Replications 3  

Total cuts 120  

 

 
Figure 1. CNC milling machine 

 

Figure 2. Milling Tool with one insert 
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Figure 3. Sample after milling machining 

 

Figure 4. Typologies of millswith 1,2,4,6 and 8 inserts 

 

Figure 5. Gripping system/dynamometer/sample 

III. RESULTS AND DISCUSSION: ANALYSIS OF FORCES IN TIME DOMAIN 

The components Fx, Fy and Fz of force signal related to a mill with one insert were acquired by the dynamometer. 
Subsequently the portions corresponding to a contact angle of 0° to 90° were considered for 4 tool round and the 
average value was calculated. In Fig. 6 the acquired signal for one revolution of the tool is shown while in Fig. 7 
there is the acquired signal for 4 revolutions of the tool.The signal relative to a mill with two insertwas 
simulatedby the experimental signal. This signal, using the superposition principle, was obtained by summing 
the contribution of each single insert and dephasing it of 180°, as shown in Fig. 8-10.The same methodology 
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material.In fact, as it can be seen from the figure, the maximum value of the Fx component of the cutting force 
changes from a minimum value of about 60 N, for an axial cutting depth of 1 mm and a tool with one insert, to a 
maximum value of about 90N,for an axial depth of 3 mm and a tool 8 with inserts.Similar considerations were 
obtained for the Fy and Fz components, see Fig. 22-25. These simulations were extended also to machining 
operations with a cutting speed of 300 m/min; from the obtained results, it was found that with such a speed all 
three components of the cutting force are reduced in comparison with the condition with a cutting speed of 100 
m/min. This is due to an increase in cutting temperature, which facilitates the machining; this phenomenon 
occurs with increasing cutting speed and it causes a reduction of the cutting forces.As an example,in Fig. 26 and 
27 there are the graphs of the Fz component as a function of axial cutting depth and of the number of inserts 
respectively, for a cutting speed of 300 m/min. 

 

Figure 20. Average Fx vs. Pa with the change of the number of inserts: Feed per tooth “ft” 0.022 mm; Vt 100 m/min 

 

Figure 21. Max Fx vs. Pa with the change of the number of inserts: Feed per tooth “ft” 0.022 mm; Vt 100 m/min 

 

Figure 22. Average Fy vs. Pa with the change of the number of inserts: Feed per tooth “ft” 0.022 mm; Vt 100 m/min 
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Figure 23. Max Fy vs. Pa with the change of the number of inserts: Feed per tooth “ft” 0.022 mm; Vt 100 m/min 

 

Figure 24. Average Fz vs. Pa with the change of the number of inserts: Feed per tooth “ft” 0.022 mm; Vt 100 m/min 

 

Figure 25. Max Fz vs. Pa with the change of the number of inserts: Feed per tooth “ft” 0.022 mm; Vt 100 m/min 
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Figure 26. Average Fz vs. Pa with the change of the number of inserts: Feed per tooth “ft” 0.022 mm; Vt 300 m/min 

 

Figure 27. Max Fz vs. Pa with the change of the number of inserts: Feed per tooth “ft” 0.022 mm; Vt 300 m/min 

IV. CONCLUSION 

This work highlights the reliability and potential of the numerical model as a forecasting tool for the real signal 
of the cutting force components, obtained starting from the experimental signal of a single cutting insert tool, 
using the superposition principle.Such information may be taken into account in advance for processing 
optimization and/or as a function of the design constraints, such as processing time, MRR, machining power, 
tool wear, surface finish, etc. In particular,in the present work the signal analysis pointed out that a tool with 
8cutting insert allows to carry out the processing with greater stability and improved surface finish, moreover 
there is an increase in MRR of four times compared with the tool with 2 cutting insert. 
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