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Abstract—A fuel injection system to drive a common rail injector was developed using an 8-bit 
microprocessor. Common rail pressure control and injector driving systems are both essential for 
injecting fuel at a controlled pressure. With various duty ratios of the square wave generated from the 
CCP (capture compare PWM) pin of a microprocessor to the common rail pressure controller, the 
common rail pressure can be controlled continuously. An increase of the duty ratio of the supplied PWM 
square wave decreases the common rail pressure. The common rail pressure is controlled at 600, 1000, 
and 1500 bars. Moreover, a solenoid-type common rail injector driver was developed using a 
microprocessor. In order to drive the common rail injector, the current in the solenoid should be 
controlled using what is known as a peak and hold pattern, which consists of a high current level with a 
short time duration (peak) in the first step and a low current level with a long time duration (hold) in the 
subsequent step. The CCP pin in the microprocessor was used to generate the peak and hold current 
pattern. The PWM square wave generated from the CCP pin has a duty ratio of 100% of the PWM 
square wave for the peak current, with ratios of 10%, 20%, and 30% for the hold pattern. The developed 
common rail pressure controller and injector driver were applied to an injection rate measurement 
system. The needle lift in the common rail injector was also determined by attaching an accelerometer to 
the nozzle holder. 
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I. INTRODUCTION 

Recent attention directed towards energy resources and protection of the environment has led to increased 
interest in diesel engines. Direct-injection diesel engines, which use an electronically controlled common rail 
system, have appreciably improved in terms of their thermal efficiency [1-5]. In a diesel engine with a 
mechanical fuel injection system, fuel injection pressures vary with the engine speed and the fuel line pressure 
varies from 0 to 700 bar over one engine cycle. In addition, accurate control of the fuel injection timing and 
quantity as required by multiple injections is very difficult to achieve with a mechanical fuel injection system 
[6-7]. On the other hand, a common rail fuel injection system, which utilizes electronic control, is capable of 
increasing the injection pressure, and allows for flexible injection timing and accurate control of the injection 
quantity and injection pattern as a function of the engine speed and torque. Direct-injection diesel engines with a 
mechanical fuel injection system are associated with the issues of excessive emission of smoke, noise and 
vibration. Recent diesel engine performance levels have been enhanced because the common rail injector is 
actuated by a solenoid, making it possible for the injector to control the injection timing and quantity precisely 
without restrictions. Moreover, multiple injections, which are difficult with mechanical fuel injection systems, 
are possible with exact injection timing and quantity levels. In general, establishing a common rail fuel injection 
system in a laboratory to measure the fuel injection rate under various experimental conditions, such as single 
injection, pilot injection and multiple injection settings, requires expensive equipment [8]. Previous studies of 
common rail injector drivers and pressure controllers are insufficient and/or did not show enough detail in their 
circuit diagrams to construct an injector driver and pressure controller [9-10]. In this study, 8-bit 
microprocessors were used to develop a common rail injector driver and common rail pressure controller for 
laboratory experiment. The Microchip® 8-bit microprocessor (model 16F917) [11] was used in this study. In 
addition, 3N3055, MJ11016 and FET IRP150 transistors were used for switching the high current and voltage 
source to drive the common rail pressure controller and injector driver. The developed common rail pressure 
controller and injector driver in this study were applied to a Bosch injection rate measurement system [12-13]. 
The Bosch injection rate measurement method is based on recording the pressure waves within measuring and 
following tubes. The pressure wave is caused by an injection of fuel into a tube containing a compressible fluid. 
This principle is based on the pressure-velocity equation valid for a single pressure wave in a quasi-stationary 
flow. Also, the needle lifting timing, which is very important with regard to the performance of a diesel engine, 
was determined by measuring the impact signal of an accelerometer mounted outside of the nozzle holder. 
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II. COMMON RAIL PRESSURE CONTROLLER 

Common rail diesel engine performance capabilities are improved by injecting fuel into a combustion chamber 
with an electronically controlled injector at very high pressure levels which are maintained constantly 
independent of the engine operating conditions. The injected fuel quantity from the common rail injector can be 
calculated precisely with the injection duration and rail pressure compared to a mechanical fuel injection system, 
whose injection pressure varies continuously during the fuel injection process.  

