
Smart Design Pattern and Applicable
Model for Fine Tuning of Sensor Data

Analysis with Local Data Historian
U. Surya Kameswari #1, Prof. I. Ramesh Babu*2

#1 *2 Department of CSE, Acharya Nagarjuna University, India
1u.suryakameswari@gmail.com

2 rinampudi@outlook.com

Abstract –Every process industry is highly equipped with wireless sensors for process monitoring in those
locations human intervention has to be limited. Sensor data analysis and anomaly detection using
predictive analytics for process industries where average performance done and only applicable for
standalone installation. It can also require sufficient memory and processing speed. We are proposing
two solutions in current work to significantly improve the applicability and performance for both
standalone and distributed environments. Standalone model is implemented through file level partition
based data analysis and Distributed analysis is implemented through Intra-Node Cluster with Local
Historian. Users of these models are freedom to choose any model based on their requirement.
Prescriptive analysis is used here because output or old values are fed back as input to proposed elastic
clustering algorithm. Our simulation result shows the performance of the both the models in terms of
time and data size.

Keywords - IIoT, Sensor Data analysis, Prescriptive Analytics, File Partition, intra-node cluster, data historian

I. INTRODUCTION

In general Predictive Analytics [4][5][6] focus only on some sought of regression analysis. It doesn't care about
feedback of the impact of the outcome. It is more statistical. But some time there is need to consider the output
and fed that output as input to again more accurate data to predict the result. Predictive analytics mostly works
on structured data. But prescriptive analytics is independent of type, format, data source and size. Predictive
analytics is just a probable condition. It doesn't focus on the impact of the prediction, if that prediction is used in
a decision making process.

But Prescriptive analytics [7][8][9] gives optimal solutions, alternatives and impact of each alternative in
decision making. Based on these decisions operational or business managers can take timely actions to reduce
the production or maintenance cost. So that organizations can withstand or get stabilized economically, and able
to provide valuable services to their customers. In case of energy field it is more important to predict and give
proper guidelines or notifications based on prescriptive process rules in case of equipment or component or
interface failures. It greatly reduces operational costs and increase industry safety also.

This paper focuses on how to design a background model for such type of prescriptive analytics tool. This
model is designed in such a way so that no single point failure occurs and scalability and availability are
increased. It can work both in standalone and distributed modes.

II. LITERATURE SURVEY

This topic as a basis, we are extending our previous work published in IEEE Workshop on Computational
Intelligence: Theories, Applications and Future Directions conference (IEEE WCI 2015). Limitation of our
previous work includes average performance and only applicable for standalone installation. It requires
sufficient memory and processing speed. We are proposing two solutions in current work to significantly
improve the applicability and performance for both standalone and distributed environment The Industrial
Internet of Things (IIoT) is the next brandish of innovation, touching the way that the world connects and
optimizes machines. With the use of sensors, advanced analytics and intelligent decisions, the IIoT will
unfathomed transform the way, field assets connect and communicate with the enterprises

A. Prescriptive analytics:

The relatively new field of prescriptive analytics allows users to prescribe a number of different possible actions
to guide them towards a solution. Prescriptive analytics attempt to quantify the effect of future decisions in
order to advise on possible outcomes before the decisions are actually made. Prescriptive analytics uses what
you know and what you can predict to make the right decision for the desired outcome.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 U. Surya Kameswari et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i5/160805235 Vol 8 No 5 Oct-Nov 2016 2169

B. Apache Cassandra:

Apache Cassandra is a highly scalable, high-performance distributed database designed to handle large amounts
of data across many commodity servers, providing high availability with no single point of failure. It is a type of
NoSQL row partitioned database.

III. PROPOSED APPROACH

We are proposing two solutions in current work to significantly improve the applicability and performance for
both standalone and distributed environment. Standalone model is implemented through file level partition
based data analysis and Distributed analysis is implemented through Intra-Node Cluster with Local Historian.

A. Standalone Model

This model can work on single system with minimum primary memory and moderate hardware environment. It
is a pure desktop application. Following modules of applications are required to explain standalone model of
sensor data analysis.

1) Extracting of Data from Remote Process Data Historian Server:

A plug-in is required to extract the data according to the historian model and provider. This plug-in is installed
and first export the data from historian to a excel file locally at remote server. That file is downloaded using any
remote desktop application or email using cloud drive. But capacity of the file must not be larger than fixed
size. This limitation is not problem with plug-in, it is the limitation of spreadsheet application or text editors. To
overcome this limitation, partition and export is the only solution.

