
The Effect of Problem Reduction in the
Integer Programming-based Local Search

Junha Hwang
Dept. of Computer Engineering, Kumoh National Institute of Technology

61 Daehak-ro, Gumi, Gyeongbuk, 39177, Korea
jhhwang@kumoh.ac.kr

Abstract—Integer Programming-based Local Search (IPbLS) is a kind of local search. IPbLS is based
on the first-choice hill-climbing search and uses integer programming to generate a neighbor solution.
IPbLS has been applied to solve various NP-hard combinatorial optimization problems like knapsack
problem, set covering problem, set partitioning problem, and so on. In this paper, we investigate the
effect of problem reduction in the IPbLS experimentally using the n-queens maximization problem. The
characteristics of IPbLS are examined by comparing IPbLS using strong problem reduction with IPbLS
using weak problem reduction, and also IPbLS is compared with other local search strategies like
simulated annealing. Experimental results show the importance of problem reduction in IPbLS.

Keyword-Integer Programming-based Local Search, Integer Programming, Local Search, Problem Reduction
I. INTRODUCTION

It is practically impossible to find an optimal solution in a reasonable amount of time for NP-hard
combinatorial optimization problems because the search space increases exponentially as the problem size
increases. Local search is a search technique to solve such large-scale optimization problems, where the current
solution is improved by repeatedly finding a better solution from neighbor solutions of the current solution.
Local search does not ensure finding an optimal solution, but it is known to be able to find sub-optimal solutions
efficiently by generating only a very small part of the large search space.

The most important factor in the local search is how to define a neighbor solution. A candidate solution is
represented as a set of decision variables in combinatorial optimization problems, and a neighbor solution is
usually made by changing the values of some variables from the current solution. This method is often called k-
exchange neighborhood[1]. Here, k means the maximum number of variables to be changed in order to generate
a neighbor solution. As the value of k increases, better neighbor solutions are more likely to be generated.
However, it takes too much time to generate all neighbor solutions and evaluate them because the number of
neighbor solutions becomes too big. The value of k is therefore generally set to a small value like 1 or 2.

Another important factor in the local search is how to select the next current solution from neighbor solutions.
There are two basic local search algorithms related to selecting the next current solution, which are steepest-
ascent hill-climbing search and first-choice hill-climbing search[2]. Steepest-ascent hill-climbing search selects
a best neighbor solution among every possible neighbor solutions. On the other hand, first-choice hill-climbing
search accepts any solution that improves the current solution while generating a neighbor solution one by one.
However, since hill-climbing search suffers from the local maxima problem, many other local search variants
like tabu search and simulated annealing have been developed. But such search methods cannot perfectly
overcome the local maxima problem as well because they are also basically based on k-exchange neighborhood.

Integer programming-based local search (IPbLS) is based on the first-choice hill-climbing search, and uses
integer programming (IP) to generate a neighbor solution. IP can be applied when the given combinatorial
optimization problem can be represented in linear form, and it is known to find an optimal solution very quickly
based on branch and bound and simplex method. IPbLS adopting IP effectively searches better solutions with
more neighbor solutions using bigger k-exchange neighborhood.

IPbLS repeatedly performs the following steps. First, k number of variables are selected from the current
solution, and then the values of unselected variables are fixed to the same values in the current solution. Finally,
the next current solution is made by determining the values of the rest variables with IP. At this time, fixing the
values of unselected variables is viewed as problem reduction process for performing IP. We investigate the
performance change of IPbLS according to problem reduction method. For this, two problem reduction methods
are compared in the n-queens maximization problem (n-QMP). One is value fixing method which is used in
general IPbLS, and the other is variable removing method using the current solution. In addition, characteristics
of IPbLS are investigated through comparison with other existing local search techniques.

The structure of the paper is as follows. Section II describes the related works about IPbLS and n-QMP.
Section III suggests IPbLS for n-QMP and section IV presents experimental results. Finally, in section V we
draw the conclusion and discuss future work.

e-ISSN : 0975-4024 Junha Hwang / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 3 Jun-Jul 2016 1513

II. RELATED WORK

A. The Integer Programming-based Local Search

When a given combinatorial optimization problem can be represented in linear form it is called integer
programming model, and integer programming (IP) is a search method to solve such problems. IP basically uses
branch and bound, and related research has been actively conducted to improve the performance of IP itself[3].
The advantage of IP is that it is possible to find an optimal solution within a very short time in small or medium-
sized problems. On the other hand, as the problem size grows, it may not possible to apply IP due to memory
problem. Even if it is possible to apply, it can take a very long time until an optimal solution is found.

