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Abstract—This work deals with the analysis of the impact of additive noise on the geometrical features of 
the space vector shape on the complex plane.  The space vector shape is of great importance in the power 
quality analysis of modern three-phase power systems since its geometrical features are closely related to 
the voltage supply quality.  In case of voltage sag or swell the space vector shape changes accordingly.  In 
case of additive noise the geometrical parameters of the space vector shape can be treated as random 
variables.  In the paper, the mean values and the variances of such parameters are derived in closed form 
as functions of the noise level and of the sampling conditions.  Analytical results are validated through 
numerical simulation of the whole measurement process. 
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I. INTRODUCTION 

Power quality is an issue of paramount importance in modern three-phase power systems where nonlinear and 
switching components result in voltage/current frequency spectra very rich in harmonics and interharmonics [1]-
[5].  One of the main topics concerning power quality is the assessment of the voltage quality, i.e., the feature of 
the power system of maintaining the voltage supply at its nominal value.  Within this context many papers have 
been published in the relevant literature concerning the monitoring of voltage level through the signal 
processing of the so-called space vector (e.g., [6]-[7]).  The space vector is a complex valued function of time 
whose projections on proper axes provide the time behaviour of the three phase voltages.  The reason why the 
space vector attracted the attention of many researchers is its capability of representing in a concise way the 
behaviour of three functions of time. 
Signal processing of space vector has been especially related to the analysis of sags (i.e., dips) and swells of 
voltage supply in power systems [7].  The required analysis, however, consists in the evaluation of the 
geometrical parameters connected to the trajectory followed by the space vector on the complex plane.  In fact, 
under steady-state conditions, the space vector follows an ellipse shape on the complex plane.  Evaluation of 
voltage sags and swells requires an accurate determination of the axes and the inclination angle of the ellipse. As 
stated in [7], however, in many practical cases such evaluations are inaccurate due to the presence of 
harmonics/interharmonics and the contribution of corrupting noise. The impact of disturbing 
harmonics/interharmonics can be greatly reduced by means of a proper time-to-frequency transformation (i.e., 
the discrete Fourier transform) of the space vector. The impact of corrupting noise, however, can be still 
significant after transformation into the frequency domain. In the existing literature many papers have been 
devoted to the investigation of noise propagation through the discrete Fourier transform (e.g., see [8]-[17]).  To 
the author’s knowledge, however, the impact of noise on the determination of the geometrical parameters of the 
shape of space vector on the complex plane is still missing.  The main contribution presented in this paper is the 
analytical investigation of the impact of corrupting noise on the determination of the features of the space vector 
shape on the complex plane.  In particular, the statistical mean values and variances of the parameters of the 
space vector ellipse will be derived in closed form as functions of the input noise level and the sampling 
conditions.  

The paper is organized as follows.  In Section II the main definitions and properties concerning the space vector 
and its shape on the complex plane are recalled.  Some properties related to the discrete Fourier transform of a 
complex valued function are also reported.  In Section III the mean value and the variance of the parameters (i.e., 
the axes and the inclination angle) of the space vector ellipse are derived in closed form as functions of the input 
noise level and the sampling conditions (i.e., number of samples and the window function against spectral 
leakage).  In Section IV numerical simulation are presented to validate the analytical results previously derived.  
Finally, conclusion remarks are presented in Section V. 
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II. SPACE VECTOR DEFINITION AND POWER QUALITY ANALYSIS 

Space vector is an effective tool for analysing three-phase power systems in time domain under both transient 
and steady-state conditions.  Definition of space vector is based on the Clarke transformation [6].  Let us 
consider three phase voltages in time domain va, vb, and vc.  The transformed voltages according to the Clarke 
transformation (in its rational form) are given by: 
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The voltage space vector is defined as a complex valued function with real and imaginary parts given by α and β 
components, respectively:  

 jvvv                                                                   (2) 

It can be readily proven that the straightforward formula to obtain the space vector from phase variables can be 
written as: 

 cba vavavv 2

3

2
                                                  (3) 

where a = exp(j2π/3).  Under steady-state conditions (i.e., the working condition assumed in this paper) the 
space vector can be put into relation with positive and negative sequence variables obtained from the 
symmetrical component transformation (SCT) [18]-[19].  In fact, by considering the phasors Va, Vb, and Vc of 
the phase voltages at the frequency of interest (i.e., the fundamental or harmonic frequency), the sequence 
variables (i.e., positive, negative, and zero sequence voltages) according to the SCT (rational form) are given by: 
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Thus, the relationship between the space vector (3) and the sequence voltages in (4) can be written as: 

   tjVtjVv np   expexp *                                                  (5) 

where asterisk denotes complex conjugate, and ω=2πf is the angular frequency at the frequency f of interest. 
Under general steady-state conditions the vector space (5) follows an ellipse shape on the complex plane.  When 
the fundamental frequency is considered (i.e., 50 or 60 Hz for typical power systems), under ideal conditions the 
negative-sequence voltage Vn is equal to zero and therefore the vector space follows a circle shape with radius 
|Vp| on the complex plane.  

