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Abstract—Activity recognition has become the necessity of smart homes, future factories, and 
surveillance. Activities independent of body posture predominantly exhibiting gestures involving both 
arm and the wrist motion supports the use of the wearable sensors for data acquisition. This paper uses 
an algorithm based prediction method to recognize the Activities of Daily Life (ADL) involving activities 
like mobility, feeding, and functional transfers. The classification of the various activities were carried out 
by using decision tree – J48 algorithm from the acquired dataset. 
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I. INTRODUCTION 

Human activity recognition study has been a vast area of research in recent days. Its application and need is 
growing rapidly in various automated environment of smart homes, surveillance, and robotics. Besides, human 
activity recognition has become an important feature for real time embedded systems. Conventionally, there is a 
problem with the sensors distributed over the environment to recognize activity of daily life. This limitation can 
be covered by using wearable sensors. 

Activity recognition with machine learning approach using actigraph watch helped to obtain classified data of 
91.39% classification accuracy using LogitBoost algorithm [1]. Actigraph sensor technology integrates real time 
health monitoring with ADL recognition. Comparatively it is expensive (approximately 225-275 USD) than an 
accelerometer. Which makes an actigraph sensor unsuitable for a common user. Previously, activity recognition 
using hierarchical framework have been tested for the daily morning activity of an individual which has 
involved six distinct activities [2]. The idea expressed in the paper was to define the probability and sequence of 
tasks carried out by the individual for the analyzed activity. It was found to give a new scope in designing an 
assisted smart living system. It can be emphasized that activity recognition using hierarchical framework could 
reduce the complexity in understanding and assisting the real world situations. Similarly, a two stage Markov 
model were built to communicate the relation and probability between a series of distinct activities [3][16]. 

ADL were monitored with a camera, by capturing one million of frames for machine learning and was found 
to give promising results. Eventually the data requirement of the method was very large and this supports the 
use of an accelerometer based sensor [4]. 

It was found that new approaches and methods are required to deal with the sensor data to recognize different 
activities and complexity. Ontology based approach has been proved to be a promising method to recognize 
different activities [5][6][7]. It was also emphasized that there is an immense necessity in developing a system 
that could understand complex real world situations. 

Previously, wearable biosensors were used for real time continuous health monitoring. It is also used to 
provide personalized and affordable health care monitoring [8] and for sweat rate monitoring [9]. It was found 
that factors like simplicity, low cost, wearability and real time measurements uphold wearable sensors than any 
conventional system for real time application. Though wearable sensors were accepted widely, it carried several 
bottle neck criteria which need continuous attention in order to ensure optimal accuracy over its operation or in 
usage. 

II. LITERATURE SURVEY 

ADL recognition is a challenging research field in Ambient Intelligence (AI). Similarly, motion primitive 
recognition has been proposed to carry out with Gaussian Mixture Modelling (GMM) and Gaussian Mixture 
Regression (GMR) to create activity models and also to compare the classification procedure for an automatic 
recognition system [11]. It is clear that acceleration data from the accelerometer is considered to give advantage 
in ADL recognition and for an easy run time classification [12]. The properties exploiting GMM and GMR were 
analyzed, which helps one to understand the importance of comparison procedure while dealing with 
acceleration data for ADL recognition. 
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Similar paper [13] investigated the optimum selection for number of Gaussians to build motion models, 
which is usually assumed to be a priori known. Also, the correlation among the three axes of the accelerometer 
were analyzed and found that the results were more accurate than the commonly adopted approach. 

The conventional classification methods with crisp thresholds, brittleness and inaccuracy in system were 
analyzed for the uncertainty associated with the recognition [14]. It was found that modular techniques can be 
adopted by modifying the classifier approach in a minimal way, which is also applicable for classification of 
various domain. 