The integer programming-based local search (IPbLS) is a kind of search technique using IP to generate a
neighbor solution in local search. Fig. 1 shows the basic algorithm of IPbLS[4]. A candidate solution X is
assumed to be represented as a set of decision variables with a value 0 or 1, such as x1, x2, …, xn. First, IPbLS
makes an initial solution using a heuristic method, and sets it to the current solution. Then, problem reduction
and IP steps are repeatedly carried out to improve the current solution. The problem reduction step here can be
viewed as the process for selecting variables to participate in the next IP. For this, k number of variables are
selected from the current solution X, and these variables participate in the next IP. In other words, the search
space is reduced for the next IP by fixing the values of unselected variables to the current values. Since the
larger k results in an increase in the number of candidate solutions to be considered in the next IP, it is likely to
take more time to find an optimal neighbor solution. But, the possibility to include better neighbor solutions is
increased. On the other hand, the smaller the value of k, the quicker an optimal neighbor solution can be found
but the poorer the quality of the optimal neighbor solution.

Fig.1. General Integer Programming-based Local Search

In general, local search algorithms modify one or two variables to make a neighbor solution, because the
number of neighbor solutions to be considered is exponentially increased as the number of variables to be able
to be modified is increased. This causes a local optima problem in most local search algorithms. However,
IPbLS overcomes the local optima problem by modifying the values of more variables using the characteristic
of IP.

IPbLS has been applied to a variety of combinatorial optimization problems such as the multidimensional
knapsack problem, the set covering problem, the service network design problem, and so on[5, 6, 7]. And also,
the performance of IPbLS was confirmed to be superior compared to other heuristic search techniques. In this
paper, the effect of IPbLS related to the problem reduction which is a key point of IPbLS, is investigated by
applying two problem reduction methods.
B. The n-queens Maximization Problem

In this research, the n-queens maximization problem is used to verify the performance according to the
problem reduction method in IPbLS. The original n-queens problem is defined as placing n queens on an n× n
board so that no two queens can threaten each other, i.e., no two queens can be placed on the same row, column
or diagonal. Fig. 2(a) shows an example of 8-queens problem. The original n-queens problem is a kind of
constraint satisfaction problem, but in this paper it was modified to a constraint optimization problem which is
called the n-queens maximization problem (n-QMP). A specific value is given to each queen position on the
board in n-QMP. The objective of n-QMP is to maximize the sum of the values of the positions where queens
are placed. Therefore, the target problem can be defined as a constraint optimization problem maximizing the
sum of the weights of the locations where queens are placed while satisfying the constraints of the n-queens
problem. Fig. 2(b) shows an example of an optimal solution for an 8-queens maximization problem.

Algorithm IPbLS
X : Variable vector (Current solution).
k : The number of selected variables to be changed.
IP : An integer programming solver.

Begin
X = Make an initial solution using a heuristic method
While stopping condition is not met Do

Select k variables from X
Add objective and all constraints to IP

• Fix values of unselected variables
X = Make a neighbor solution with IP

End While
Return X

End Begin

e-ISSN : 0975-4024 Junha Hwang / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 3 Jun-Jul 2016 1514

The original n-queens problem can be represented as following. A solution is represented by n decision
variables, and each decision variable can have values from 0 to (n – 1). The value of each decision variable
means the position of the queen in the corresponding column. This guarantees that only one queen can be placed
on each column. And the first constraint is that the values of all decision variables are different, which
guarantees that only one queen can be placed on each row. The second constraint is (i – j) ≠ (vi – vj) and (i – j)
≠ (vj – vi) when vi is the value of the i-th decision variable and vj is the value of the j-th decision variable. This
guarantees that no two queens are placed on the same diagonal.

Fig. 2. An Example of 8-queens Problem

The n-QMP has been used in [4] and [8]. In [4], the constraint programming was used as a neighbor
generation method when applying local search to a constraint optimization problem. The existing research [8]
proposed a genetic algorithm to solve a constraint optimization problem, but very small problems such as 30-
queens problem were used as experimental data.

