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Abstract—In this paper, we propose a process mining model for teleclaim insurance process. The major 
problem faced by every insurance organization is to manage enormous amount of data, which were 
generated for every business activities. Managing teleclaim data is a complex task, which requires process 
model to know the control flow of the event logs. Researchers today use ProM tool as an extensible 
framework that supports a wide variety of process mining techniques which makes use of α – algorithm. α 
– algorithm generates a process model. But, the generated process model will not be specific for every 
cases instead it is the generalized model. So, the logs which will not suit the compliance or the process 
model will not be considered its neglected which is the main drawback of α-algorithm. To overcome this 
problem, we propose a Teleclaim Model algorithm. The proposed algorithm generates process models 
and traces for teleclaim dataset, in which processes flow within their respective models, so that it will not 
eliminate the logs which do not fit into given compliance. The fitness for each model is obtained by 
replaying the event logs on the process models to analyze its behavior. The proposed process model is 
useful for insurance organizations to improve their business process for their clients. Fitness for the 
proposed models can be used as a base of the insurance company to decide whether the claim is valid or 
not. 

Keywords - Process mining (PM), ProM, α-algorithm, Teleclaim Model (TCM), Petrinets. 
I. INTRODUCTION 

Process mining is a technique that allows for the analysis of business processes based on event logs. The 
fundamental idea is to extract process model from event logs recorded by an information system. Process 
mining aims to improve business processes by bringing in techniques and tools for discovering process, control, 
data, organizational and social structures from event logs [1]. The main aim of process mining is to extract 
knowledge about various processes from its process execution logs [2, 3].Process mining bridges the gap 
between data-centric analysis techniques such as machine learning and traditional model-based process analysis 
and data mining [6]. 
A new profession for future is Data science, because the organizations which are unable to utilize data in a smart 
way cannot survive. It is not sufficient to focus on data storage and data analysis. The actual relationship 
between data to process analysis is the genuine need of data scientist [23]. 
Process mining looks at finding the actual confrontation with event data and process models. This technology 
was very recently made available, but it can be applied to any type of operational processes applications such as: 
analyzing the process of treatment for patients in hospitals, improving customer service processes in a 
multinational, being aware of the browsing behavior of customers by means of booking site, analyzing the 
causes for failures in a luggage handling system, to confine the forged insurance claimant. All of these 
applications have one thing in common i.e., dynamic behavior which needs to be related to process models. 
Process mining is the linking chain between both model-based process analysis and data-oriented analysis 
techniques [7]. 
One of the major needs for today’s business organization is to know the need of process mining. Companies 
need to learn more about how their processes operate in the real world [8]. Process mining technique attempts to 
reconstruct a complete process models by extracting the non-trivial and useful real time process information 
from event logs and exact flow of the processes can be monitored[4, 9].Every insurance company needs to put 
on a competitive advantage, and to stream line their processes. Since each process contains multiple events, it is 
also difficult to keep track of events. 
Process mining is used broadly in the areas like hospital management, banks, insurance, industrial applications 
etc, because it helps in process analysis, process design and process enhancement which improves Business 
process engineering and business process modeling. In this paper we propose a process mining model for 
teleclaim insurance processes. Teleclaim insurance processes deals with each business process by handling the 
inbound phone calls, whereby different types of insurance claims are lodged over the phone. The process is 
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supported by two separate call centers operating for two different organizational entities (Brisbane and Sydney). 
Both centers are similar in terms of incoming call volume and average total call handling time, but both of the 
organizations differs in timestamp, that they take to complete the process and deploying the agents where there 
exists time complexity. After the initial steps in the call centre, the remainder of the process is handled by the 
back-office of the insurance company. Teleclaim is a synthetic event log without noise. Researchers today use 
ProM tool as an extensible framework that supports a wide variety of process mining techniques which makes 
use of α - algorithm. To solve the compliance drawback by generating the process model for each case present 
in the teleclaim insurance dataset, we propose TCM algorithm to overcome this problem. 
The rest of the paper is organized as follows: in section II, we give a brief of related work about process mining 
and its algorithm. Section III, introduces our proposed algorithm and gives the mathematical analysis of the 
algorithm. Section IV presents the experimental results. Finally, we provide concluding remarks in Section V. 