2) Building of database schema:

This module is used to build separate database for each process industry to store information about sensors and
values of selected sensors for further analysis. But limitation is number of columns allowed in each table of any
selected database are limited. So according to that number, number of databases has to be divided. For this
reason vertical partition based database structure is developed with proposed standalone approach. These
databases are created by considering number of sensors present in the input file header. Each database table
contains "max-allowed-columns" predefined constant. Again these columns are divided into two types, one for
actual data and other column to store respective status of actual data.

3) Local Partitioning of Download file:

We are considering "max-file-size" property to partition the file into small files. File must be partitioned
horizontally. Now this file is loaded into a Matrix and extracts the header part to find out respective database
table of all the sensors. Again these files must be vertically partitioned in the same order as mentioned in
previous module. This is very important step for bulk export data from file to database.

4) Machine State Assignment:

Based on past sensor data compare the current sensor data, mark the state of the machine with available state
behaviors. This state identification can be achieved through various data mining and machine learning
techniques such as regression analysis, for example. But proposed work is depended on non-parametric
unsupervised learning technique called "elastic clustering". This novel method is proposed for sensor state
analysis to handle concept-drift in sensor data streams. This algorithm is proposed as follows.

Algorithm : Elastic Clustering

Input : Dataset, Steady State Range

Output : Clusters

step 1: Initialize sim-th = random number between (0-1)

step 2: Load existing similarity thresholds if any from database for all sensors

step 3: Apply incremental Adaptive Micor-clustering proposed on our previous paper[1] with

current sim-th

step 4: auto tune the sim-th based on the quality of the cluster with existing similarity thrsholds and extra
random numbers.

step 5: repeat steps 3 and 4 till best quality clusters found i.e., by calculating the error variance among previous
iteration errors.

step 6: extract the best threshold and store it in database for respective sensor.

step 7: now mark cluster states and accordingly mark the state of points those fall in this clusters.

step 8: return Final Clusters.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 U. Surya Kameswari et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i5/160805235 Vol 8 No 5 Oct-Nov 2016 2170

According to proposed algorithm, clusters don't store data points for long time. Data points are stored to
calculate the quality of the cluster. Once best quality is found, data points are cleared from respective clusters.
Because they are micro clusters,i.e they are used to store statistics of cluster such as mean, variance, number of
points and timestamps. Next point in the algorithm includes states. We are considered Four states Shut-down,
Transient, Steady State, No Change. Each one is described as follows.

Shut-down means machine is not running. Transient means no proper value is maintained within a range for
long time. Steady state means the values generated from these machines or respective sensors monitoring these
machine are within supplied range. This state is very important for any other analysis because we can predict
the machine behavior only when it is in steady state. No Change state is used to identify interface failures or
sensor failures. This can be calculated if data generated from sensor is unchanged. Finally cluster quality is
calculated using Davies-Boulding Index proposed in [2].

5) Exporting Data to Database:

After assignment of state, update the matrix with state codes for all the sensor values. Now write back this
matrix to data file. Now apply bulk loader to update the database respective database table in which current set
of sensors are placed. This data is used for any data analysis techniques.

In this way standalone model can work with any number of records and any number of columns. But it is little
bit time consuming. To reduce the time complexity, concurrent execution on multi-core system is possible. We
applied the same if selected system supports multiple cores by get the information of system configuration.

B.Distributed Analysis

This is mostly a hybrid approach. It is implemented through Intra-Node Cluster with Local Data Historian and
Cloud Interface. We are try to simulate this model locally. This model is having following modules.

1) Extracting of Data:

Sensor data accessed from OPC (OLE for Process Control) protocol is not having any data storing capacity.
And all the data of each sensor are replaced with new value periodically. So the previous data has to be stored
each time. The data generated from sensors each time called as sensor data stream and data reading through
OPC is called data in highway or snapshot data. For analysis this data must be stored.

All types of process industries may or may not have data historians. They might ignore the data or maintain for
some period (last one month or 6 months for example) or use traditional relational databases. Limitation of
relational database itself is not scalable and doesn't support high dimensionality. Query response type is also
high. So it leads to degradation of performance.

To overcome these limitations proposed approach uses columnar database instead of traditional relational
databases. Columnar databases have many prominent features when compared to RDBMS. Some of them are,
High Speed Query Processing, Significant compression and highly scalable and support high dimensionality.
Among the available columnar databases Apache Cassandra [3] is one of the best options. Proposed approach
uses Apache Cassandra as local data historian at data processing centre. But to store the data in this local
historian, periodical interaction with cloud drive is required. Because data from highway is maintained in flat
files for some period and they flushed also periodically. So before flushing those files are store in the cloud
drive for remote access or to make those files available from remote data processing centers.