As far as power quality is considered, it has been shown in the relevant literature that voltage dips and swells in 
a power system can be effectively characterized by analysing the shape of the space vector trajectory on the 
complex plane.  In fact, under non-ideal conditions the space vector trajectory follows an ellipse shape whose 
parameters are of paramount importance in order to clearly identify the type of voltage dip or swell responsible 
for the change in space vector shape.  More specifically, three key parameters of the space vector ellipse must be 
evaluated for power quality purpose, i.e., the major axis R, the minor axis r, and the inclination angle φ of the 
ellipse (see Fig. 1).  It can be shown that such parameters are given by [7]: 

np VVR                                                                                  (6) 

np VVr                                                                                   (7) 

 np  
2

1                                                                                (8) 

where φp and φn are the angles of Vp and Vn, respectively.  As it was already pointed out in the relevant literature, 
practical estimation of the key parameters (6)-(8) can be greatly affected by noise due to both voltage 
waveforms corrupted by noise and measurement system superimposing additive noise.  Therefore, a noisy space 
vector (see Fig. 2) results in inaccurate estimates of the key parameters (6)-(8) for power quality analysis [7]. 
Practical evaluation of Vp and Vn at fundamental frequency is usually performed by means of the discrete 
Fourier transform (DFT) of the space vector (3) [7].  In fact, evaluation of the spectral lines corresponding to the 
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fundamental frequency allows to discard the disturbing contribution of harmonics, but the noise contribution 
cannot be cancelled and therefore it should be investigated.  It is important here to recall that since the space 
vector (3) is a complex valued signal, the bilateral DFT spectrum must be considered because the spectral lines 
corresponding to negative frequencies are not the complex conjugate of the spectral lines for positive 
frequencies.  In particular, when the fundamental frequency f0 is considered, the DFT spectral line at +f0 
provides the positive sequence component Vp, whereas the DFT spectral line at −f0 provides the negative (and 
complex conjugate) sequence component Vn

*.  Notice that in practical implementation of DFT a window 
function w is used to reduce the well-known phenomenon called spectral leakage due to possible lack of 
synchronism between the waveform fundamental frequency and the sampling frequency [20].  Therefore, the 
estimates of positive and negative sequence components of the space vector (5) are obtained through the 
following formula: 

 



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/2exp
1 SN

k
Skk

S
m Nmkjwv

NPSGN
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where NPSG is the Normalized Peak Signal Gain of the selected time window w (e.g., NPSG is equal to 0.50 for 
the commonly used Hann window, whereas NPSG is equal to 1 for rectangular window), and NS is the number 
of samples of the waveform stretch.  Notice that in (9) the space vector is given by (3) where each time domain 
phase voltage va, vb, and vc is corrupted by additive noise.  In the following analysis it is assumed that additive 
noise is white Gaussian independent noise with standard deviation σn. 

 
Fig. 1.  Example of space vector following an ellipse shape with major axis R = 100 V, minor axis r = 50 V, and inclination angle φ = π/4 

 
Fig. 2.  Example of ten space vector shapes corresponding to ten different noisy measurements. Ellipse axes and inclination angle must be 

properly modelled as random variables. 
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III. STATISTICAL PROPERTIES OF NOISY SPACE VECTOR 

Propagation of additive noise through the DFT has been already thoroughly investigated in many papers in the 
past literature [8]-[17].  As far as the space vector and its use in power quality evaluations are concerned, from 
(6)-(8) it is clear that the statistical properties of positive and negative sequence voltages are needed.  In [21] it 
was recently shown that the real and the imaginary parts of the negative sequence voltage can be effectively 
approximated by Gaussian and unbiased random variables (RVs) with variance 

22
n

SN

ENBW                                                                                             (10) 

where ENBW is the Equivalent Noise Bandwidth of the window function w used in (9) against spectral leakage 
(e.g., ENBW is equal to 1.50 for the Hann window, and equal to 1 for the rectangular window).  The same 
results holds for the positive sequence voltage.  