A rail pressure sensor is mounted onto the common rail to measure the rail pressure. A constant rail pressure can 
be obtained by controlling the pressure control valve in the common rail. Fig. 1 shows the developed common 
rail pressure controller circuit with the included microprocessor. A potentiometer depicts the common rail 
sensor signal. The potentiometer voltage is read by the analog input pin RA0 of the microprocessor 
(PIC16F917). The duty ratio PWM square wave which corresponds to the read potentiometer voltage is output 
to the CCP pin (RD2) in the microprocessor. The duty-ratio-controlled PWM square wave is supplied to 
cascaded Q1 (2SC1815), Q2 (2SA1015), and Q3 (2N3055) transistors, which switch the pressure controller 
driver source at 12V, resulting in an amplification of the PWM square wave voltage of the RD2 pin. The 
amplified PWM square wave (the check point signal) is supplied to the common rail pressure controller. Fig. 2 
shows the amplified PWM square wave voltages as measured with an oscilloscope. Fig. 2a, Fig. 2b, and Fig. 2c 
present the amplified PWM square wave voltages corresponding to 1500, 1000, and 600 bars, respectively. The 
controlled rail pressure deceases as the duty ratio of the PWM square wave increases. 
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Fig. 1Common rail pressure controller circuit 

III. SOLENOID TYPE COMMON RAIL INJECTOR DRIVER 

In general, solenoid-type common rail injectors are driven by controlling the current supplied to the injector via 
the peak and hold method. In order to shape the current flow for this method, the 80V source supplied to the 
injector in this case should be switched on/off while varying the duty ratio of the PWM square wave. The peak 
current corresponds to a duty ratio of 100%, while the hold current applies when the duty ratio is less than 100%, 
such as 10%, 20%, or 30%.Fig. 3 shows the common rail injector driver circuit, which consists of a 
microprocessor, a transistor, and a diode. The total fuel injection duration is 1 ms, which consists of a peak time 
of 100 s and a hold time of 900 s. The microprocessor outputs the PWM square wave to generate the peak 
and hold current through the CCP pin (RD2). The PWM square wave voltage from the CCP pin RD2 is the TTL 
level. By combining the Q1 (2SC1815), Q2 (2SA1015), and Q3 (MJ11016) transistors, the PWM square wave 
from the CCP pin RD2 is amplified to a high voltage/current level (80V/20A: maximum current). For an 
experiment involving a single injection, the common rail injector driver shown in Fig. 3 does not show a thermal 
load problem in the MJ11016 transistor, however, for the repeated fuel injection case, the MJ1106 transistor 
burns out. In order to overcome the thermal load problem during repeated injections, the MJ11016 transistor 
was replaced with the 2N3055 and FET IRF150N transistors. Fig. 4 shows a common rail injector driver circuit 
with the 2N3055 and FET IRF150N components. The circuit in Fig. 4 does not show evidence of the thermal 
load problem up to a repeated injection frequency of 15 Hz.Figs. 5-7 show the measurement results of the 
injector driving voltage, the PWM square wave voltage of the CCP pin and the injector driving current with the 
injector driver created with the driver circuit shown in Fig. 3. All of the experimental conditions in Figs. 5-7 are 
identical, except for the duty ratio of the hold square wave. That is, the total injection duration is 1 ms, which 
consists of a 500 s peak time with a 100% duty ratio square wave and a 500 s hold time with a 30% (Fig. 5), 
40% (Fig. 6), and 50% (Fig. 7) duty ratio square wave. The measurement was performed with an ECU scanner. 
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Figs. 5b-7b show the measured voltage of the PWM square wave from the CCP pin RD2 when driving the 
injector with the peak and hold method; the peak signals show nearly identical shapes, while the hold waves 
appear differently due to the different duty ratio used. 

Fig. 2Voltages (measured at the check point) of the amplified PWM square waves according to the controlled common rail pressure: (a) 
1500 bar, (b) 1000 bar, and (c) 600 bar 
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Fig. 9 Measurement results with the Bosch injection rate method and accelerometer for a 1ms single injection: (a) CCP pin signal, (b) 
injector driving voltage, (c) piezo-sensor signal, and (d) accelerometer signal 
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Fig. 10 Magnification of the results in Fig. 9 in the measurement time range of 1000-1150 s: (a) CCP pin signal, (b) injector driving 
voltage, (c) piezo-sensor signal, and (d) accelerometer signal 
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wave from the CCP pin. Fig. 9c shows the pressure wave signal caused by the fuel injection event upon the 
injection into a length of tube as measured by the piezo-electric pressure sensor. The piezo-electric sensor 
voltage starts to increase somewhat later, after the CCP pin peak wave starts to rise. The piezo-electric sensor 
voltage increases continuously after the CCP pin hold wave time. Fig. 9d shows the voltage of the accelerometer 
sensor attached onto the outside of the injector holder to record the timing of needle movements. Fig. 9d shows 
that the accelerometer can effectively determine the instant the needle starts to move but cannot catch the return 
of the needle. Fig. 10 shows magnified images of the results of Fig. 9 in the measured time range of 1000-1150 
s. The solid line denotes the reference line of the rising edge (refer to Fig. 10a) of the peak wave from the CCP 
pin. The starting time of the injector driving signal, which is displayed in Fig. 10b as the falling edge (the red 
dashed line) is delayed by 2s relative to the reference solid line. The accelerometer sensor signal shown in Fig. 
10d detects the shock wave caused by the movement of the needle at the timing indicated by the green dashed 
line. The needle moves 22s after the start of the rising edge of the peak wave. The fuel injection time from the 
nozzle exit can be identified from the piezo-electric sensor signal shown in Fig. 10c. The piezo-sensor signal 
starts to increase at a time of 1057 s, as displayed by the blue dashed line. The actual fuel injection is delayed 
by 25s after the needle moves because the injected fuel takes time to pass through the nozzle hole passage. In 
summary, fuel injection occurs at a time of approximately 47 s after the rising edge of the CCP pin peak wave. 