II. BACKGROUND 

In this section existing work on process mining is consolidated. Process mining is useful for at least two reasons. 
First of all, it could be used as a technique to find out how people and procedures really work. In every system 
the executed process will be logged but does not enforce the specific way of working. In such an environment 
process mining could be used to gain insight in actual process [10]. 
Process mining techniques allow for various types of analysis based on so-called event logs. For example, using 
process mining one can reconstruct a process model from a log generated by some information system. In the 
last ten years researchers around the world have been working on such techniques [1, 6, 7]. In [8] Cook and 
Wolf present process discovery as a tool to support the design of software processes, because it is a hard, 
expensive, and error prone activity, especially for big and complex processes. In [9] Aalst et al, present an 
algorithm that mine models having three properties in mind: completeness, minimalist and irredundant. 
The effectiveness of that α-algorithm was formally proved for a class of process models, the WF-Nets 
(Workflow Net), which are Petri nets that require: (i) a single Start place, (ii) a single End place, and (iii) every 
node must be on some path from Start to End. However, such an algorithm has severe limitations, for example, 
the inability to deal with short loops. Noise in the event log is closely related to anomaly detection. Some 
process mining methods deal with the mining of noisy logs [1, 9, 10, 11, 12], yet their approaches are limited to 
the frequency evaluation of dependency relation between two activities. For example, infrequent dependency 
relations between two activities may not be modeled in the resulting process model. 
A more sophisticated and promising approach, called genetic mining, was proposed in [14]. This algorithm is 
based on genetic algorithms, which search for a solution (an individual) that satisfies selection criteria, called 
fitness function. All previously mentioned process mining methods are mainly concerned with the modeling of 
normal behavior, yet some of them also deal with noisy logs. Then, in order to fill this gap, recent researches 
have been addressing the problem of identifying anomalous trace in logs of PAISs [3, 4, 5, 14]. 
In [5], Aalst and Medeiros present anomaly detection methods, which are supported by α-algorithm. A 
drawback of this work is that it demands a known ‘normal’ log, but a known ‘normal’ log may not be available 
in applications domains that demand flexible support. In [15] Yang et al, present a framework to detect fraud 
and abuse in health insurance systems. In this work clinical pathways are used to construct a detection model, 
whose features are based on frequent control-flow patterns inferred from two datasets, one with fraudulent 
instances and other with normal instances. 
In [3] and [4], Bezerra and Wainer present three different approaches to detect anomalous traces: sampling, 
threshold, and iterative approaches. Nevertheless, as pointed out by the authors, the methods presented in [3, 4] 
have serious practical limitations, directly resulting from the adopted process mining algorithm, which cannot 
deal with larger logs. In [23] many soft computing approaches like (encompassing Evolutionary, Fuzzy and 
Neural Network techniques) are used in process mining. 
Many mining algorithm failed to work on unstructured logs, so to work on spaghetti structure process mining 
techniques are used. Process Mining is able to fill that gap, providing revolutionary means for the analysis and 
monitoring of real-life processes. Extensive research in this area allows us to extract information about business 
process from event logs by using ProM [24], which is a platform independent tool with an extensible framework 
to supports various process mining techniques. 

III. PROPOSED METHOD 

Existing work in ProM uses α-algorithm for teleclaim business process event logs, which generates a process 
model. But the generated process model will not be specific for each cases instead it is the generalized model. 
So, the logs which will not suit the compliance or the process model will not be considered its neglected which 
is the main drawback of α-algorithm. 
To overcome this drawback in this paper, we propose a TCM (Teleclaim Model) algorithm. TCM generates the 
process model for each case present in the teleclaim event log. Algorithm 1 presents the steps involved in the 
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TCM. TCM algorithm, describes the collection of traces ‘T’, σ represents the sequences of cases in which ‘n’ is 
the number of case present in σ. Later checks the length of the selected case meaning the number of traces 
present in the case. Further checks whether the case starts and end with trace ‘a’ and ‘k’. Detailed description of 
the whole algorithm is explained in section IV. 