The n-QMP can be modeled as a linear constraint optimization problem using the expressions from (1) to (5).
There are n× n decision variables. Let’s assume that row and column indices start with 0 as shown in the
example of Fig. 3.

maximize ෍෍ݓ௜௝ݔ௜௝௡ିଵ
௝ୀ଴

௡ିଵ
௜ୀ଴ (1)

subject to ෍ݔ௜௝ ൌ ݅ݎ݋݂	1 ൌ 0,… , ݊ െ 1௡ିଵ
௝ୀ଴ (2)

 ෍ݔ௜௝ ൌ ݆ݎ݋݂	1 ൌ 0,… , ݊ െ 1௡ିଵ
௜ୀ଴ (3)

 ෍෍ݔ௜௝ ൑௡ିଵ
௝ୀ଴ 1 ݅ݎ݋݂ ൅ ݆ ൌ 1,… , ൫ሺ݊ െ 1ሻ ൅ ሺ݊ െ 1ሻ െ 1൯௡ିଵ

௜ୀ଴ (4)

 ෍෍ݔ௜௝ ൑௡ିଵ
௝ୀ଴ 1 ݅ݎ݋݂ െ ݆ ൌ ሺെሺ݊ െ 2ሻሻ, … , ሺ݊ െ 2ሻ௡ିଵ

௜ୀ଴ (5)

Fig. 3. A Linear Modeling of 8-queens Maximization Problem

e-ISSN : 0975-4024 Junha Hwang / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 3 Jun-Jul 2016 1515

The value of a decision variable xij becomes 1 if a queen is placed at i-th row and j-th column, and the value
becomes 0 if no queen is placed at the position. And, wij denotes the weight assigned to the position of i-th row
and j-th column. The expression (1) representing the objective function maximizes the sum of the weights of the
positions where queens are placed. The expressions (2) and (3) represent the constraints that only one queen can
be placed in any row and any column respectively as shown in Fig. 3(2) and Fig. 3(3). The expression (4)
represents the constraint for the diagonal direction like Fig. 3(4). For example, when the value of (i + j) is 6,
only one queen is placed on the diagonal (4) in Fig.3 by the expression (4). Similarly, the expression (5)
represents the constraint for the diagonal direction like Fig. 3(5).

III. IPBLS FOR THE N-QUEENS MAXIMIZATION PROBLEM

C. Overall Structure

Fig. 4 shows the overall structure of the integer programming-based local search (IPbLS) to solve the n-
queens maximization problem (n-QMP). Basically, a solution of n-QMP can be also represented by a 1-
dimensional array having n decision variables like a solution of the n-queens problem. However, 2-dimensional
array having n × n decision variables is needed to solve n-QMP using the expression (1)~(5), and it is
represented as X'. First, a solution for the n-queens problem is found using the proposed method in [9]. Second,
k variables, namely, k columns are selected randomly. Next, n-QMP is reduced using the values of the
unselected variables, and then the reduced problem is solved by integer programming (IP). Now a new solution
is obtained, and the above process is repeatedly performed from the second step. The initial solution generation
method and the problem reduction method will be more specifically explained in the next sections.

Fig. 4. Integer Programming-based Local Search for the n-queens Maximization Problem

D. Initial Solution Generation

When starting from a candidate solution not satisfying all constraints of the n-queens problem, it can be hard
to even find a solution satisfying all constraints of the n-queens problem. So, an initial solution of n-QMP is
defined as a solution that satisfies all constraints of the n-queens problem. In this research, the initial solution is
obtained using the method in [9]. The method can find a solution of the n-queens problem very quickly using an
efficient local search which is similar to random-restart hill-climbing search.

In [9], an initial search phase and a final search phase are carried out in turn to find a solution. During the
initial search, an initial permutation of the row positions of the queens is determined one by one from left
column to right column. At this time, the row position for each new queen is generated so as not to violate the
positions of the columns to the left, if possible. But even so, since conflicts on diagonal lines are inevitable from
a certain column, the remaining queens are placed randomly on empty rows in columns on the right regardless
of conflicts on diagonal lines. During the final search, two queens are selected to swap. If the swap reduces the
number of collisions then the two queens are swapped. The final search is repeated until a solution is found. If
no solution could be found after a certain number of swaps, a new search process is started from an initial search
phase again.