2) Cloud Plug-in

Next stage of work is developing a cloud-plug in to download data from cloud to local data historian. This plug-
in uses third party API based on the chosen cloud service provider. For example, If Microsoft Azure is used
then respective Cloud API has to be used to develop plug-in. This plug-in is used as an interface between
industry sensor network and data processing centre. In our case, a common cloud gateway is developed so that
any cloud api can be accessed from single window based on supplied credentials.

3) Local Data Historian

As discussed in the previous module Apache Cassandra is used as local data historian. It is a hybrid NoSQL
Data store and row partitioned and partially columnar database and its stable version recently released this year
(Jan 18th,2016). Sensor data streams are treated as temporal data or time series data. So each point is associated
with a timestamp. So according to this model on record is a snapshot retrieved from the DCS (Distributed
Control System) at process industry and it is uniquely identified based on timestamp. These snapshot are read
periodically with one minute or 'n' minute interval based on the user parameter. Each snapshot contains required
number of values with respective to the sensors and a timestamp. Database structure is required to build data
historian which includes Sensor Master, DataArchive, ErrorCodes and Interfaces column families.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 U. Surya Kameswari et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i5/160805235 Vol 8 No 5 Oct-Nov 2016 2171

For storing the data downloaded from cloud drive, bulk data loader program is used. It reduces individual
record insertion time complexity. After this step cloud drive has been cleared. Proposed local data historian has
a capability to work in standalone and distributed mode. So we can store the data in a single system or more
than one system. But proposed system uses single system for data historian and other systems are processing
systems such that these systems can access the data from local data historian.

4) Distributed Processing

As discussed in earlier modules volume of sensor data is high and it is difficult to apply analysis on single
system. For that purpose proposed system introduces a hybrid model with RMI and Apache Cassandra. Sensor
analysis is running as a service at each system. So RMI (Remote Method Invocation) is used to set or get the
state of service. It acts like a bridge between actual client process (sensor analytics) and data historian. The
systems participating in the sensor analysis is treated as cluster. Each system in the cluster gets the data from
local data historian and processes the data and push back results to historian.

Same Machine State Assignment and Elastic Clustering discussed earlier is converted into parallel and
distributed algorithm. Here parallel means efficient utilization of latest development in hardware with core
processors at each system and distributed means processing of unique subset of sensor data is processed at each
node and finally all the results are merged at server. Partially this process is like Map-Reduce framework in
Hadoop.

B. Simulation Environment

Under java domain, Matrikon OPC Simulation Server, OpenScada as OPC Server interface, Apache Cassandra
as Data Historian is used to design and develop our simulation environment. We setup the simulation
environment for both standalone and distributed models. By tuning the some of the parameters in the
configuration file, Cassandra can be applicable for both of the models. Real time data is used in the simulation
to test the work load. Due to privacy agreement with data providers, we can not disclose the source of the data.

IV. RESULTS

TABLE I Memory Occupation for Proposed Data Historian

No of
Sensors

Total
Readings/Month

Total Memory
(in GB)/Month

Total Memory
(in GB) /Year

1000 44640000 2.227 26.724

2000 89280000 4.453 53.436

3000 133920000 6.68 80.16

4000 178560000 8.906 106.872

5000 223200000 11.133 133.596

6000 267840000 13.359 160.308

7000 312480000 15.586 187.032

8000 357120000 17.813 213.756

9000 401760000 20.039 240.468

10000 446400000 22.266 267.192

Above table is generated by considering each sensor reading for one minute interval for one month. So, total of
44640 readings for 31 days. Memory occupied by each sensor with timestamp, sensor value and status of value
is 2.28 MB.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 U. Surya Kameswari et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i5/160805235 Vol 8 No 5 Oct-Nov 2016 2172

TABLE II Time Complexity for Dump Data to Historian using Proposed Model and Traditional RDBMS Model

No of
Sensors

Total Memory
(in GB) /Year

Data Dump Time To Local Historian (in hours)

Proposed Model Traditional RDBMS

1000 26.724 0.5 22

2000 53.436 0.675 37.4

3000 80.16 0.911 63.58

4000 106.872 1.23 108.086

5000 133.596 1.661 183.746

6000 160.308 2.242 312.368

7000 187.032 3.027 531.026

8000 213.756 4.086 902.744

9000 240.468 5.516 1534.665

10000 267.192 7.447 2608.931

Traditional RDBMS Model actually not suitable for time series data. But if it is designed by considering each
tag is a column in the table then time complexity may look like above table. But most unfortunate thing about
commercial RDBMS software currently available cannot support more than 2000 columns/Table limited to
256MB/row. So, above table is showing assumption values for RDBMS. In contrast, proposed system using the
hybrid model of both SQL and NoSQL. Apache Cassandra is a row partition based columnar database.
Proposed model is simulated with single node cluster only. Its performance and availability is more increased if
it is deployed in multi-node environment.