Algorithm 1: Teleclaim Model 
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Fig.1. Petri net for the teleclaim event logs 

˜  Initiate claim=a 
˜  S check if sufficient information is available =b 
˜  B check if sufficient information is available=c 
˜  S register claim =d 
˜  B register claim =e 
˜  determine likelihood of claim=f 
˜  assess claim=g 
˜  initiate payment=h 
˜  advise claimant on reimbursement=i 
˜  Close claim=j 
˜  end=k 

IV. EXPERIMENTAL RESULTS 

For measuring the effectiveness of performance of event logs, each logs fitness is measured by the below 
Equation 1 [24]. 
Equation 1: 

1 11 1
2 2

m r
fitness

c p

  = − + −  
   

 

p = produced tokens 
c = consumed tokens  
m = missing tokens 

r = remaining tokens 
By replaying the event logs on the generated process model the fitness can be calculated. When all the traces 

is replayed on the model, and obtain a fitness value is equal to 1 then model is considered to be effective. If the 
fitness value varies between 0 and 1 then model cannot be effective. 

In this paper work implementation is based on Teleclaim Insurance Dataset which contains activities 
performed by two different organizations (Sydney and Brisbane), the visualiser also represents from which 
particular organization the activities is performed.Fig.2.represent the teleclaim business workflow in two 
different organizations (Sydney and Brisbane). The log contains 46138 events related to 3512 case. 
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Fig.2.Teleclaim event logs 

Consider the workflow log as shown in the Table1. The log contains the information about the 6 valid cases and 
3 invalid cases; totally there are 9 cases (i.e., workflow instances) in the log. Each case in the log produces 
unique results (like not liable, rejected, processed, insufficient information and invalid). We deduce a process 
model as shown in the Fig. 1. ; The model is represented in terms of a petrinet. The petrinet starts with the 
execution of trace ‘a’ and ends with the execution of trace ‘k’; traces are represented by transitions. Initially 
trace ‘a’ is executed and next either trace ‘b’ (S check if sufficient information) or trace ‘c’ is executed; not both 
at a same time because trace ‘b’ and trace ‘c’ are independent of each other (XOR-Split, i.e.,(a → b) and (a →c) 
and (b # c)); these traces have been added for routing purposes only and not present in the workflow log. 
Case1: a,b,d,f,k–let off. Case6: a,b,d,f,g,i,h,j,k – Processed. 
Case2: a,b,d,f,g,k – Rejected. Invalid Cases: 
Case3: a,b,k - Lack of Information. Case7: a,b,d,f 
Case4: a,b,d,f,g,h,i,j,k – Processed. Case8: b,d,f,k 
Case5: a,b,d,f,g,h,i,j,i,k – Processed. Case9: b,d,f 
A. Experimented Cases 

Case1 – Let off Cases 
In Case1, let us consider the case L=(a,b,d,f,k) and checks for the length of L and checks whether case starts 