[9] mentions that the algorithm is capable of solving the n-queens problem in linear time, and could find a
solution for the 3,000,000-queens problem in less than 55 seconds. In our research, the algorithm was
implemented again. According to the experimental results, the 3,000,000-queens problem could be solved in
about 1.3 seconds in our experimental environment, and furthermore the 500,000,000-queens problem could be
also solved in about 7 minutes. It was confirmed that the algorithm can find a solution for the n-queens problem
in a very short time. Therefore, the algorithm was adopted in our research as the initial solution generation
method for making a valid initial solution of n-QMP, namely a solution of the n-queens problem.

Algorithm IPbLS_for_n-queens_maximization_problem
X : 1D-Array variable (Current solution).
X' : 2D-Array variable for n-queens maximization problem.

Begin
X = Make an initial solution using the search method in [9]
While stopping condition is not met Do

Select k variables randomly among variables from X
Reduce the n-queens maximization problem using unselected variables from X
Add objective and all constraints to IP
X' = Get an optimal solution for the reduced problem with IP
X = a new solution from X'

End While
return X

End Begin

e-ISSN : 0975-4024 Junha Hwang / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 3 Jun-Jul 2016 1516

E. Problem Reduction

After selecting k variables, the n-QMP is reduced using the information of (n – k) unselected variables. The
two methods can be used to reduce the problem. One is a simple way to fix the values of the variables, and the
other is a method to reduce the number of variables of the original problem by physically excluding the
variables for the next IP. They are called “weak problem reduction” and “strong problem reduction”
respectively in this paper. We developed a weak problem reduction method and a strong problem reduction
method for n-QMP and compared the performance of the proposed problem reduction methods.

The weak problem reduction is very simple. The values of (n – k) unselected variables are fixed to the current
values in the current solution, and then IP is run. Let’s assume that there is an 8-QMP in Fig. 2(b), and assume
that the current solution is [4, 6, 1, 5, 2, 0, 7, 3], the value of k is 5, and the selected columns are (0, 1, 3, 4, 5) as
shown in Fig. 5(a). In this case, as shown in Fig. 5(b), the values of the unselected columns (2, 6, 7) are fixed to
0 or 1 according to the current solution. And the values of the selected columns (0, 1, 3, 4, 5) are invalidated,
and determined by the next IP. After all, the problem for the next IP becomes a much easier problem than the
original n-QMP since the values of some variables are already determined. However, the number of variables
for the next IP is the same as that of the original n-QMP. If the number of variables for the next IP is really
minimized, it can be expected to be able to obtain the same solution more quickly. The strong problem reduction
is just the process of physically removing the variables for the next IP.

Fig. 5(c) shows the strong problem reduction for n-QMP presented in this research. Using the current solution
values of the unselected columns (2, 6, 7), namely the positions with value 1 of the columns (2, 6, 7), all
variables violating constraints are removed. This is because the values of the removed variables cannot be 1 by
the columns (2, 6, 7). After removing all unneeded variables, only 14 variables out of a total of 64 variables are
remained for the next IP. Of course, when adding the objective function and constraints for the next IP, the
expressions for the remained 14 variables should be made taking into account the original locations on the 8× 8
board. In this research, it will be confirmed that the strong problem reduction can significantly improve the
performance in terms of speed of execution through experiment.

Fig. 5.An Example of Problem Reduction

IV. EXPERIMENTAL RESULTS

F. Experimental Environment

The experimental data set consists of 7 problem instances which consist of 500-queens, 1000-queens, 1500-
queens, 2000-queens, 3000-queens, 5000-queens, and 10000-queens maximization problems. The value of
weight wij for each problem was randomly assigned to a value from 1 to n.

All experiments were performed on a PC with Intel Core i7-4770 3GHz CPU, 16GB RAM, and Windows 7
64bit OS. The program was implemented in C++ language, and IBM ILOG CPLEX 12.6.2 was used to
implement integer programming (IP) and integer programming-based local search (IPbLS) for solving the n-
queens maximization problem (n-QMP). IBM ILOG CPLEX is the most widely used linear and integer
programming library in the world for commercial or academic purposes.

e-ISSN : 0975-4024 Junha Hwang / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 3 Jun-Jul 2016 1517

G. Experimental Results of Problem Reduction for IPbLS

Table 1 shows the experimental results of the weak problem reduction (WPR), and Table 2 shows the
experimental results of the strong problem reduction (SPR). The experimental result value is the average value
of 5 runs for each data instance and each k value. Each run was performed for 1 hour (3,600 seconds).

