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Abstract –Every process industry is highly equipped with wireless sensors for process monitoring in those 
locations human intervention has to be limited. Sensor data analysis and anomaly detection using 
predictive analytics for process industries where average performance done and only applicable for 
standalone installation. It can also require sufficient memory and processing speed. We are proposing 
two solutions in current work to significantly improve the applicability and performance for both 
standalone and distributed environments. Standalone model is implemented through file level partition 
based data analysis and Distributed analysis is implemented through Intra-Node Cluster with Local 
Historian. Users of these models are freedom to choose any model based on their requirement. 
Prescriptive analysis is used here because output or old values are fed back as input to proposed elastic 
clustering algorithm. Our simulation result shows the performance of the both the models in terms of 
time and data size. 
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I. INTRODUCTION 

In general Predictive Analytics [4][5][6] focus only on some sought of regression analysis. It doesn't care about 
feedback of the impact of the outcome. It is more statistical. But some time there is need to consider the output 
and fed that output as input to again more accurate data to predict the result. Predictive analytics mostly works 
on structured data. But prescriptive analytics is independent of type, format, data source and size. Predictive 
analytics is just a probable condition. It doesn't focus on the impact of the prediction, if that prediction is used in 
a decision making process. 

But Prescriptive analytics [7][8][9] gives optimal solutions, alternatives and impact of each alternative in 
decision making. Based on these decisions operational or business managers can take timely actions to reduce 
the production or maintenance cost. So that organizations can withstand or get stabilized economically, and able 
to provide valuable services to their customers. In case of energy field it is more important to predict and give 
proper guidelines or notifications based on prescriptive process rules in case of equipment or component or 
interface failures. It greatly reduces operational costs and increase industry safety also. 

This paper focuses on how to design a background model for such type of prescriptive analytics tool. This 
model is designed in such a way so that no single point failure occurs and scalability and availability are 
increased. It can work both in standalone and distributed modes. 

II. LITERATURE SURVEY 

This topic as a basis, we are extending our previous work published in IEEE Workshop on Computational 
Intelligence: Theories, Applications and Future Directions conference (IEEE WCI 2015). Limitation of our 
previous work includes average performance and only applicable for standalone installation. It requires 
sufficient memory and processing speed. We are proposing two solutions in current work to significantly 
improve the applicability and performance for both standalone and distributed environment The Industrial 
Internet of Things (IIoT) is the next brandish of innovation, touching the way that the world connects and 
optimizes machines. With the use of sensors, advanced analytics and intelligent decisions, the IIoT will 
unfathomed transform the way, field assets connect and communicate with the enterprises 

A. Prescriptive analytics: 

The relatively new field of prescriptive analytics allows users to prescribe a number of different possible actions 
to guide them towards a solution. Prescriptive analytics attempt to quantify the effect of future decisions in 
order to advise on possible outcomes before the decisions are actually made. Prescriptive analytics uses what 
you know and what you can predict to make the right decision for the desired outcome.  
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B. Apache Cassandra: 

Apache Cassandra is a highly scalable, high-performance distributed database designed to handle large amounts 
of data across many commodity servers, providing high availability with no single point of failure. It is a type of 
NoSQL row partitioned database. 

III. PROPOSED APPROACH 

We are proposing two solutions in current work to significantly improve the applicability and performance for 
both standalone and distributed environment. Standalone model is implemented through file level partition 
based data analysis and Distributed analysis is implemented through Intra-Node Cluster with Local Historian. 

A. Standalone Model 

This model can work on single system with minimum primary memory and moderate hardware environment. It 
is a pure desktop application. Following modules of applications are required to explain standalone model of 
sensor data analysis. 

1) Extracting of Data from Remote Process Data Historian Server:  

A plug-in is required to extract the data according to the historian model and provider. This plug-in is installed 
and first export the data from historian to a excel file locally at remote server. That file is downloaded using any 
remote desktop application or email using cloud drive. But capacity of the file must not be larger than fixed 
size. This limitation is not problem with plug-in, it is the limitation of spreadsheet application or text editors. To 
overcome this limitation, partition and export is the only solution. 

2) Building of database schema:  

This module is used to build separate database for each process industry to store information about sensors and 
values of selected sensors for further analysis. But limitation is number of columns allowed in each table of any 
selected database are limited. So according to that number, number of databases has to be divided. For this 
reason vertical partition based database structure is developed with proposed standalone approach. These 
databases are created by considering number of sensors present in the input file header. Each database table 
contains "max-allowed-columns" predefined constant. Again these columns are divided into two types, one for 
actual data and other column to store respective status of actual data. 

3) Local Partitioning of Download file: 

We are considering "max-file-size" property to partition the file into small files. File must be partitioned 
horizontally. Now this file is loaded into a Matrix and extracts the header part to find out respective database 
table of all the sensors. Again these files must be vertically partitioned in the same order as mentioned in 
previous module. This is very important step for bulk export data from file to database. 

4) Machine State Assignment:  

Based on past sensor data compare the current sensor data, mark the state of the machine with available state 
behaviors. This state identification can be achieved through various data mining and machine learning 
techniques such as regression analysis, for example. But proposed work is depended on non-parametric 
unsupervised learning technique called "elastic clustering". This novel method is proposed for sensor state 
analysis to handle concept-drift in sensor data streams. This algorithm is proposed as follows. 

Algorithm : Elastic Clustering 

Input      :  Dataset, Steady State Range 

Output     : Clusters 

step 1:  Initialize  sim-th = random number between (0-1) 

step 2:  Load existing similarity thresholds if any from database for all sensors  

step 3:  Apply incremental Adaptive Micor-clustering proposed on our previous paper[1] with    

current sim-th 

step 4:  auto tune the sim-th based on the quality of the cluster with existing similarity thrsholds and extra 
random numbers. 

step 5: repeat steps 3 and 4 till best quality clusters found i.e., by calculating the error variance among previous 
iteration errors. 

step 6: extract the best threshold and store it in database for respective sensor. 

step 7: now mark cluster states and accordingly mark the state of points those fall in this clusters. 

step 8:  return Final Clusters. 
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According to proposed algorithm, clusters don't store data points for long time. Data points are stored to 
calculate the quality of the cluster. Once best quality is found, data points are cleared from respective clusters. 
Because they are micro clusters,i.e they are used to store statistics of cluster such as mean, variance, number of 
points and timestamps. Next point in the algorithm includes states. We are considered Four states Shut-down, 
Transient, Steady State, No Change. Each one is described as follows. 

Shut-down means machine is not running. Transient means no proper value is maintained within a range for 
long time. Steady state means the values generated from these machines or respective sensors monitoring these 
machine are within supplied range. This state is very important for any other analysis because we can predict 
the machine behavior only when it is in steady state. No Change state is used to identify interface failures or 
sensor failures. This can be calculated if data generated from sensor is unchanged. Finally cluster quality is 
calculated using Davies-Boulding Index proposed in [2]. 

5) Exporting Data to Database: 

After assignment of state, update the matrix with state codes for all the sensor values. Now write back this 
matrix to data file. Now apply bulk loader to update the database respective database table in which current set 
of sensors are placed. This data is used for any data analysis techniques.  

In this way standalone model can work with any number of records and any number of columns. But it is little 
bit time consuming. To reduce the time complexity, concurrent execution on multi-core system is possible. We 
applied the same if selected system supports multiple cores by get the information of system configuration. 

B.Distributed Analysis 

This is mostly a hybrid approach. It is implemented through Intra-Node Cluster with Local Data Historian and 
Cloud Interface. We are try to simulate this model locally. This model is having following modules. 

1) Extracting of Data:  

Sensor data accessed from OPC (OLE for Process Control) protocol is not having any data storing capacity. 
And all the data of each sensor are replaced with new value periodically. So the previous data has to be stored 
each time. The data generated from sensors each time called as sensor data stream and data reading through 
OPC is called data in highway or snapshot data. For analysis this data must be stored.  

All types of process industries may or may not have data historians. They might ignore the data or maintain for 
some period (last one month or 6 months for example) or use traditional relational databases. Limitation of 
relational database itself is not scalable and doesn't support high dimensionality. Query response type is also 
high. So it leads to degradation of performance. 

To overcome these limitations proposed approach uses columnar database instead of traditional relational 
databases. Columnar databases have many prominent features when compared to RDBMS. Some of them are, 
High Speed Query Processing, Significant compression and highly scalable and support high dimensionality. 
Among the available columnar databases Apache Cassandra [3] is one of the best options. Proposed approach 
uses Apache Cassandra as local data historian at data processing centre. But to store the data in this local 
historian, periodical interaction with cloud drive is required. Because data from highway is maintained in flat 
files for some period and they flushed also periodically. So before flushing those files are store in the cloud 
drive for remote access or to make those files available from remote data processing centers. 

2) Cloud Plug-in 

Next stage of work is developing a cloud-plug in to download data from cloud to local data historian. This plug-
in uses third party API based on the chosen cloud service provider. For example, If Microsoft Azure is used 
then respective Cloud API has to be used to develop plug-in. This plug-in is used as an interface between 
industry sensor network and data processing centre. In our case, a common cloud gateway is developed so that 
any cloud api can be accessed from single window based on supplied credentials. 

3) Local Data Historian 

As discussed in the previous module Apache Cassandra is used as local data historian. It is a hybrid NoSQL 
Data store and row partitioned and partially columnar database and its stable version recently released this year 
(Jan 18th,2016). Sensor data streams are treated as temporal data or time series data. So each point is associated 
with a timestamp. So according to this model on record is a snapshot retrieved from the DCS (Distributed 
Control System) at process industry and it is uniquely identified based on timestamp. These snapshot are read 
periodically with one minute or 'n' minute interval based on the user parameter. Each snapshot contains required 
number of values with respective to the sensors and a timestamp. Database structure is required to build data 
historian which includes Sensor Master, DataArchive, ErrorCodes and Interfaces column families. 
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For storing the data downloaded from cloud drive, bulk data loader program is used. It reduces individual 
record insertion time complexity. After this step cloud drive has been cleared. Proposed local data historian has 
a capability to work in standalone and distributed mode. So we can store the data in a single system or more 
than one system. But proposed system uses single system for data historian and other systems are processing 
systems such that these systems can access the data from local data historian. 

4) Distributed Processing 

As discussed in earlier modules volume of sensor data is high and it is difficult to apply analysis on single 
system. For that purpose proposed system introduces a hybrid model with RMI and Apache Cassandra. Sensor 
analysis is running as a service at each system. So RMI (Remote Method Invocation) is used to set or get the 
state of service. It acts like a bridge between actual client process (sensor analytics) and data historian. The 
systems participating in the sensor analysis is treated as cluster. Each system in the cluster gets the data from 
local data historian and processes the data and push back results to historian. 

Same Machine State Assignment and Elastic Clustering discussed earlier is converted into parallel and 
distributed algorithm. Here parallel means efficient utilization of latest development in hardware with core 
processors at each system and distributed means processing of unique subset of sensor data is processed at each 
node and finally all the results are merged at server. Partially this process is like Map-Reduce framework in 
Hadoop. 

B. Simulation Environment 

Under java domain, Matrikon OPC Simulation Server, OpenScada as OPC Server interface, Apache Cassandra 
as Data Historian is used to design and develop our simulation environment. We setup the simulation 
environment for both standalone and distributed models. By tuning the some of the parameters in the 
configuration file, Cassandra can be applicable for both of the models. Real time data is used in the simulation 
to test the work load. Due to privacy agreement with data providers, we can not disclose the source of the data. 

IV. RESULTS 

TABLE I Memory Occupation for Proposed Data Historian 

No of 
Sensors 

Total 
Readings/Month 

Total Memory 
(in GB)/Month 

Total Memory 
(in GB) /Year 

1000 44640000 2.227 26.724 

2000 89280000 4.453 53.436 

3000 133920000 6.68 80.16 

4000 178560000 8.906 106.872 

5000 223200000 11.133 133.596 

6000 267840000 13.359 160.308 

7000 312480000 15.586 187.032 

8000 357120000 17.813 213.756 

9000 401760000 20.039 240.468 

10000 446400000 22.266 267.192 

Above table is generated by considering each sensor reading for one minute interval for one month. So, total of 
44640 readings for 31 days. Memory occupied by each sensor with timestamp, sensor value and status of value 
is 2.28 MB. 
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TABLE II Time Complexity for Dump Data to Historian using Proposed Model and Traditional RDBMS Model 

No of 
Sensors 

Total Memory 
(in GB) /Year 

Data Dump Time To Local Historian (in hours) 

Proposed Model Traditional RDBMS 

1000 26.724 0.5 22 

2000 53.436 0.675 37.4 

3000 80.16 0.911 63.58 

4000 106.872 1.23 108.086 

5000 133.596 1.661 183.746 

6000 160.308 2.242 312.368 

7000 187.032 3.027 531.026 

8000 213.756 4.086 902.744 

9000 240.468 5.516 1534.665 

10000 267.192 7.447 2608.931 

Traditional RDBMS Model actually not suitable for time series data. But if it is designed by considering each 
tag is a column in the table then time complexity may look like above table. But most unfortunate thing about 
commercial RDBMS software currently available cannot support more than 2000 columns/Table limited to 
256MB/row. So, above table is showing assumption values for RDBMS. In contrast, proposed system using the 
hybrid model of both SQL and NoSQL. Apache Cassandra is a row partition based columnar database. 
Proposed model is simulated with single node cluster only. Its performance and availability is more increased if 
it is deployed in multi-node environment. 

 
Fig.  1. Time complexity for Data Dump into Local Historian using Proposed Model Vs RDBMS 

TABLE III  Query Time Complexity for Any Sensor Data for Various Number of Sensors 

No of 
Sensors 

Total 
Readings/Month 

Total 
Readings/Year 

Query Time 
(in sec)* 

1000 44640000 535680000 0.003 

2000 89280000 1071360000 0.0065 

3000 133920000 1607040000 0.01 

4000 178560000 2142720000 0.0135 

5000 223200000 2678400000 0.017 

6000 267840000 3214080000 0.0205 

7000 312480000 3749760000 0.024 

8000 357120000 4285440000 0.0275 

9000 401760000 4821120000 0.031 

10000 446400000 5356800000 0.0345 
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It is time complexity to query any one sensor data at a time 

Above table is only for proposed system as already told that RDBM cannot handle that number of columns. If 
so, it will take greater than any 15 minutes of time for single tag data. 

TABLE  IV Time complexity to Download Raw and Interpolated Data from Local Historian 

No of 
Sensors 

Total 
Readings/Month 

Raw Data Retrieve 
Time (in minutes) 

Interpolated Data Retrieve 
Time (in minutes) 

1000 44640000 0.35 0.3605 

2000 89280000 0.66 0.6798 

3000 133920000 0.8 0.824 

4000 178560000 0.87 0.8961 

5000 223200000 0.94 0.9682 

6000 267840000 1.23 1.2669 

7000 312480000 1.28 1.3184 

8000 357120000 1.5 1.545 

9000 401760000 1.8 1.854 

10000 446400000 2.25 2.3175 

Above table is describing time complexity to download data from local historian for data analysis. In general 
data coming from sensors or OPC is called as Raw data. Timestamps or scan frequency is different for different 
sensors. So, there is no need of equal number of readings for all the sensors in the given time period. i.e one 
sensor reading is noted for each one minute interval and other sensor reading is noted for each five minutes 
interval in an hour. According to that first sensor is having 60 readings and second sensor is having only 12 
readings in an hour. But to do data analytics all sensors must maintain equal number of readings. To achieve 
that goal, interpolation is used. Here liner interpolation is enough. So it takes little higher time to generate 
readings when compared to raw data download. 

TABLE  V  Steady State Percentage of Selected Sensors 

Sensor Steady State % 

Sensor1 99.9215 

Sensor2 99.9215 

Sensor3 99.8766 

Sensor4 98.4747 

Sensor5 99.8878 

Sensor6 0.0000 

Sensor7 99.9215 

Sensor8 0.0449 

Sensor9 93.7865 

Sensor10 88.8403 

Above table is showing the results of steady state percentage of selected sensors for example. First column is 
sensor name and second column is how many number of values maintained steady state in the given time 
period. Except Sensor 8, all other sensors ran in steady state at most. 
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Fig.  2. Result of Elastic Clustering 

In the above figure the result of elastic clustering is described. In that figure, Signature represents the group of 
sensors which are technically monitoring one section or module or a machine itself in the real plant. So, the data 
of all those sensors influences one single sensor called as dependent sensor and it is the value to be predicted by 
proposed algorithm. Total fields are total number for independent sensors participated for a section or machine. 
Total clusters are number of clustering formed due to elastic clustering. This number can vary based on the 
threshold and sensor data stream values.  

The table in the figure contains information about micro clusters. Cluster id is serial number of the cluster, 
Density is the number of points or values fell in that cluster, First timestamp is when that cluster is created and 
last timestamp is when that cluster is recently updated, mean is average of all the values in that cluster and var is 
variance of the cluster values. 

For given one month of data for 2000 sensors, the clustering process took less than 2 minutes to generate above 
clustering results. Why we considered 2000 sensors is that most of the medium and semi-large industries 
require analysis of those 2000 sensors data even though they are having greater than that number of sensors.  

V. CONCLUSION 

Proposed approach fine tunes the performance and improved scalability and availability of the data with two 
different approaches. Standalone model is implemented through file level partition based data analysis and 
Distributed analysis is implemented through Intra-Node Cluster with Local Historian. Users of these models are 
freedom to choose any model based on their requirement. Proposed approach is economically and technically 
feasible to be implemented even in small and medium level industries. It is also more reliable model also. In 
general 1 TB of hard disk is able to store nearly one decade of time series data with 2000 sensors and ready to 
query and analyze that data any time. Due to proposed model machine behavior and performance can be 
periodically evaluated and take necessary action in the production or work environment to reduce operational, 
calibration and machine and man power safety costs. Finally in simple words proposed work is a pilot to "Smart 
Big Time series analytics with local data historian". 

VI. FUTURE WORK 

We are simulated the current work. Current work can be extended by real time deployment and testing the 
performance and security issues. 
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