with trace ta and ends with trace tk. if this condition becomes true then token moves to transition ‘a’ (i.e., Ta(start)) 
and then checks whether ta follows tb or tc , since as we mentioned tb and tc are independent of each other (i.e., tb 
# tc) ta should follow either tb or tc. According to the case L ta follows tb .so token moves to transition ‘b’ (i.e., Tb) 
and checks whether tb follows td or tk (i.e.,(tb→td) or (tb→tk) XOR-Split), if there is insufficient information then 
token moves to transition ‘k’ (i.e., Tk(end)) and terminates the process; but according to the case L tb follows td 
(i.e.,(tb→td)), so token moves to transition ‘d’(i.e., Td). Currently token is at td and checks whether td follows 
tf(i.e.,(td→tf)) and we need to notice is td must follow tf ,because this particular process follows a casualty rule 
(i.e,. (td→tf) and not (tf→t d)) and there is no other deviations it can attain; so token moves to transition 
‘f’(i.e.,Tf). At transition Tf , it checks, whether transitions td and te is independent of each other (i.e (td # te) they 
does not follow each other) and tf is followed by td (i.etf← td) else checks tf is followed by te (i.etf ← te) if any 
one of the above condition found to be true token stay at tf .And checks for one more condition whether tf 
follows tg(i.e., (tf →tg)); according to the case L condition (tf →tg) fails so token moves to transition Tk(end) and 
terminate the process. And we obtain the process model as shown in the Fig. 3. 
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Output: 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Not liable process work flow 

Case 2 – Rejected Cases 
In Case 2, let us consider the case L=(a,b,d,f,g,k) and checks for the length of L and checks whether case 

starts with trace ta and ends with trace tk. if this condition becomes true then token moves to transition ‘a’ (i.e., 
Ta(start)) and then checks whether ta follows tb or tc , since as we mentioned tb and tc are independent of each other 
(i.e., tb# tc) ta should follow either tb or tc. According to the case L ta follows tb so token moves to transition ‘b’ 
(i.e., Tb) and checks whether tb  follows td  or tk  (i.e.,(tb→td) or (tb→ tk) XOR-Split), if there is insufficient 
information then token moves to transition ‘k’ (i.e., Tk(end)) and terminates the process; but according to the case 
L tb follows td (i.e.,(tb→ td)), so token moves to transition ‘d’(i.e., Td). Currently token is at td and checks 
whethertd follows tf (i.e.,(td → tf)) and we need to notice is td must follow tf ,because this particular process 
follows a casualty rule (i.e., (td→tf) and not (tf→ td)) and there is no other deviations it can attain; so token 
moves to transition ‘f’(i.e., Tf). At transition Tf , it checks, whether transitions td and t e is independent of each 
other (i.e.,(td # te) they does not follow each other) and t f is followed by td (i.etf← td) else checks tf is followed 
by te (i.e.,(tf ← te) if any one of the above condition found to be true token stay at tf .And checks for one more 
condition whether tf follows tg(i.e., (tf→ tg)); according to the case L condition (t f  → tg) becomes valid so token 
moves to transition Tg. At transition Tg it checks three conditions, whether transition t g follows tk (i.e., tg→ tk) 
else checks tg follows t h (i.e., tg→th) else checks t g is followed by t i (i.e., tg → ti); according to case L 
condition(tg→tk) becomes valid so token moves to transition Tk(end) and terminate the process. And we obtain the 
process model as shown in the Fig.4. 
Output: 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.Rejected process work flow. 

Case3 –Lack of Information Cases 
In Case 3, let us consider the case L=(a,b,k) and checks for the length of L and checks whether case starts 
with trace ta and ends with trace tk. if this condition becomes true then token moves to transition ‘a’ (i.e., Ta(start)) 
and then checks whether ta follows tb or tc , since as we mentioned tb and tc are independent of each other (i.e., tb 
# tc) ta should follow either tb or tc. According to the case L ta follows tb so token moves to transition ‘b’ (i.e., Tb) 
and checks whether tb follows td or tk (i.e.,(tb→td) or (tb→ tk) XOR-Split), according to case L condition (tb→ 
tk)becomes valid so token moves to transition Tk(end) and terminate the process. And we obtain the process model 
as shown in the Fig.5. 
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Output: 
  

 
 
 

Fig. 5. Insufficient information process work flow. 