When the number of queens is small, the performance was better when the value of k is relatively small in
both of WPR and SPR. And also the performance was getting better when the value of k is relatively big as the
number of queens is getting larger. The important thing is that the result of SPR is much better than the result of
WPR. Such a phenomenon is clearer as the number of queens increases. The best values of WPR and SPR are
244,949 and 245,979 respectively in 500-queens maximization problem, so the solution gap between WPR and
SPR is less than 0.5%. On the other hand, the best values of WPR and SPR are 50,264,357 and 99,193,680
respectively in 10000-queens maximization problem, so the solution gap reaches 97%. From this experiment,
we can confirm the importance of the strong problem reduction in IPbLS.

TABLE I. EXPERIMENTAL RESULTS OF WEAK PROBLEM REDUCTION

k
n 50 100 150 200 250 300 350 400

best
value

500 241063 244949 181294 173150 184157 197740 208676 219322 244949
1000 932595 970198 980688 903423 614473 641792 665200 696666 980688

1500 1996482 2151238 2190337 2207446 1873475 1344247 1383364 1411537 2207446
2000 3214903 3716601 3852893 3900562 3923460 3234847 2318475 2379787 3923460
3000 5631263 7054071 7876096 8312628 8540143 8680689 8689523 6913946 8689523

5000 12813331 13537008 14111259 14876549 15384624 15973241 16250054 16047487 16250054
10000 50170886 49835915 49887356 50192769 50102855 50017790 50264357 50215590 50264357

TABLE II. EXPERIMENTAL RESULTS OF STRONG PROBLEM REDUCTION

k
n 50 100 150 200 250 300 350 400

best
value

500 244953 245979 177332 173553 185069 197085 209000 220047 245979
1000 982428 985981 988291 866780 620134 636290 674654 691673 988291
1500 2212140 2220007 2225100 2227900 2104093 1337865 1371963 1418984 2227900

2000 3930080 3946495 3955431 3961137 3964159 2817846 2378452 2386355 3964159
3000 8836811 8874717 8896492 8910334 8918713 8927418 8929771 6317537 8929771
5000 24502292 24625294 24690493 24735919 24759901 24784224 24804155 24812101 24812101

10000 96457108 98118397 98616259 98832619 98957115 99044904 99132203 99193680 99193680

H. Comparison with Other Algorithms

Table 3 shows the experimental results by pure integer programming (PIP), random-restart hill-climbing
search (RRHCS), random-restart first-choice hill-climbing search (RRFCHCS), simulated annealing (SA), and
IPbLS.

RRHCS makes an initial solution using the same method in IPbLS. A neigbor solution is made by swapping
two values of two columns, and RRHCS moves to a best neighbor solution among all neighbor solutions
satisfying all constraints of the n-queens problem. When the solution is not better than the current solution,
RRHCS starts from a new initial solution again. RRFCHCS generates only one neighbor solution, and moves to
the solution if the solution is better than the current solution. If a better solution than the current solution is not
found even after performing during a certain number of iterations, RRFCHCS starts from a new initial solution
again. In this research, the number of iterations was empirically defined as (nC2 × 10).

RRFCHCS was better than RRHCS according to the related experiment. So, SA was added as a method to be
compared because SA is based on the first-choice hill-climbing search. SA moves a better neighbor solution like
RRFCHCS, but SA can move to a worse neighbor solution stochastically with the probability eE/T[10]. In this
research, the initial value of T was set to 10, and updated by multiplying 0.999999 per 10,000 iterations. The
values of the parameters were empirically determined from various experiments. In Table 3, the result values of
RRHCS, RRFCHCS, SA are the average values of 5 runs, and each run was performed for 1 hour just like
IPbLS. The result values of IPbLS show the best values from Table 1 and Table 2.

e-ISSN : 0975-4024 Junha Hwang / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 3 Jun-Jul 2016 1518

It was not possible to apply PIP for over 2000-queens maximization problem. Furthermore, the performance
of PIP was very bad for even 1000-queens, 1500-queens maximization problems when compared with the other
search methods. Through this experiment, we can see that it is difficult to find a good solution for n-QMP by
PIP alone.

