
A NOVEL PROCESS MINING MODEL
FOR TELECLAIM INSURANCE

PROCESS
Ganesha K#1, Gagana J#2, Namratha A C#3

1, 2, 3 Department of Computer Science, Amrita School of Arts and Sciences, Mysuru Campus,
Amrita Vishwa Vidyapeetham, Amrita University, India

1 asasganesha@gmail.com, 2 gaganajaykumar@gmail.com, 3namrathaac93@gmail.com

Abstract—In this paper, we propose a process mining model for teleclaim insurance process. The major
problem faced by every insurance organization is to manage enormous amount of data, which were
generated for every business activities. Managing teleclaim data is a complex task, which requires process
model to know the control flow of the event logs. Researchers today use ProM tool as an extensible
framework that supports a wide variety of process mining techniques which makes use of α – algorithm. α
– algorithm generates a process model. But, the generated process model will not be specific for every
cases instead it is the generalized model. So, the logs which will not suit the compliance or the process
model will not be considered its neglected which is the main drawback of α-algorithm. To overcome this
problem, we propose a Teleclaim Model algorithm. The proposed algorithm generates process models
and traces for teleclaim dataset, in which processes flow within their respective models, so that it will not
eliminate the logs which do not fit into given compliance. The fitness for each model is obtained by
replaying the event logs on the process models to analyze its behavior. The proposed process model is
useful for insurance organizations to improve their business process for their clients. Fitness for the
proposed models can be used as a base of the insurance company to decide whether the claim is valid or
not.

Keywords - Process mining (PM), ProM, α-algorithm, Teleclaim Model (TCM), Petrinets.
I. INTRODUCTION

Process mining is a technique that allows for the analysis of business processes based on event logs. The
fundamental idea is to extract process model from event logs recorded by an information system. Process
mining aims to improve business processes by bringing in techniques and tools for discovering process, control,
data, organizational and social structures from event logs [1]. The main aim of process mining is to extract
knowledge about various processes from its process execution logs [2, 3].Process mining bridges the gap
between data-centric analysis techniques such as machine learning and traditional model-based process analysis
and data mining [6].
A new profession for future is Data science, because the organizations which are unable to utilize data in a smart
way cannot survive. It is not sufficient to focus on data storage and data analysis. The actual relationship
between data to process analysis is the genuine need of data scientist [23].
Process mining looks at finding the actual confrontation with event data and process models. This technology
was very recently made available, but it can be applied to any type of operational processes applications such as:
analyzing the process of treatment for patients in hospitals, improving customer service processes in a
multinational, being aware of the browsing behavior of customers by means of booking site, analyzing the
causes for failures in a luggage handling system, to confine the forged insurance claimant. All of these
applications have one thing in common i.e., dynamic behavior which needs to be related to process models.
Process mining is the linking chain between both model-based process analysis and data-oriented analysis
techniques [7].
One of the major needs for today’s business organization is to know the need of process mining. Companies
need to learn more about how their processes operate in the real world [8]. Process mining technique attempts to
reconstruct a complete process models by extracting the non-trivial and useful real time process information
from event logs and exact flow of the processes can be monitored[4, 9].Every insurance company needs to put
on a competitive advantage, and to stream line their processes. Since each process contains multiple events, it is
also difficult to keep track of events.
Process mining is used broadly in the areas like hospital management, banks, insurance, industrial applications
etc, because it helps in process analysis, process design and process enhancement which improves Business
process engineering and business process modeling. In this paper we propose a process mining model for
teleclaim insurance processes. Teleclaim insurance processes deals with each business process by handling the
inbound phone calls, whereby different types of insurance claims are lodged over the phone. The process is

e-ISSN : 0975-4024 Ganesha K et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1187

supported by two separate call centers operating for two different organizational entities (Brisbane and Sydney).
Both centers are similar in terms of incoming call volume and average total call handling time, but both of the
organizations differs in timestamp, that they take to complete the process and deploying the agents where there
exists time complexity. After the initial steps in the call centre, the remainder of the process is handled by the
back-office of the insurance company. Teleclaim is a synthetic event log without noise. Researchers today use
ProM tool as an extensible framework that supports a wide variety of process mining techniques which makes
use of α - algorithm. To solve the compliance drawback by generating the process model for each case present
in the teleclaim insurance dataset, we propose TCM algorithm to overcome this problem.
The rest of the paper is organized as follows: in section II, we give a brief of related work about process mining
and its algorithm. Section III, introduces our proposed algorithm and gives the mathematical analysis of the
algorithm. Section IV presents the experimental results. Finally, we provide concluding remarks in Section V.

II. BACKGROUND

In this section existing work on process mining is consolidated. Process mining is useful for at least two reasons.
First of all, it could be used as a technique to find out how people and procedures really work. In every system
the executed process will be logged but does not enforce the specific way of working. In such an environment
process mining could be used to gain insight in actual process [10].
Process mining techniques allow for various types of analysis based on so-called event logs. For example, using
process mining one can reconstruct a process model from a log generated by some information system. In the
last ten years researchers around the world have been working on such techniques [1, 6, 7]. In [8] Cook and
Wolf present process discovery as a tool to support the design of software processes, because it is a hard,
expensive, and error prone activity, especially for big and complex processes. In [9] Aalst et al, present an
algorithm that mine models having three properties in mind: completeness, minimalist and irredundant.
The effectiveness of that α-algorithm was formally proved for a class of process models, the WF-Nets
(Workflow Net), which are Petri nets that require: (i) a single Start place, (ii) a single End place, and (iii) every
node must be on some path from Start to End. However, such an algorithm has severe limitations, for example,
the inability to deal with short loops. Noise in the event log is closely related to anomaly detection. Some
process mining methods deal with the mining of noisy logs [1, 9, 10, 11, 12], yet their approaches are limited to
the frequency evaluation of dependency relation between two activities. For example, infrequent dependency
relations between two activities may not be modeled in the resulting process model.
A more sophisticated and promising approach, called genetic mining, was proposed in [14]. This algorithm is
based on genetic algorithms, which search for a solution (an individual) that satisfies selection criteria, called
fitness function. All previously mentioned process mining methods are mainly concerned with the modeling of
normal behavior, yet some of them also deal with noisy logs. Then, in order to fill this gap, recent researches
have been addressing the problem of identifying anomalous trace in logs of PAISs [3, 4, 5, 14].
In [5], Aalst and Medeiros present anomaly detection methods, which are supported by α-algorithm. A
drawback of this work is that it demands a known ‘normal’ log, but a known ‘normal’ log may not be available
in applications domains that demand flexible support. In [15] Yang et al, present a framework to detect fraud
and abuse in health insurance systems. In this work clinical pathways are used to construct a detection model,
whose features are based on frequent control-flow patterns inferred from two datasets, one with fraudulent
instances and other with normal instances.
In [3] and [4], Bezerra and Wainer present three different approaches to detect anomalous traces: sampling,
threshold, and iterative approaches. Nevertheless, as pointed out by the authors, the methods presented in [3, 4]
have serious practical limitations, directly resulting from the adopted process mining algorithm, which cannot
deal with larger logs. In [23] many soft computing approaches like (encompassing Evolutionary, Fuzzy and
Neural Network techniques) are used in process mining.
Many mining algorithm failed to work on unstructured logs, so to work on spaghetti structure process mining
techniques are used. Process Mining is able to fill that gap, providing revolutionary means for the analysis and
monitoring of real-life processes. Extensive research in this area allows us to extract information about business
process from event logs by using ProM [24], which is a platform independent tool with an extensible framework
to supports various process mining techniques.

III. PROPOSED METHOD

Existing work in ProM uses α-algorithm for teleclaim business process event logs, which generates a process
model. But the generated process model will not be specific for each cases instead it is the generalized model.
So, the logs which will not suit the compliance or the process model will not be considered its neglected which
is the main drawback of α-algorithm.
To overcome this drawback in this paper, we propose a TCM (Teleclaim Model) algorithm. TCM generates the
process model for each case present in the teleclaim event log. Algorithm 1 presents the steps involved in the

e-ISSN : 0975-4024 Ganesha K et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1188

TCM. TCM algorithm, describes the collection of traces ‘T’, σ represents the sequences of cases in which ‘n’ is
the number of case present in σ. Later checks the length of the selected case meaning the number of traces
present in the case. Further checks whether the case starts and end with trace ‘a’ and ‘k’. Detailed description of
the whole algorithm is explained in section IV.

Algorithm 1: Teleclaim Model

{ } 1 1

ka, c e gb d f h i j

a,1 b, d,

Step1: | Where { },

Where n sequence of length
 T set of transitions.(i.e, t t , t , t , t , t , t , t , t , t , t)

 Let us consider L t t t t

l L nT t T t L Lσ σ σ= ∈ −∈ ∃ ∈ =
=

=

= { }g,f , k

1

aa

() a a ()

t t

Step2 : Check the length of L
Step3: Case should begin with the event t ,so check whether the event begin with t .
 {t | t =first() }
Step4

a start L k endT T goto T else goto Iσ σ∈= ∈ ∃ ∧
k

() k pk

p b c a b a c

: Everycase should end with the event t .
 {t | t () T } .
Step5: T ={t ,t | if (t t) if (t t)

k end L

L b c

T T last goto else goto I

T goto T else goto T

else g

σ

σ

σ∈

∈ → →

= ∈ ∃ = ∧
∈ ∃

k

k

b b b b d b ()

c c c c e c ()

 }
Step6 : T ={t | t (t t) (t t)
 }
Step7 : T ={t | t (t t) (t t)

L d k end

L e k end

oto I

T token if goto T else if goto T

else goto I

T token if goto T elseif goto T

σ

σ

∈ → →

∈ → →

∈ ∃ = ∧

∈ ∃ = ∧

d d d d f

e e e e f

f f d # e d f

 }
Step8: T ={t | t (t t) }
Step9 : T ={t | t (t t) }
Step10 : T {t | (T(t t) (t t))

L f

L f

L

else goto I

T token if goto T else goto I

T token if goto T else goto I

T if

σ

σ

σ

∈ →

∈ →

∈ →

∈ ∃ = ∧
∈ ∃ = ∧

= ∈ ∃ ∧
ef d # e f f

f g ()

g g g, g k ()

 token t (T(t t) (t t)) token t }
 { (t t) }
Step11: T {t | t (t t)
 (

g k end

L k end

then else if then

if goto T else gotoT

T token if goto T else

if

σ

→

→

∈ →

= ∧ =

= ∈ ∃ =
g h

h h, h i

i i, i h i j

()

t t) }
Step12 : {t | t (t t) }
Step13: {t | t (t t) (t t)
 }
Step14 :

h

h i

L i j

i L h j

k end

gotoT else goto T

T T token if gotoT else goto T

T T token if gotoT else if gotoT

else T

σ

σ

→

∈ →

∈ → →

= ∈ ∃ =
= ∈ ∃ =

j j, j i ()

1 , , , , ,

 {t | t (t t) }
Step15: Result R=L
Step16 : .

j L i k end

a b d f g k

T T token if gotoT else gotoT

of traces of a given case or t t t t t t

I invalid case

σ ∈ →= ∈ ∃ =
< >

=

e-ISSN : 0975-4024 Ganesha K et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1189

Fig.1. Petri net for the teleclaim event logs

˜ Initiate claim=a
˜ S check if sufficient information is available =b
˜ B check if sufficient information is available=c
˜ S register claim =d
˜ B register claim =e
˜ determine likelihood of claim=f
˜ assess claim=g
˜ initiate payment=h
˜ advise claimant on reimbursement=i
˜ Close claim=j
˜ end=k

IV. EXPERIMENTAL RESULTS

For measuring the effectiveness of performance of event logs, each logs fitness is measured by the below
Equation 1 [24].
Equation 1:

1 11 1
2 2

m r
fitness

c p

  = − + −  
   

p = produced tokens
c = consumed tokens
m = missing tokens

r = remaining tokens
By replaying the event logs on the generated process model the fitness can be calculated. When all the traces

is replayed on the model, and obtain a fitness value is equal to 1 then model is considered to be effective. If the
fitness value varies between 0 and 1 then model cannot be effective.