Case4, Case 5 and Case 6 – Complete Cases 
In Case 4, let us consider the case L=( a,b,d,f,g,h,i,j,k) and checks for the length of L and checks whether 

case starts with trace ta and ends with trace tk. if this condition becomes true then token moves to transition ‘a’ 
(i.e., Ta(start)) and then checks whether ta follows tb or tc , since as we mentioned tb and tc are independent of each 
other (i.e., tb# tc) ta should follow either tb or tc. According to the case L ta follows tb, so token moves to transition 
‘b’ (i.e., Tb) and checks whether tb follows td  or tk  (i.e.,(tb→td) or (tb→tk) XOR-Split), if there is insufficient 
information then token moves to transition ‘k’ (i.e., Tk(end)) and terminates the process; but according to the case 
L tb follows td (i.e.,(tb→td)), so token moves to transition ‘d’(i.e., Td). Currently token is at td and checks whether 
td follows tf (i.e.,(td→tf)) and we need to notice is td must follow tf ,because this particular process follows a 
causality rule (i.e., (td→tf) and not (tf→ td)) and there is no other deviations it can attain; so token moves to 
transition ‘f’(i.e., Tf). At transition Tf , it checks, whether transitions td and te is independent of each other (i.e., 
(td # te) they does not follow each other) and tf is followed by td (i.etf← td) else checks tf is followed by te (i.etf ← 
te) if any one of the above condition found to be true token stay at tf .And checks for one more condition whether 
tf follows tg(i.e., (tf→tg)); according to the case L condition (t f→tg) becomes valid so token moves to transition 
Tg. At transition Tg it checks three conditions, whether transition tg follows tk (i.e., tg→ tk) else checks tg follows 
th (i.e., tg→th) else checks tg is followed by ti (i.e., tg → ti); according to case L condition (i.e., tg→th) becomes 
valid so token moves to transition Th. At transition Th it checks two conditions, whether transition th follows ti 
(i.e., th→ ti) else checks th follows tj (i.e., th → tj), according to case L condition (th→ ti) is true so token moves 
Ti. At transition Ti it checks three conditions, whether transition ti follows th(i.e., ti→ t h) because processes h 
and i are followed by each other (i.e., (h||i)), else checks th follows tj (i.e., ti → tj) else checks ti it follows tk (i.e., t 
i → t k), according to case L condition (ti → tj) holds good, so token moves to transition Tj. At transition Tj it 
checks two conditions, whether transition t j follows ti (i.e., t j→ ti) because processes i and j are followed by 
each other (j||i),else checks tj follows tk (i.e., t j → tk), according to case L condition (tj → tk) holds good, so 
token moves to transition Tk(end) and terminate the process. And we obtain the process model as shown in the 
Fig. 6. 
Output: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.Processed process work flow. 

In Case 5 
Let us consider the case L=(a,b,d,f,g,h,i,j,i,k) and checks for the length of L and checks whether case starts 
with trace ta and ends with trace tk. if this condition becomes true then token moves to transition ‘a’ (i.e., Ta(start)) 
and then checks whether ta follows tb or tc , since as we mentioned tb and tc are independent of each other (i.e., tb 
# tc) ta should follow either tb or tc. According to the case L ta follows tb so token moves to transition ‘b’ (i.e., Tb) 
and checks whether tb follows td or tk (i.e.,(tb→td) or (tb→tk) XOR-Split), if there is insufficient information then 
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token moves to transition ‘k’ (i.e., Tk(end)) and terminates the process; but according to the case L tb follows 
td(i.e.,(tb→td)), so token moves to transition ‘d’(i.e., Td). Currently token is at td and checks whether t d follows tf 
(i.e.(td→tf)) and we need to notice is td must follow tf ,because this particular process follows a casualty rule 
(i.e., (td→tf) and not (tf→t d)) and there is no other deviations it can attain; so token moves to transition ‘f’(i.e., 
Tf). At transition Tf , it checks, whether transitions td and te is independent of each other (i.e., (td # te) they does 
not follow each other) and tf is followed by td (i.etf← td) else checks tf is followed by te (i.e., tf ← te) if any one 
of the above condition found to be true token stay at tf .And checks for one more condition whether tf follows 
tg(i.e., (tf→tg)); according to the case L condition (tf→tg) becomes valid so token moves to transition Tg. At 
transition Tg it checks three conditions, whether transition t g follows tk (i.e., tg→ tk) else checks tg follows th 
(i.e., tg→th) else checks tg is followed by ti (i.e., tg → ti); according to case L condition (t g→th) becomes valid so 
token moves to transition Th. At transition Th it checks two conditions, whether transition th follows ti (i.e., th→ 
ti) else checks th follows tj (i.e., th → tj), according to case L condition (t h→ ti) is true so token moves to 
transition Ti. At transition Ti it checks three conditions, whether transition ti follows th(i.e., ti→ th) because 
processes h and i are followed by each other (i.e., (h||i)), else checks th follows tj (i.e., ti → tj) else checks ti 
follows tk (i.e., ti→tk), according to case L condition (ti → tj) holds good, so token moves to transition Tj. At 
transition Tj it checks two conditions, whether transition tj follows ti (i.e., tj→ti) because processes i and j are 
followed by each other (j||i),else checks tj follows tk (i.e., tj → tk), according to case L condition (tj→ ti) holds 
good, so token moves Ti and it is the place where looping takes place. Currently token is at Ti, at transition Ti it 
checks three conditions, whether transition ti follows th(i.e., ti→ th) because processes h and i are followed by 
each other (i.e., (h||i)), else checks th follows t j (i.e., ti → tj) else checks tii follows tk (i.eti → tk), according to 
case L condition (ti → tk) holds good, so token moves to transition Tk(end) and terminate the process. And we 
obtain the process model as shown in the Fig. 7. 
Output: 