SA shows better performance than RRHCS or RRFCHCS. In addition, though SA is worse than IPbLS using
WPR for from 500-queens to 2000-queens, SA shows better results for over 3000-queens. In the simple IPbLS
using WPR, overall performance is decreased as the size of the problem increases because the excessive time is
required for performing IP. However, IPbLS using SPR showed better results than any other search methods for
all data instances. We can confirm the importance of SPR in IPbLS once again through this experiment.

TABLE III. COMPARISON WITH OTHER SEARCH ALGORITHMS

k
n PIP RRHCS RRFCHCS SA IPbLS with WPR IPbLS with SPR

500 244023 230964 231653 238713 244949 245979
1000 498610 942355 944514 960385 980688 988291

1500 1167985 2140004 2143100 2171871 2207446 2227900
2000 fail 3827007 3831513 3872823 3923460 3964159
3000 fail 8671997 8681849 8752101 8689523 8929771

5000 fail 24279245 24309101 24425492 16250054 24812101
10000 fail 69493970 98014855 98183647 50264357 99193680

V. CONCLUSION

In this paper, we investigated the importance of the problem reduction in the integer programming-based
local search (IPbLS). First, we proposed two problem reduction methods in IPbLS. One is weak problem
reduction where the values of variables are simply fixed, and the other is strong problem reduction where some
variables are physically removed from the original problem. Experimental results for the n-queens maximization
problem showed that the performance of IPbLS can be significantly improved through the strong problem
reduction. Especially, we confirmed that the strong problem reduction becomes more important as the problem
size increases. We can see that using the strong problem reduction is more helpful to find a better solution more
quickly when applying IPbLS to solve combinatorial optimization problems.

There is another key parameter influencing the performance of IPbLS besides problem reduction method. It is
just the value of k. The value of k is still determined by a number of experiments, but it is necessary to develop a
method to be able to automatically determine the optimal k value through a future study about the correlation
between the value of k and the search performance.

ACKNOWLEDGMENT

This paper was supported by Kumoh National Institute of Technology.

REFERENCES

[1] M.R. Fellows, F.A. Rosamond, F.V. Fomin, D. Lokshtanov, S. Saurabh, and Y. Villanger, “Local search: Is brute-force avoidable?,”
Journal of Computer and System Sciences, vol. 78, no. 3, pp. 707-719, May 2012,.

[2] S. Russell, and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd Ed., Prentice-Hall, pp. 120-125, 2010.
[3] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer Programming, Springer, 2014.
[4] J. Hwang, “Integer programming-based local search technique for linear constraint satisfaction optimization problem,” Journal of The

Korea Society of Computer and Information, vol. 15, no. 9, pp. 47-55, Sep. 2010.
[5] J. Hwang, S. Park, and I. Y. Kong, “An integer programming-based local search for large-scale multidimensional knapsack problems,”

International Journal on Computer Science and Engineering, vol. 3, no. 6, pp. 2257-2264, June 2011.
[6] J. Hwang, “An integer programming-based local search for the set covering problem,” Journal of The Korea Society of Computer and

Information, vol. 19, no. 10, pp. 13-21, Oct. 2014.
[7] A. Erera, M. Hewitt, M. Savelsbergh, and Y. Zhang, “Improved load plan design through integer programming based local search,”

Transportation Science, vol. 47, no. 3, pp.412-427, Nov. 2012.
[8] J. Paredis, “Genetic state-space search for constrained optimization problems,” in Proc. IJCAI-93, 1993, pp.967-973.
[9] R. Sosic, and J, Gu, “Efficient local search with conflict minimization: A case study of the n-queens problem,” IEEE Trans. on

Knowledge and Data Engineering, vol. 6, no. 5, pp. 661-668, 1994.
[10] R. A. Rutenbar, “Simulated annealing algorithms: An overview,” IEEE Circuits and Devices Magazine, vol. 5, no. 1, pp. 19-26, Jan.

1989.

e-ISSN : 0975-4024 Junha Hwang / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 3 Jun-Jul 2016 1519

AUTHOR PROFILE

Junha Hwang received his B.S., M.S. and Ph.D. degree in Computer Engineering from Pusan National
University, Korea in 1995, 1997 and 2002 respectively. He is a Professor in Dept. of Computer Engineering,
Kumoh National Institute of Technology, Korea since 2002. His main research interests are combinatorial
optimization, machine learning and artificial intelligence.

e-ISSN : 0975-4024 Junha Hwang / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 3 Jun-Jul 2016 1520