V. CONCLUSION 

The common rail pressure controller and injector driver investigated in this study were developed using 8-bit 
microprocessors, transistors and FET devices. The developed common rail pressure controller and injector 
driver were applied to a Bosch injection rate measurement system. Additionally, the needle movement and 
actual fuel exit timing from the nozzle hole were measured. The following conclusions can be drawn after an 
analysis of the results. 

1. As the duty ratio of the PWM square wave supplied to the common rail controller decreases, the common rail 
pressure increases and changes continuously with the rotation of the potentiometer knob. The common rail 
pressure controller using a microprocessor successfully controls the common rail pressure. 

2. The common rail injector driver using a microprocessor effectively controls the current via the peak and hold 
pattern, and the solenoid-type common rail injector injects high-pressure fuel successfully with the developed 
common rail injector driver. 

3. The detailed fuel injection process of the common rail injector using the Bosch injection rate measurement 
method and accelerometer was investigated and the fuel injection timing from the nozzle exit was delayed with 
the following four steps from the rising edge of the CCP pin peak wave: the rising edge of the CCP pin peak 
wave, the falling edge of the injector driving signal, the instant of the needle movement, and the fuel passing 
through nozzle hole passage. 

ACKNOWLEDGMENT 

This study was supported by the Research Program funded by the Seoul National University of Science and 
Technology. 

REFERENCES 
[1] J. B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hil, (1989), 491-566. 
[2] T. Kamimotoand H. Kobayashi H., “Combustion Process in Diesel Engine,” Prog.Energy Combust. Sci., vol. 17, pp. 163-189, 1991. 
[3] M. Ikegami,“Problems of Diesel Engine Combustion,” Combust. Sci. and Tech. (Japan), vol. 3, pp. 151-157, 1996. 
[4] T. Kamimoto and H. Kobayashi, “Combustion Process in Diesel Engine,” Prog.Energy Combust. Sci., vol. 17,163-189, 1991. 
[5] M. Ikegami, “Problems of Diesel Engine Combustion,” Combust. Sci. and Tech. (Japan), vol. 3, pp. 151-157, 1996. 
[6] A. J. Schuster, H. Langer, and G. Loose,“The Regenerable Trap Oxidizer-An Emission Control Technique for Diesel Engines,” SAE 

paperNo. 850015, 1985. 
[7] H. Guodong, “New Strategy on Diesel Combustion Devolpment,” SAE paper No. 900442, 1990. 
[8] NI Driven, http://www.ni.com/pdf/manuals/375969a.pdf. 
[9] K. R. Cho, “Development of Injector Controller,” Korea Institute of Information and Communication Engineering, vol. 8, No. 2, pp. 

279-284, 2013. 
[10] B. G. Oh, S. S. Oh, K. Y. Lee and M. H. Sunwoo, “Development of an Injector Driver for PiezoActuated Common Rail Injectors,” 

SAE Paper 2007-01-3537, 2007. 
[11] PIC16F917 datasheet, http://ww1.microchip.com/downloads/en/DeviceDoc/41250E.pdf 
[12] W. Bosch, “The fuel rate indicator: A new measuring instrument for display of the characteristics of individual injection,” SAE paper 

No. 660746, 1966. 
[13] P. J. Tennison et al.“An Experimental and Numerical Study ofSprays from a Common Rail InjectionSystem for Use in an HSDI Diesel 

Engine,” SAE paper No. 980810, 1998 
[14] C. H. Lee, “Measuring the needle lift and return timingof a CRDI injector using an accelerometer,”International Journal of 

Engineering and Technology, vol. 6. No. 5, pp. 2482-2487, 2014. 

ISSN (Print)    : 2319-8613 
ISSN (Online) : 0975-4024 Jung Guk Kim et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2016/v8i5/160805046 Vol 8 No 5 Oct-Nov 2016 2354


	An experimental study of the driving of asolenoid type diesel common rail injectorusing microprocessors
	Abstract
	Keyword
	I. INTRODUCTION
	II. COMMON RAIL PRESSURE CONTROLLER
	III. SOLENOID TYPE COMMON RAIL INJECTOR DRIVER
	IV. 
APPLICATION OF THE DEVELOPED SYSTEM TO BOSCH INJECTION RATE MEASUREMENT SYSTEM
	V. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES




