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Abstract—Integer Programming-based Local Search (IPbLS) is a kind of local search. IPbLS is based 
on the first-choice hill-climbing search and uses integer programming to generate a neighbor solution. 
IPbLS has been applied to solve various NP-hard combinatorial optimization problems like knapsack 
problem, set covering problem, set partitioning problem, and so on. In this paper, we investigate the 
effect of problem reduction in the IPbLS experimentally using the n-queens maximization problem. The 
characteristics of IPbLS are examined by comparing IPbLS using strong problem reduction with IPbLS 
using weak problem reduction, and also IPbLS is compared with other local search strategies like 
simulated annealing. Experimental results show the importance of problem reduction in IPbLS. 

Keyword-Integer Programming-based Local Search, Integer Programming, Local Search, Problem Reduction 
I. INTRODUCTION 

It is practically impossible to find an optimal solution in a reasonable amount of time for NP-hard 
combinatorial optimization problems because the search space increases exponentially as the problem size 
increases. Local search is a search technique to solve such large-scale optimization problems, where the current 
solution is improved by repeatedly finding a better solution from neighbor solutions of the current solution. 
Local search does not ensure finding an optimal solution, but it is known to be able to find sub-optimal solutions 
efficiently by generating only a very small part of the large search space. 

The most important factor in the local search is how to define a neighbor solution. A candidate solution is 
represented as a set of decision variables in combinatorial optimization problems, and a neighbor solution is 
usually made by changing the values of some variables from the current solution. This method is often called k-
exchange neighborhood[1]. Here, k means the maximum number of variables to be changed in order to generate 
a neighbor solution. As the value of k increases, better neighbor solutions are more likely to be generated. 
However, it takes too much time to generate all neighbor solutions and evaluate them because the number of 
neighbor solutions becomes too big. The value of k is therefore generally set to a small value like 1 or 2. 

Another important factor in the local search is how to select the next current solution from neighbor solutions. 
There are two basic local search algorithms related to selecting the next current solution, which are steepest-
ascent hill-climbing search and first-choice hill-climbing search[2]. Steepest-ascent hill-climbing search selects 
a best neighbor solution among every possible neighbor solutions. On the other hand, first-choice hill-climbing 
search accepts any solution that improves the current solution while generating a neighbor solution one by one. 
However, since hill-climbing search suffers from the local maxima problem, many other local search variants 
like tabu search and simulated annealing have been developed. But such search methods cannot perfectly 
overcome the local maxima problem as well because they are also basically based on k-exchange neighborhood. 

Integer programming-based local search (IPbLS) is based on the first-choice hill-climbing search, and uses 
integer programming (IP) to generate a neighbor solution. IP can be applied when the given combinatorial 
optimization problem can be represented in linear form, and it is known to find an optimal solution very quickly 
based on branch and bound and simplex method. IPbLS adopting IP effectively searches better solutions with 
more neighbor solutions using bigger k-exchange neighborhood. 

IPbLS repeatedly performs the following steps. First, k number of variables are selected from the current 
solution, and then the values of unselected variables are fixed to the same values in the current solution. Finally, 
the next current solution is made by determining the values of the rest variables with IP. At this time, fixing the 
values of unselected variables is viewed as problem reduction process for performing IP. We investigate the 
performance change of IPbLS according to problem reduction method. For this, two problem reduction methods 
are compared in the n-queens maximization problem (n-QMP). One is value fixing method which is used in 
general IPbLS, and the other is variable removing method using the current solution. In addition, characteristics 
of IPbLS are investigated through comparison with other existing local search techniques. 

The structure of the paper is as follows. Section II describes the related works about IPbLS and n-QMP. 
Section III suggests IPbLS for n-QMP and section IV presents experimental results. Finally, in section V we 
draw the conclusion and discuss future work. 
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II. RELATED WORK 

A. The Integer Programming-based Local Search 

When a given combinatorial optimization problem can be represented in linear form it is called integer 
programming model, and integer programming (IP) is a search method to solve such problems. IP basically uses 
branch and bound, and related research has been actively conducted to improve the performance of IP itself[3]. 
The advantage of IP is that it is possible to find an optimal solution within a very short time in small or medium-
sized problems. On the other hand, as the problem size grows, it may not possible to apply IP due to memory 
problem. Even if it is possible to apply, it can take a very long time until an optimal solution is found. 

The integer programming-based local search (IPbLS) is a kind of search technique using IP to generate a 
neighbor solution in local search. Fig. 1 shows the basic algorithm of IPbLS[4]. A candidate solution X is 
assumed to be represented as a set of decision variables with a value 0 or 1, such as x1, x2, …, xn. First, IPbLS 
makes an initial solution using a heuristic method, and sets it to the current solution. Then, problem reduction 
and IP steps are repeatedly carried out to improve the current solution. The problem reduction step here can be 
viewed as the process for selecting variables to participate in the next IP. For this, k number of variables are 
selected from the current solution X, and these variables participate in the next IP. In other words, the search 
space is reduced for the next IP by fixing the values of unselected variables to the current values. Since the 
larger k results in an increase in the number of candidate solutions to be considered in the next IP, it is likely to 
take more time to find an optimal neighbor solution. But, the possibility to include better neighbor solutions is 
increased. On the other hand, the smaller the value of k, the quicker an optimal neighbor solution can be found 
but the poorer the quality of the optimal neighbor solution. 

 
Fig.1. General Integer Programming-based Local Search 

In general, local search algorithms modify one or two variables to make a neighbor solution, because the 
number of neighbor solutions to be considered is exponentially increased as the number of variables to be able 
to be modified is increased. This causes a local optima problem in most local search algorithms. However, 
IPbLS overcomes the local optima problem by modifying the values of more variables using the characteristic 
of IP.  

IPbLS has been applied to a variety of combinatorial optimization problems such as the multidimensional 
knapsack problem, the set covering problem, the service network design problem, and so on[5, 6, 7]. And also, 
the performance of IPbLS was confirmed to be superior compared to other heuristic search techniques. In this 
paper, the effect of IPbLS related to the problem reduction which is a key point of IPbLS, is investigated by 
applying two problem reduction methods. 
B. The n-queens Maximization Problem 

In this research, the n-queens maximization problem is used to verify the performance according to the 
problem reduction method in IPbLS. The original n-queens problem is defined as placing n queens on an n× n 
board so that no two queens can threaten each other, i.e., no two queens can be placed on the same row, column 
or diagonal. Fig. 2(a) shows an example of 8-queens problem. The original n-queens problem is a kind of 
constraint satisfaction problem, but in this paper it was modified to a constraint optimization problem which is 
called the n-queens maximization problem (n-QMP). A specific value is given to each queen position on the 
board in n-QMP. The objective of n-QMP is to maximize the sum of the values of the positions where queens 
are placed. Therefore, the target problem can be defined as a constraint optimization problem maximizing the 
sum of the weights of the locations where queens are placed while satisfying the constraints of the n-queens 
problem. Fig. 2(b) shows an example of an optimal solution for an 8-queens maximization problem. 

Algorithm IPbLS 
X : Variable vector (Current solution). 
k : The number of selected variables to be changed. 
IP : An integer programming solver. 

Begin 
X = Make an initial solution using a heuristic method 
While stopping condition is not met Do 

Select k variables from X 
Add objective and all constraints to IP 

• Fix values of unselected variables 
X = Make a neighbor solution with IP 

End While 
Return X 

End Begin 
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The original n-queens problem can be represented as following. A solution is represented by n decision 
variables, and each decision variable can have values from 0 to (n – 1). The value of each decision variable 
means the position of the queen in the corresponding column. This guarantees that only one queen can be placed 
on each column. And the first constraint is that the values of all decision variables are different, which 
guarantees that only one queen can be placed on each row. The second constraint is (i – j) ≠ (vi – vj) and (i – j) 
≠ (vj – vi) when vi is the value of the i-th decision variable and vj is the value of the j-th decision variable. This 
guarantees that no two queens are placed on the same diagonal. 

 
Fig. 2. An Example of 8-queens Problem 

The n-QMP has been used in [4] and [8]. In [4], the constraint programming was used as a neighbor 
generation method when applying local search to a constraint optimization problem. The existing research [8] 
proposed a genetic algorithm to solve a constraint optimization problem, but very small problems such as 30-
queens problem were used as experimental data.  

The n-QMP can be modeled as a linear constraint optimization problem using the expressions from (1) to (5). 
There are n× n decision variables. Let’s assume that row and column indices start with 0 as shown in the 
example of Fig. 3.  

maximize ෍෍ݓ௜௝ݔ௜௝௡ିଵ
௝ୀ଴

௡ିଵ
௜ୀ଴  (1) 

subject to ෍ݔ௜௝ ൌ ݅ݎ݋݂	1 ൌ 0,… , ݊ െ 1௡ିଵ
௝ୀ଴  (2) 

 ෍ݔ௜௝ ൌ ݆ݎ݋݂	1 ൌ 0,… , ݊ െ 1௡ିଵ
௜ୀ଴  (3) 

 ෍෍ݔ௜௝ ൑௡ିଵ
௝ୀ଴ 1 ݅ݎ݋݂ ൅ ݆ ൌ 1,… , ൫ሺ݊ െ 1ሻ ൅ ሺ݊ െ 1ሻ െ 1൯௡ିଵ

௜ୀ଴  (4) 

 ෍෍ݔ௜௝ ൑௡ିଵ
௝ୀ଴ 1 ݅ݎ݋݂ െ ݆ ൌ ሺെሺ݊ െ 2ሻሻ, … , ሺ݊ െ 2ሻ௡ିଵ

௜ୀ଴  (5) 

 

 
Fig. 3. A Linear Modeling of 8-queens Maximization Problem 
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The value of a decision variable xij becomes 1 if a queen is placed at i-th row and j-th column, and the value 
becomes 0 if no queen is placed at the position. And, wij denotes the weight assigned to the position of i-th row 
and j-th column. The expression (1) representing the objective function maximizes the sum of the weights of the 
positions where queens are placed. The expressions (2) and (3) represent the constraints that only one queen can 
be placed in any row and any column respectively as shown in Fig. 3(2) and Fig. 3(3). The expression (4) 
represents the constraint for the diagonal direction like Fig. 3(4). For example, when the value of (i + j) is 6, 
only one queen is placed on the diagonal (4) in Fig.3 by the expression (4). Similarly, the expression (5) 
represents the constraint for the diagonal direction like Fig. 3(5). 

III. IPBLS FOR THE N-QUEENS MAXIMIZATION PROBLEM 

C. Overall Structure 

Fig. 4 shows the overall structure of the integer programming-based local search (IPbLS) to solve the n-
queens maximization problem (n-QMP). Basically, a solution of n-QMP can be also represented by a 1-
dimensional array having n decision variables like a solution of the n-queens problem. However, 2-dimensional 
array having n × n decision variables is needed to solve n-QMP using the expression (1)~(5), and it is 
represented as X'. First, a solution for the n-queens problem is found using the proposed method in [9]. Second, 
k variables, namely, k columns are selected randomly. Next, n-QMP is reduced using the values of the 
unselected variables, and then the reduced problem is solved by integer programming (IP). Now a new solution 
is obtained, and the above process is repeatedly performed from the second step. The initial solution generation 
method and the problem reduction method will be more specifically explained in the next sections. 