 
Fig. 7. Processed work flow with loops between two processes. 

In Case 6 
Let us consider the case L=(a,b,d,f,g,i,h,j,,k) and checks for the length of L and checks whether case starts with 
trace ta and ends with trace tk. if this condition becomes true then token moves to transition ‘a’ (i.e., Ta(start))and  
then checks whether ta follows tb or tc , since as we mentioned tb and tc are independent of each other (i.e., tb# tc) 
ta should follow either tbor tc. According to the case L ta follows tb, so token moves to transition ‘b’ (i.e., Tb) and 
checks whether tb follows td or tk (i.e.,(tb→td) or (tb→tk) XOR-Split), if there is insufficient information then 
token moves to transition ‘k’ (i.e., Tk(end)) and terminates the process; but according to the case L tb follows td 
(i.e.,(tb→td)), so token moves to transition ‘d’(i.e., Td). Currently token is at td and checks whether td follows 
tf(i.e.,(td→tf)) and we need to notice is td must follow tf ,because this particular process follows a casualty rule 
(i.e., (td→tf) and not (tf→ td)) and there is no other deviations it can attain; so token moves to transition 
‘f’(i.e.,Tf). At transition Tf , it checks, whether transitions td and te is independent of each other (i.e., (td # te) they 
does not follow each other) and tf is followed by td (i.e., tf← td) else checks tf is followed by te (i.e., tf ← te) if 
any one of the above condition found to be true token stay at tf .And checks for one more condition whether tf 
follows tg(i.e., (tf→tg)); according to the case L condition (tf→tg) becomes valid so token moves to transition Tg. 
At transition Tg it checks three conditions, whether transition t g follows tk (i.e., tg→ tk) else checks tg follows th 
(i.e., tg→th) else checks tg is followed by ti (i.e., tg →ti); according to case L condition (tg →ti) holds good, so 
token move to transition Ti. At transition T i it checks whether transition ti follows th (i.e., ti→ th) because 
(h||i),else checks th follows t j (i.e., ti → tj) else checks ti follows tk (i.e., ti → tk), according to case L condition 
(ti→ th) holds good, so token moves transition Th. At transition Th it checks two conditions, whether transition th 
follows ti (i.e., th→ ti) else checks th follows tj (i.e., th → tj), according to case L condition (t h→ tj) is true so 
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token moves to transition Tj. At transition Tj it checks two conditions, whether transition tj follows ti (i.e., tj→ti) 
because processes i and j are followed by each other (j||i),else checks tj follows tk (i.e., tj → t k), according to 
case L condition (tj → tk) holds good, so token moves to transition Tk(end) and terminate the process. And we 
obtain the process model as shown in the Fig. 8. 
Output: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fig.8. Processed work flow using reimbursement step earlier than initiate payment process. 