In this paper work implementation is based on Teleclaim Insurance Dataset which contains activities
performed by two different organizations (Sydney and Brisbane), the visualiser also represents from which
particular organization the activities is performed.Fig.2.represent the teleclaim business workflow in two
different organizations (Sydney and Brisbane). The log contains 46138 events related to 3512 case.

e-ISSN : 0975-4024 Ganesha K et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1190

Fig.2.Teleclaim event logs

Consider the workflow log as shown in the Table1. The log contains the information about the 6 valid cases and
3 invalid cases; totally there are 9 cases (i.e., workflow instances) in the log. Each case in the log produces
unique results (like not liable, rejected, processed, insufficient information and invalid). We deduce a process
model as shown in the Fig. 1. ; The model is represented in terms of a petrinet. The petrinet starts with the
execution of trace ‘a’ and ends with the execution of trace ‘k’; traces are represented by transitions. Initially
trace ‘a’ is executed and next either trace ‘b’ (S check if sufficient information) or trace ‘c’ is executed; not both
at a same time because trace ‘b’ and trace ‘c’ are independent of each other (XOR-Split, i.e.,(a → b) and (a →c)
and (b # c)); these traces have been added for routing purposes only and not present in the workflow log.
Case1: a,b,d,f,k–let off. Case6: a,b,d,f,g,i,h,j,k – Processed.
Case2: a,b,d,f,g,k – Rejected. Invalid Cases:
Case3: a,b,k - Lack of Information. Case7: a,b,d,f
Case4: a,b,d,f,g,h,i,j,k – Processed. Case8: b,d,f,k
Case5: a,b,d,f,g,h,i,j,i,k – Processed. Case9: b,d,f
A. Experimented Cases

Case1 – Let off Cases
In Case1, let us consider the case L=(a,b,d,f,k) and checks for the length of L and checks whether case starts

with trace ta and ends with trace tk. if this condition becomes true then token moves to transition ‘a’ (i.e., Ta(start))
and then checks whether ta follows tb or tc , since as we mentioned tb and tc are independent of each other (i.e., tb
tc) ta should follow either tb or tc. According to the case L ta follows tb .so token moves to transition ‘b’ (i.e., Tb)
and checks whether tb follows td or tk (i.e.,(tb→td) or (tb→tk) XOR-Split), if there is insufficient information then
token moves to transition ‘k’ (i.e., Tk(end)) and terminates the process; but according to the case L tb follows td
(i.e.,(tb→td)), so token moves to transition ‘d’(i.e., Td). Currently token is at td and checks whether td follows
tf(i.e.,(td→tf)) and we need to notice is td must follow tf ,because this particular process follows a casualty rule
(i.e,. (td→tf) and not (tf→t d)) and there is no other deviations it can attain; so token moves to transition
‘f’(i.e.,Tf). At transition Tf , it checks, whether transitions td and te is independent of each other (i.e (td # te) they
does not follow each other) and tf is followed by td (i.etf← td) else checks tf is followed by te (i.etf ← te) if any
one of the above condition found to be true token stay at tf .And checks for one more condition whether tf
follows tg(i.e., (tf →tg)); according to the case L condition (tf →tg) fails so token moves to transition Tk(end) and
terminate the process. And we obtain the process model as shown in the Fig. 3.

e-ISSN : 0975-4024 Ganesha K et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1191

Output:

Fig. 3. Not liable process work flow

Case 2 – Rejected Cases
In Case 2, let us consider the case L=(a,b,d,f,g,k) and checks for the length of L and checks whether case

starts with trace ta and ends with trace tk. if this condition becomes true then token moves to transition ‘a’ (i.e.,
Ta(start)) and then checks whether ta follows tb or tc , since as we mentioned tb and tc are independent of each other
(i.e., tb# tc) ta should follow either tb or tc. According to the case L ta follows tb so token moves to transition ‘b’
(i.e., Tb) and checks whether tb follows td or tk (i.e.,(tb→td) or (tb→ tk) XOR-Split), if there is insufficient
information then token moves to transition ‘k’ (i.e., Tk(end)) and terminates the process; but according to the case
L tb follows td (i.e.,(tb→ td)), so token moves to transition ‘d’(i.e., Td). Currently token is at td and checks
whethertd follows tf (i.e.,(td → tf)) and we need to notice is td must follow tf ,because this particular process
follows a casualty rule (i.e., (td→tf) and not (tf→ td)) and there is no other deviations it can attain; so token
moves to transition ‘f’(i.e., Tf). At transition Tf , it checks, whether transitions td and t e is independent of each
other (i.e.,(td # te) they does not follow each other) and t f is followed by td (i.etf← td) else checks tf is followed
by te (i.e.,(tf ← te) if any one of the above condition found to be true token stay at tf .And checks for one more
condition whether tf follows tg(i.e., (tf→ tg)); according to the case L condition (t f → tg) becomes valid so token
moves to transition Tg. At transition Tg it checks three conditions, whether transition t g follows tk (i.e., tg→ tk)
else checks tg follows t h (i.e., tg→th) else checks t g is followed by t i (i.e., tg → ti); according to case L
condition(tg→tk) becomes valid so token moves to transition Tk(end) and terminate the process. And we obtain the
process model as shown in the Fig.4.
Output:

Fig. 4.Rejected process work flow.

Case3 –Lack of Information Cases
In Case 3, let us consider the case L=(a,b,k) and checks for the length of L and checks whether case starts
with trace ta and ends with trace tk. if this condition becomes true then token moves to transition ‘a’ (i.e., Ta(start))
and then checks whether ta follows tb or tc , since as we mentioned tb and tc are independent of each other (i.e., tb
tc) ta should follow either tb or tc. According to the case L ta follows tb so token moves to transition ‘b’ (i.e., Tb)
and checks whether tb follows td or tk (i.e.,(tb→td) or (tb→ tk) XOR-Split), according to case L condition (tb→
tk)becomes valid so token moves to transition Tk(end) and terminate the process. And we obtain the process model
as shown in the Fig.5.

e-ISSN : 0975-4024 Ganesha K et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1192

Output:

Fig. 5. Insufficient information process work flow.

Case4, Case 5 and Case 6 – Complete Cases
In Case 4, let us consider the case L=(a,b,d,f,g,h,i,j,k) and checks for the length of L and checks whether