 
Fig. 4. Integer Programming-based Local Search for the n-queens Maximization Problem 

D. Initial Solution Generation 

When starting from a candidate solution not satisfying all constraints of the n-queens problem, it can be hard 
to even find a solution satisfying all constraints of the n-queens problem. So, an initial solution of n-QMP is 
defined as a solution that satisfies all constraints of the n-queens problem. In this research, the initial solution is 
obtained using the method in [9]. The method can find a solution of the n-queens problem very quickly using an 
efficient local search which is similar to random-restart hill-climbing search. 

In [9], an initial search phase and a final search phase are carried out in turn to find a solution. During the 
initial search, an initial permutation of the row positions of the queens is determined one by one from left 
column to right column. At this time, the row position for each new queen is generated so as not to violate the 
positions of the columns to the left, if possible. But even so, since conflicts on diagonal lines are inevitable from 
a certain column, the remaining queens are placed randomly on empty rows in columns on the right regardless 
of conflicts on diagonal lines. During the final search, two queens are selected to swap. If the swap reduces the 
number of collisions then the two queens are swapped. The final search is repeated until a solution is found. If 
no solution could be found after a certain number of swaps, a new search process is started from an initial search 
phase again. 

[9] mentions that the algorithm is capable of solving the n-queens problem in linear time, and could find a 
solution for the 3,000,000-queens problem in less than 55 seconds. In our research, the algorithm was 
implemented again. According to the experimental results, the 3,000,000-queens problem could be solved in 
about 1.3 seconds in our experimental environment, and furthermore the 500,000,000-queens problem could be 
also solved in about 7 minutes. It was confirmed that the algorithm can find a solution for the n-queens problem 
in a very short time. Therefore, the algorithm was adopted in our research as the initial solution generation 
method for making a valid initial solution of n-QMP, namely a solution of the n-queens problem.  

Algorithm IPbLS_for_n-queens_maximization_problem 
X : 1D-Array variable (Current solution). 
X' : 2D-Array variable for n-queens maximization problem. 

Begin 
X = Make an initial solution using the search method in [9] 
While stopping condition is not met Do 

Select k variables randomly among variables from X 
Reduce the n-queens maximization problem using unselected variables from X 
Add objective and all constraints to IP 
X' = Get an optimal solution for the reduced problem with IP 
X = a new solution from X'   

End While 
return X 

End Begin
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E. Problem Reduction 

After selecting k variables, the n-QMP is reduced using the information of (n – k) unselected variables. The 
two methods can be used to reduce the problem. One is a simple way to fix the values of the variables, and the 
other is a method to reduce the number of variables of the original problem by physically excluding the 
variables for the next IP. They are called “weak problem reduction” and “strong problem reduction” 
respectively in this paper. We developed a weak problem reduction method and a strong problem reduction 
method for n-QMP and compared the performance of the proposed problem reduction methods. 

The weak problem reduction is very simple. The values of (n – k) unselected variables are fixed to the current 
values in the current solution, and then IP is run. Let’s assume that there is an 8-QMP in Fig. 2(b), and assume 
that the current solution is [4, 6, 1, 5, 2, 0, 7, 3], the value of k is 5, and the selected columns are (0, 1, 3, 4, 5) as 
shown in Fig. 5(a). In this case, as shown in Fig. 5(b), the values of the unselected columns (2, 6, 7) are fixed to 
0 or 1 according to the current solution. And the values of the selected columns (0, 1, 3, 4, 5) are invalidated, 
and determined by the next IP. After all, the problem for the next IP becomes a much easier problem than the 
original n-QMP since the values of some variables are already determined. However, the number of variables 
for the next IP is the same as that of the original n-QMP. If the number of variables for the next IP is really 
minimized, it can be expected to be able to obtain the same solution more quickly. The strong problem reduction 
is just the process of physically removing the variables for the next IP. 

Fig. 5(c) shows the strong problem reduction for n-QMP presented in this research. Using the current solution 
values of the unselected columns (2, 6, 7), namely the positions with value 1 of the columns (2, 6, 7), all 
variables violating constraints are removed. This is because the values of the removed variables cannot be 1 by 
the columns (2, 6, 7). After removing all unneeded variables, only 14 variables out of a total of 64 variables are 
remained for the next IP. Of course, when adding the objective function and constraints for the next IP, the 
expressions for the remained 14 variables should be made taking into account the original locations on the 8× 8 
board. In this research, it will be confirmed that the strong problem reduction can significantly improve the 
performance in terms of speed of execution through experiment.  

 
Fig. 5.An Example of Problem Reduction 

IV. EXPERIMENTAL RESULTS 

F. Experimental Environment 

The experimental data set consists of 7 problem instances which consist of 500-queens, 1000-queens, 1500-
queens, 2000-queens, 3000-queens, 5000-queens, and 10000-queens maximization problems. The value of 
weight wij for each problem was randomly assigned to a value from 1 to n. 

All experiments were performed on a PC with Intel Core i7-4770 3GHz CPU, 16GB RAM, and Windows 7 
64bit OS. The program was implemented in C++ language, and IBM ILOG CPLEX 12.6.2 was used to 
implement integer programming (IP) and integer programming-based local search (IPbLS) for solving the n-
queens maximization problem (n-QMP). IBM ILOG CPLEX is the most widely used linear and integer 
programming library in the world for commercial or academic purposes. 
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G. Experimental Results of Problem Reduction  for IPbLS 

Table 1 shows the experimental results of the weak problem reduction (WPR), and Table 2 shows the 
experimental results of the strong problem reduction (SPR). The experimental result value is the average value 
of 5 runs for each data instance and each k value. Each run was performed for 1 hour (3,600 seconds).  

When the number of queens is small, the performance was better when the value of k is relatively small in 
both of WPR and SPR. And also the performance was getting better when the value of k is relatively big as the 
number of queens is getting larger. The important thing is that the result of SPR is much better than the result of 
WPR. Such a phenomenon is clearer as the number of queens increases. The best values of WPR and SPR are 
244,949 and 245,979 respectively in 500-queens maximization problem, so the solution gap between WPR and 
SPR is less than 0.5%. On the other hand, the best values of WPR and SPR are 50,264,357 and 99,193,680 
respectively in 10000-queens maximization problem, so the solution gap reaches 97%. From this experiment, 
we can confirm the importance of the strong problem reduction in IPbLS. 

TABLE I. EXPERIMENTAL RESULTS OF WEAK PROBLEM REDUCTION 

k 
n 50 100 150 200 250 300 350 400 

best 
value 

500 241063 244949 181294 173150 184157 197740 208676 219322 244949 
1000 932595 970198 980688 903423 614473 641792 665200 696666 980688 

1500 1996482 2151238 2190337 2207446 1873475 1344247 1383364 1411537 2207446 
2000 3214903 3716601 3852893 3900562 3923460 3234847 2318475 2379787 3923460 
3000 5631263 7054071 7876096 8312628 8540143 8680689 8689523 6913946 8689523 

5000 12813331 13537008 14111259 14876549 15384624 15973241 16250054 16047487 16250054 
10000 50170886 49835915 49887356 50192769 50102855 50017790 50264357 50215590 50264357 

TABLE II. EXPERIMENTAL RESULTS OF STRONG PROBLEM REDUCTION 

k 
n 50 100 150 200 250 300 350 400 

best 
value 

500 244953 245979 177332 173553 185069 197085 209000 220047 245979 
1000 982428 985981 988291 866780 620134 636290 674654 691673 988291 
1500 2212140 2220007 2225100 2227900 2104093 1337865 1371963 1418984 2227900 

2000 3930080 3946495 3955431 3961137 3964159 2817846 2378452 2386355 3964159 
3000 8836811 8874717 8896492 8910334 8918713 8927418 8929771 6317537 8929771 
5000 24502292 24625294 24690493 24735919 24759901 24784224 24804155 24812101 24812101 

10000 96457108 98118397 98616259 98832619 98957115 99044904 99132203 99193680 99193680 

H. Comparison with Other Algorithms 

Table 3 shows the experimental results by pure integer programming (PIP), random-restart hill-climbing 
search (RRHCS), random-restart first-choice hill-climbing search (RRFCHCS), simulated annealing (SA), and 
IPbLS. 

RRHCS makes an initial solution using the same method in IPbLS. A neigbor solution is made by swapping 
two values of two columns, and RRHCS moves to a best neighbor solution among all neighbor solutions 
satisfying all constraints of the n-queens problem. When the solution is not better than the current solution, 
RRHCS starts from a new initial solution again. RRFCHCS generates only one neighbor solution, and moves to 
the solution if the solution is better than the current solution. If a better solution than the current solution is not 
found even after performing during a certain number of iterations, RRFCHCS starts from a new initial solution 
again. In this research, the number of iterations was empirically defined as (nC2 × 10).  

RRFCHCS was better than RRHCS according to the related experiment. So, SA was added as a method to be 
compared because SA is based on the first-choice hill-climbing search. SA moves a better neighbor solution like 
RRFCHCS, but SA can move to a worse neighbor solution stochastically with the probability eE/T[10]. In this 
research, the initial value of T was set to 10, and updated by multiplying 0.999999 per 10,000 iterations. The 
values of the parameters were empirically determined from various experiments. In Table 3, the result values of 
RRHCS, RRFCHCS, SA are the average values of 5 runs, and each run was performed for 1 hour just like 
IPbLS. The result values of IPbLS show the best values from Table 1 and Table 2. 
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It was not possible to apply PIP for over 2000-queens maximization problem. Furthermore, the performance 
of PIP was very bad for even 1000-queens, 1500-queens maximization problems when compared with the other 
search methods. Through this experiment, we can see that it is difficult to find a good solution for n-QMP by 
PIP alone. 

SA shows better performance than RRHCS or RRFCHCS. In addition, though SA is worse than IPbLS using 
WPR for from 500-queens to 2000-queens, SA shows better results for over 3000-queens. In the simple IPbLS 
using WPR, overall performance is decreased as the size of the problem increases because the excessive time is 
required for performing IP. However, IPbLS using SPR showed better results than any other search methods for 
all data instances. We can confirm the importance of SPR in IPbLS once again through this experiment. 

TABLE III. COMPARISON WITH OTHER SEARCH ALGORITHMS 

k 
n PIP RRHCS RRFCHCS SA IPbLS with WPR IPbLS with SPR 

500 244023 230964  231653  238713  244949  245979  
1000 498610 942355  944514  960385  980688  988291  

1500 1167985 2140004  2143100  2171871  2207446  2227900  
2000 fail 3827007  3831513  3872823  3923460  3964159  
3000 fail 8671997  8681849  8752101  8689523  8929771  

5000 fail 24279245  24309101  24425492  16250054  24812101  
10000 fail 69493970  98014855  98183647  50264357  99193680  

V. CONCLUSION 

In this paper, we investigated the importance of the problem reduction in the integer programming-based 
local search (IPbLS). First, we proposed two problem reduction methods in IPbLS. One is weak problem 
reduction where the values of variables are simply fixed, and the other is strong problem reduction where some 
variables are physically removed from the original problem. Experimental results for the n-queens maximization 
problem showed that the performance of IPbLS can be significantly improved through the strong problem 
reduction. Especially, we confirmed that the strong problem reduction becomes more important as the problem 
size increases. We can see that using the strong problem reduction is more helpful to find a better solution more 
quickly when applying IPbLS to solve combinatorial optimization problems. 

There is another key parameter influencing the performance of IPbLS besides problem reduction method. It is 
just the value of k. The value of k is still determined by a number of experiments, but it is necessary to develop a 
method to be able to automatically determine the optimal k value through a future study about the correlation 
between the value of k and the search performance. 
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