Fig. 1. Time complexity for Data Dump into Local Historian using Proposed Model Vs RDBMS

TABLE III Query Time Complexity for Any Sensor Data for Various Number of Sensors

No of
Sensors

Total
Readings/Month

Total
Readings/Year

Query Time
(in sec)*

1000 44640000 535680000 0.003

2000 89280000 1071360000 0.0065

3000 133920000 1607040000 0.01

4000 178560000 2142720000 0.0135

5000 223200000 2678400000 0.017

6000 267840000 3214080000 0.0205

7000 312480000 3749760000 0.024

8000 357120000 4285440000 0.0275

9000 401760000 4821120000 0.031

10000 446400000 5356800000 0.0345

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 U. Surya Kameswari et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i5/160805235 Vol 8 No 5 Oct-Nov 2016 2173

It is time complexity to query any one sensor data at a time

Above table is only for proposed system as already told that RDBM cannot handle that number of columns. If
so, it will take greater than any 15 minutes of time for single tag data.

TABLE IV Time complexity to Download Raw and Interpolated Data from Local Historian

No of
Sensors

Total
Readings/Month

Raw Data Retrieve
Time (in minutes)

Interpolated Data Retrieve
Time (in minutes)

1000 44640000 0.35 0.3605

2000 89280000 0.66 0.6798

3000 133920000 0.8 0.824

4000 178560000 0.87 0.8961

5000 223200000 0.94 0.9682

6000 267840000 1.23 1.2669

7000 312480000 1.28 1.3184

8000 357120000 1.5 1.545

9000 401760000 1.8 1.854

10000 446400000 2.25 2.3175

Above table is describing time complexity to download data from local historian for data analysis. In general
data coming from sensors or OPC is called as Raw data. Timestamps or scan frequency is different for different
sensors. So, there is no need of equal number of readings for all the sensors in the given time period. i.e one
sensor reading is noted for each one minute interval and other sensor reading is noted for each five minutes
interval in an hour. According to that first sensor is having 60 readings and second sensor is having only 12
readings in an hour. But to do data analytics all sensors must maintain equal number of readings. To achieve
that goal, interpolation is used. Here liner interpolation is enough. So it takes little higher time to generate
readings when compared to raw data download.

TABLE V Steady State Percentage of Selected Sensors

Sensor Steady State %

Sensor1 99.9215

Sensor2 99.9215

Sensor3 99.8766

Sensor4 98.4747

Sensor5 99.8878

Sensor6 0.0000

Sensor7 99.9215

Sensor8 0.0449

Sensor9 93.7865

Sensor10 88.8403

Above table is showing the results of steady state percentage of selected sensors for example. First column is
sensor name and second column is how many number of values maintained steady state in the given time
period. Except Sensor 8, all other sensors ran in steady state at most.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 U. Surya Kameswari et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i5/160805235 Vol 8 No 5 Oct-Nov 2016 2174

Fig. 2. Result of Elastic Clustering

In the above figure the result of elastic clustering is described. In that figure, Signature represents the group of
sensors which are technically monitoring one section or module or a machine itself in the real plant. So, the data
of all those sensors influences one single sensor called as dependent sensor and it is the value to be predicted by
proposed algorithm. Total fields are total number for independent sensors participated for a section or machine.
Total clusters are number of clustering formed due to elastic clustering. This number can vary based on the
threshold and sensor data stream values.

The table in the figure contains information about micro clusters. Cluster id is serial number of the cluster,
Density is the number of points or values fell in that cluster, First timestamp is when that cluster is created and
last timestamp is when that cluster is recently updated, mean is average of all the values in that cluster and var is
variance of the cluster values.

For given one month of data for 2000 sensors, the clustering process took less than 2 minutes to generate above
clustering results. Why we considered 2000 sensors is that most of the medium and semi-large industries
require analysis of those 2000 sensors data even though they are having greater than that number of sensors.

V. CONCLUSION

Proposed approach fine tunes the performance and improved scalability and availability of the data with two
different approaches. Standalone model is implemented through file level partition based data analysis and
Distributed analysis is implemented through Intra-Node Cluster with Local Historian. Users of these models are
freedom to choose any model based on their requirement. Proposed approach is economically and technically
feasible to be implemented even in small and medium level industries. It is also more reliable model also. In
general 1 TB of hard disk is able to store nearly one decade of time series data with 2000 sensors and ready to
query and analyze that data any time. Due to proposed model machine behavior and performance can be
periodically evaluated and take necessary action in the production or work environment to reduce operational,
calibration and machine and man power safety costs. Finally in simple words proposed work is a pilot to "Smart
Big Time series analytics with local data historian".

VI. FUTURE WORK

We are simulated the current work. Current work can be extended by real time deployment and testing the
performance and security issues.

REFERENCES
[1] U. Surya Kameswari, I. Ramesh Babu, “Sensor Data Analysis and Anomaly Detection using Predictive Analytics for Process Industries",
IEEE workshop on Computational Intelligence: Theories, Applications & Future Directions (IEEE WCI 2015). DOI:
10.1109/WCI.2015.7495528
[2] Davies, David L.; Bouldin, Donald W. (1979). "A Cluster Separation Measure". IEEE Transactions on Pattern Analysis and Machine
Intelligence. PAMI-1 (2): 224–227. doi:10.1109/TPAMI.1979.4766909.
[3] http://cassandra.apache.org/
[4] Stepan Ivanov, Kriti Bhargava, and William Donnelly, "Precision Farming: Sensor Analytics", IEEE Intelligent Systems, pp. 76-80 ,
2015.
[5] Hadi Banaee and Amy Loutfi, "Data-Driven Rule Mining and Representation of Temporal Patterns in Physiological Sensor Data", IEEE
Journal of Biomedical and Health Informatics, Vol. 19, No. 5, pp. 1557-1566, SEPTEMBER 2015.
[6] Girma Kejela, Rui Maximo Esteves, and Chunming Rong, "Predictive Analytics of Sensor Data Using Distributed Machine Learning
Techniques", IEEE 6th International Conference on Cloud Computing Technology and Science, pp. 626-631, 2014.
[7] Bertolucci, Jeff, Prescriptive Analytics and Data: Next Big Thing?InformationWeek. (April 15, 2013).
[8] McCormick Northwestern Engineering Prescriptive analytics is about enabling smart decisions based on data.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 U. Surya Kameswari et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i5/160805235 Vol 8 No 5 Oct-Nov 2016 2175

AUTHOR PROFILE

Mrs. U. Surya Kameswari received her Degree of Master of Science in Computer
Science from Andhra University, Visakhapatnam in 2007 and M.Tech from Karnataka
State Open University, Mysore, Karnataka in 2012. She is currently serving as an Asst.
Professor in the Department of Computer Science and Engineering, Acharya Nagarjuna
University, Nagarjuna Nagar, Guntur, Andhra Pradesh. Her Research Interest lies in the
area of Data Mining and Data Warehousing, Computer Networks, Network Security. She
has nine years of experience in teaching in many subjects and in various academic
projects. She is a member in International Associations like IAENG, CSTA. She has
many publications in various journals and in conferences.

Prof. I Ramesh Babu received his B.E in Electronics and Communication Engineering
from University of ysore, India in 1981, M.E in Computer Science and Engineering from
Andhra University, India in 1984 and Doctorate degree in computer science and
engineering from Acharya Nagarjuna University, Guntur in 1994. He has been working as a
Professor in the department of Computer Science and Engineering of Nagarjuna University,
Guntur till date. He held many positions in Acharya Nagarjuna University as Head,
Director-Computer Center, Chairman-Board of Studies, member of Academic Senate and
Member of Executive Council. His areas of interest include image processing, computer
graphics, and Data Mining. He is a member of many professional societies like IEEE, CSI,
ISTE, IETE, IGISS, and Amateur Ham Radio (VU2 IJZ). He has many publications in
national and international journals and conferences.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 U. Surya Kameswari et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i5/160805235 Vol 8 No 5 Oct-Nov 2016 2176

	Smart Design Pattern and ApplicableModel for Fine Tuning of Sensor DataAnalysis with Local Data Historian
	Abstract
	Keywords
	I. INTRODUCTION
	II. LITERATURE SURVEY
	III. PROPOSED APPROACH
	IV. RESULTS
	V. CONCLUSION
	VI. FUTURE WORK
	REFERENCES
	AUTHOR PROFILE