Knowledge driven approach were used for continuous activity recognition using multi-sensor streams in 
smart homes based on ontological modelling and semantic reasoning. The domain knowledge was previously 
compared before giving a classification result and the focus of the system were to unify ontological modelling 
and representation for both sensor data and activities which facilitate domain knowledge reuse and the 
exploitation of semantic reasoning for activity recognition [15]. It is clear that the strength of traditional data-
driven approach can be blended with knowledge-driven practices, which makes the approach more flexible and 
applicable. 

Accelerometer sensor was previously used for gait recognition which is a similar activity to ADL. The data 
from the accelerometer was used to authenticate by using histogram similarity and cycle length [16, 17, 18]. It 
was found that the accelerometer based gait recognition system had better precession than the vision based gait 
recognition system which reveals the use of an accelerometer based sensor for gesture or pattern recognition 
applications. 

III. ADL RECOGNITION SYSTEM 

Wrist wearable tri-axial accelerometer embedded in an ad-hoc sensing device was used to obtain data of 
ADL. Data acquisition was carried out with the sensor worn in the right hand of the volunteers. The 
specification of the accelerometer used for data acquisition can be found in Table-1. The average age of the 
volunteers was 57.4 and the minimum age of the volunteers is 19 and the maximum age is 81 and their average 
weight was 72.7 kg and the minimum weight and the maximum weight were 56 kg and 85 kg respectively. 
Initially the dataset had recordings from 16 volunteers performing 14 ADL, namely brushing teeth, climbing the 
stairs, combing hair, climbing down stairs, drinking from a glass, eating with fork and knife, drinking soup, 
getting up from the bed, lie down in bed, pouring water in a glass, sitting down on a chair, standing up from a 
chair, using telephone and walking. However, only 7 ADL were chosen for further study namely climbing the 
stairs, drinking from a glass, getting up from the bed, pouring water in a glass, sitting down on a chair, standing 
up from a chair and walking. Hence, the number of instances was comparatively lesser in the excluded classes 
of ADL which lead to biased classification. 

TABLE 1.  Sensor specification  
   

Type Tri-axial accelerometer  
   

Measurement 
-1.5g to +1.5g 

 

range 
 

  

Sensitivity 6 bits per axis  
   

Output data 32 Hz  
   

Location Right wrist  
   

X axis position Pointing towards the hand  
   

Y axis position Pointing towards left direction  
   

Z axis position Perpendicular to the plane of the hand  
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IV. STATISTICAL FEATURE 

Classification cannot be carried by using the raw data obtained from the accelerometer. Hence, extraction of 
statistical features is inevitable. The descriptive statistical parameters such as kurtosis, mean, median, skewness, 
minimum value, maximum value, mode, standard error, standard deviation, sum, sample variance, range and 
count are the statistical features extracted from the obtained data of wearable sensors. The statistical feature was 
extracted for all 700 instances. The detailed information for the statistical features can be found from the 
extensive review. 

V. DECISION TREE 

A decision tree is a tree based knowledge methodology used to represent classification rules [19]. It is 
commonly used for various data mining application. Decision tree is represented in the form of inverted tree 
starting with root, branches, nodes and leaves, shown below in Fig 1. The J48 decision tree algorithm can be 
used to classify both categorical and numerical data. It gives a set of “if-then” rules to classify a given set of 
data points into different class. The if-then rules are graphically represented in the form of a tree, which is used 
to make decision or prediction. Also, a decision tree expresses the structural information available within the 
classified dataset; hence, the tree remains almost same for classification with any number of instances or data 
points 

A decision tree is built on the basis of the criteria used for selecting a statistical feature/variable/attribute to 
split the classes and to select the optimum tree size. Various pruning factors are used in order to optimize the 
tree size. The root element and the order of significance of the statistical features or the attributes contributing 
to the decision tree are determined with the help of ‘information gain’. 

The “information gain” gives the measure of information that can be gained from a particular attribute or a 
statistical feature for a fast and efficient classification. The mathematical expression for calculating the 
information gain can be defined as, “the difference in entropy before splitting a parameter to entropy after 
splitting a parameter” for the given dataset and unit of information gain is ‘bits’. 