Case7, Case 8 and Case 9 –Invalid Cases 
In Case 7 

Let us consider the case L=(a,b,d,f) and checks the length of L and checks whether case starts with trace ta 
and ends with trace tk, since case does not end with tk case will be considered as a invalid process. 
In Case 8 

Let us consider the case L=(b,d,f,k) and checks the length of L and checks whether case starts with ta ends 
with trace tk, since case does not starts with t a case will be considered as a invalid process. 
In Case9 

Let us consider the case L=(b,d,f) and checks the length of L and checks whether case starts with ta ends 
with trace tk, since case does not starts and end with t a and tk case will be considered as an invalid process. To 
evaluate the effectiveness of the generated process model fitness formula is used (Equation 1) [24]. 
For example: Consider a case (a,b,k) which is replayed on the process model (Fig. 10.) obtained fitness value 
equal to 1 using the Equation 1, where p=3, c=3, m=0 and r=0. 

1 0 1 01 1
2 3 2 3

f
   = − + −   
   

 ∴ 1fitness =  
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B. Organizational entity 1: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Organizational entity (Sydney) Model 1 
Table I. Fitness value for above traces in model 1 

Traces Fitness 
a,b,d,f,g,h,i,j,k 1 
a,b,d,f,g,k 1 
a,b,d,f,k 1 
a,b,k 1 
a,b,d,f,g,h,i,j,i,k 1 
a,b,d,f,g,i,h,j,k 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.10. Organizational entity (Sydney) Model 2 
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Table II. Fitness value for above traces in model 2 

Traces Fitness 
a,b,k 1 

a,b,d,f ,k 1 
a,b,d,f,g,k 1 

a,b,d,f,g,h,i,j,k 1 
a,b,d,f,g,h,i,j,i,k 0.875 
a,b,d,f,g,i,h,j,k 0.875 

For example: Consider a case (a,b,d,f,g,h,i,j,i,k) which is replayed on the process model (Fig. 10.) we obtain the 
fitness value equal to 0.875, where p=8, c=8, m=1 and r=1. 

 

∴ 0.875fitness =  
C. Organizational entity 2: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Organizational entity (Brisbane) Model 3 
Table4. Fitness value for above traces in Model 3 

Traces Fitness 
a,c,e,f,g,h,i,j,k 1 
a,c,e,f,g,k 1 
a,c,e,f,k  1 
a,c,k 1 
a,c,e,f,g,h,i,j,i,k  1 

a,c,e,f,g,i,h,j,k 1 
 
 
 
 
 
 
 
 
 
 
 

1 1 1 11 1
2 8 2 8

f
   = − + −   
   
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Fig. 12. Organization entity (Brisbane) model4. 

Table5. Fitness value of Model 4 

Traces Fitness 
a,c,k 1 
a,c,e,f ,k 1 
a,c,e,f,g,k 1 
a,c,e,f,g,h,i,j,k 1 
a,c,e,f,g,h,i,j,i,k 0.875 
a,c,e,f,g,i,h,j,k 0.875 

V. CONCLUSION 

This research work deals with event logs of teleclaim, proposing unique models for different valid cases 
present in teleclaim workflow log. The presented novel approach generates an effective process model by 
replaying the traces on the process model. The event logs which do not fit into compliance will be considered as 
invalid cases. The resultant process model is useful for any insurance organization to improve their business 
process for their clients. Fitness for the proposed models can be used as a base of the insurance company to 
decide whether the claim is valid or not. The Future work can be extended by constructing an Event Driven 
Process Chains (EPC’s) and also check the conformance using footprints from event logs and generated EPC 
model, to calculate the fitness, precision and generalization in a single metric. 
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