As far as the major and minor ellipse axes R and r in (6) and (7) are considered, from the above mentioned 
results we can readily observe that both |Vp| and |Vn| have a Rician distribution.  Thus, the mean value of R and r 
can be expressed as follows [21]-[22]: 

















































2

2
0

2/12

2

0
2/1

222 
 np

R

V
L

V
L                                              (11) 

















































2

2
0

2/12

2

0
2/1

222 
 np

r

V
L

V
L                                                (12) 

where Vp0 and Vn0 are the noise-free values of the positive and negative sequence voltages, respectively, and L is 
the Laguerre polynomial.  Moreover, the variances of R and r are given by: 
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As far as the inclination angle φ in (8) is considered, simple approximate formulas can be obtained for the mean 
value and the variance of φ by means of the Taylor series approach [23]-[24].  To this aim, it can be reminded 
that the angles of the positive and negative sequence voltages are defined as: 
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where, as mentioned above, the real and the imaginary parts are Gaussian unbiased RVs with variance (10).  By 
taking into account only the first order terms in the Taylor expansion, the mean value of φ is given simply by (8) 
evaluated in the noise-free case: 

 002

1
np                                                                                                (15) 

whereas the variance can be obtained by observing that for a RV z expressed as a function of two RVs x and y as 
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the Taylor series approach provides: 
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By using (17) in (14), after simple calculations the variance of (8) can be expressed as: 
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IV. NUMERICAL VALIDATION 

Analytical results derived in Section III were validated through simulation of the measurement process of a 
noisy space vector.   The three voltages were selected such that the noise-free positive sequence phasor was Vp0 
= 100 V and the negative sequence phasor Vn0 = −j50 V.  The corresponding phase voltages in the time domain 
(i.e., the three sinusoids at 50 Hz), corrupted by additive white Gaussian noise with standard deviation σn, were 
sampled by taking NS =212 samples in exactly 10 periods.  The samples were windowed by means of a Hann 
window.  A signal-to-noise ratio was defined as 



2
0

2

0 np VV
SNR


                                                                                 (19) 

where σ was defined in (10).  Different SNR values were selected by changing the value of σn according to (10).  
For each specific value of SNR, 103 repeated runs were performed for the numerical estimates of mean values 
and variances of the parameters of interest (i.e., the parameters (6)-(8)).  Fig. 3 shows the behavior of the mean 
value of both the major and the minor axes defined in (6)-(7), normalized by the corresponding noise-free values, 
as functions of the SNR defined in (19).  Dotted lines refer to numerical estimates through the simulation 
process outlined above, whereas solid lines represent the analytical results (11) and (12) properly normalized as 
mentioned above.  Notice that both the axes are biased for low SNR.  While the major axis R has a positive bias, 
the minor axis r has a negative bias.  In any case the bias decreases as SNR increases.  Fig. 4 compares 
numerical (dotted and dashed lines) with analytical (solid line) standard deviation (i.e., the square root of the 
variance) of the major and the minor axes as functions of SNR.  According to (13), major and minor axes have 
the same standard deviation.  The represented standard deviations are normalized with respect to 

2
0

2

0 np VV  .  Finally, Fig. 5 shows the behavior of the standard deviation of the inclination angle defined in 

(8).  Numerical results (dotted line) are compared with the analytical results in (18).  It is interesting to notice 
that since (18) was obtained by means of an approximate approach based on Taylor expansion, the accuracy of 
the analytical results increase with SNR, i.e., the Taylor approach is obviously not effective for large noise 
levels, whereas its accuracy increases as the noise level decreases.   

 
Fig. 3.  Comparison between numerical and analytical behaviour of the normalized mean value of both the major and the minor axes of the 
space vector ellipse as functions of the SNR defined in (19). The mean values are normalized with respect to the corresponding noise-free 

values 
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Fig. 4.  Comparison between numerical and analytical behaviour of the normalized standard deviations of both the major and the minor axes 
of the space vector ellipse as functions of the SNR defined in (19) 

V. CONCLUSION 

The axes and the inclination angle of the space vector ellipse have been successfully modeled as random 
variables functions of the input noise level and of the sampling conditions.  The analytical expressions derived 
in the paper for the mean values and the variances of such random variables proved to be accurate when 
validated against numerical simulations of the whole measurement process.  In particular, the analytical results 
concerning the major and minor axes of the space vector ellipse proved to be very accurate.  As far as the 
inclination angle was concerned, the analytical result for the variance was accurate only for higher SNR levels 
since the derivation was based on a Taylor expansion approach.  The results presented in the paper are useful in 
order to quantify the uncertainty level in the evaluation of parameters related to voltage quality in modern three-
phase power systems. 

 
Fig. 5.  Comparison between numerical and analytical behaviour of the standard deviation of the inclination angle of the space vector ellipse 

as functions of the SNR defined in (19). The analytical approximation (18) is based on the Taylor expansion and hence it provides 
increasing accuracy as the SNR increases 
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