The decision tree is built on the basis of the entropy value of the training data. The value of entropy can either 
be high or zero. In this case, the entropy is high when the data points are equal for every class and zero when all 
data points belong to the same class. Hence, in the formula ‘log base 2 of Pi’ always produce a negative 
numerical to give entropy of positive value or zero and thereby balancing the mathematical expression with this 
case. The branch growth of a decision tree is dependent on the entropy of an attribute or statistical feature. The 
branch growth is stopped when the entropy is zero for an attribute or statistical feature. 

In this case, suitable methodology is efficiently used to bring out the structural information from the 
analyzeddataset and presented in Fig 1 and the description for the denoted attributes are defined and categorized 
in Table 2. 

TABLE 2.  Activities of daily life (ADL) 

Sl.   Denoted 

No. 
Activities of daily 

living (ADL) Motion primitive(s) by 

1 Mobility Climbing the stairs A 

2 Feeding Drinking from a glass B 

  Getting up from the  
3 Functional transfers bed C 

  Pouring water in a  
4 Feeding glass D 

  Sitting down on a  
5 Functional transfers chair E 

  Standing up from a  
6 Functional transfers chair F 

7 Mobility Walking G 
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Fig3: Effect of confidence factor 

The detailed class wise accuracy gives better understanding over the classification. From Table-4 true 
positive rate (TP rate) and false positive rate (FP rate) are shown which is of most importance. For a better 
classification accuracy, the TP rate should be closer to ‘1’ and the FP rate should be closer to ‘0’. It is found that 
the built model is good. 

TABLE 4.  Detailed accuracy by class 

     F- ROC  
 TP Rate FP Rate Precision Recall measure Area Class 

 0.79 0.023 0.849 0.79 0.819 0.929 A 

 0.87 0.03 0.829 0.87 0.849 0.951 B 

 0.8 0.052 0.721 0.8 0.758 0.942 C 

 0.82 0.042 0.766 0.82 0.792 0.959 D 

 0.73 0.035 0.777 0.73 0.753 0.94 E 

 0.65 0.052 0.677 0.65 0.663 0.88 F 

 0.87 0.12 0.926 0.87 0.897 0.941 G 

Weighted        

Average 0.79 0.035 0.792 0.79 0.79 0.934  

The classification accuracy of the C4.5 decision tree algorithm is represented in the form of confusion 
matrix shown in Table-5. From the Table, the following inferences were derived: 

 The correctly classified instances by the classifier are represented as the diagonal elements of the 
confusion matrix.

 The first element of the first row in the confusion matrix gives the number of data points belonging to 
the class or event "climbing the stairs” i.e. ‘A’.

 The second element of the first row gives the number of data points belonging to class of "climbing the 
stairs (A)", however misclassified under class of "Drinking from a glass".

 Similarly, number of misclassified instances in each class can be found individually. Computing the 
total number of misclassified instances the total error percentage of the classification is found to be 
21%.
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TABLE 5.  Confusion matrix 

       Classified 

a b c d e f g as: 

79 0 4 0 5 6 6 a = A 

0 87 0 12 1 0 0 b = B 

3 0 80 4 4 8 1 c = C 

0 14 1 82 3 0 0 d = D 

0 3 6 3 73 15 0 e = E 

7 1 16 5 6 65 0 f = F 

4 0 4 1 2 2 87 g = G 

VII. CONCLUSION 

Initially, the data were acquired with respect to all the three axis of the accelerometer sensor.Through the 
study it was found that the data acquired from the x-axis alone plays a predominant role in ADL prediction with 
a significant classification accuracy. The J48 decision tree algorithm was used to determine the significant 
features required for the prediction of an ADL and to explore the hidden information available in the acquired 
data. The proposed approach yields promising result and more significantly, the use of single axis sensor data 
which drastically reduces the computational time of the system. Besides, this reduction in computation time of 
the ADL recognition system gives a better scope in the development of similar technology in future. 
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