case starts with trace ta and ends with trace tk. if this condition becomes true then token moves to transition ‘a’
(i.e., Ta(start)) and then checks whether ta follows tb or tc , since as we mentioned tb and tc are independent of each
other (i.e., tb# tc) ta should follow either tb or tc. According to the case L ta follows tb, so token moves to transition
‘b’ (i.e., Tb) and checks whether tb follows td or tk (i.e.,(tb→td) or (tb→tk) XOR-Split), if there is insufficient
information then token moves to transition ‘k’ (i.e., Tk(end)) and terminates the process; but according to the case
L tb follows td (i.e.,(tb→td)), so token moves to transition ‘d’(i.e., Td). Currently token is at td and checks whether
td follows tf (i.e.,(td→tf)) and we need to notice is td must follow tf ,because this particular process follows a
causality rule (i.e., (td→tf) and not (tf→ td)) and there is no other deviations it can attain; so token moves to
transition ‘f’(i.e., Tf). At transition Tf , it checks, whether transitions td and te is independent of each other (i.e.,
(td # te) they does not follow each other) and tf is followed by td (i.etf← td) else checks tf is followed by te (i.etf ←
te) if any one of the above condition found to be true token stay at tf .And checks for one more condition whether
tf follows tg(i.e., (tf→tg)); according to the case L condition (t f→tg) becomes valid so token moves to transition
Tg. At transition Tg it checks three conditions, whether transition tg follows tk (i.e., tg→ tk) else checks tg follows
th (i.e., tg→th) else checks tg is followed by ti (i.e., tg → ti); according to case L condition (i.e., tg→th) becomes
valid so token moves to transition Th. At transition Th it checks two conditions, whether transition th follows ti
(i.e., th→ ti) else checks th follows tj (i.e., th → tj), according to case L condition (th→ ti) is true so token moves
Ti. At transition Ti it checks three conditions, whether transition ti follows th(i.e., ti→ t h) because processes h
and i are followed by each other (i.e., (h||i)), else checks th follows tj (i.e., ti → tj) else checks ti it follows tk (i.e., t
i → t k), according to case L condition (ti → tj) holds good, so token moves to transition Tj. At transition Tj it
checks two conditions, whether transition t j follows ti (i.e., t j→ ti) because processes i and j are followed by
each other (j||i),else checks tj follows tk (i.e., t j → tk), according to case L condition (tj → tk) holds good, so
token moves to transition Tk(end) and terminate the process. And we obtain the process model as shown in the
Fig. 6.
Output:

Fig. 6.Processed process work flow.

In Case 5
Let us consider the case L=(a,b,d,f,g,h,i,j,i,k) and checks for the length of L and checks whether case starts
with trace ta and ends with trace tk. if this condition becomes true then token moves to transition ‘a’ (i.e., Ta(start))
and then checks whether ta follows tb or tc , since as we mentioned tb and tc are independent of each other (i.e., tb
tc) ta should follow either tb or tc. According to the case L ta follows tb so token moves to transition ‘b’ (i.e., Tb)
and checks whether tb follows td or tk (i.e.,(tb→td) or (tb→tk) XOR-Split), if there is insufficient information then

e-ISSN : 0975-4024 Ganesha K et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1193

token moves to transition ‘k’ (i.e., Tk(end)) and terminates the process; but according to the case L tb follows
td(i.e.,(tb→td)), so token moves to transition ‘d’(i.e., Td). Currently token is at td and checks whether t d follows tf
(i.e.(td→tf)) and we need to notice is td must follow tf ,because this particular process follows a casualty rule
(i.e., (td→tf) and not (tf→t d)) and there is no other deviations it can attain; so token moves to transition ‘f’(i.e.,
Tf). At transition Tf , it checks, whether transitions td and te is independent of each other (i.e., (td # te) they does
not follow each other) and tf is followed by td (i.etf← td) else checks tf is followed by te (i.e., tf ← te) if any one
of the above condition found to be true token stay at tf .And checks for one more condition whether tf follows
tg(i.e., (tf→tg)); according to the case L condition (tf→tg) becomes valid so token moves to transition Tg. At
transition Tg it checks three conditions, whether transition t g follows tk (i.e., tg→ tk) else checks tg follows th
(i.e., tg→th) else checks tg is followed by ti (i.e., tg → ti); according to case L condition (t g→th) becomes valid so
token moves to transition Th. At transition Th it checks two conditions, whether transition th follows ti (i.e., th→
ti) else checks th follows tj (i.e., th → tj), according to case L condition (t h→ ti) is true so token moves to
transition Ti. At transition Ti it checks three conditions, whether transition ti follows th(i.e., ti→ th) because
processes h and i are followed by each other (i.e., (h||i)), else checks th follows tj (i.e., ti → tj) else checks ti
follows tk (i.e., ti→tk), according to case L condition (ti → tj) holds good, so token moves to transition Tj. At
transition Tj it checks two conditions, whether transition tj follows ti (i.e., tj→ti) because processes i and j are
followed by each other (j||i),else checks tj follows tk (i.e., tj → tk), according to case L condition (tj→ ti) holds
good, so token moves Ti and it is the place where looping takes place. Currently token is at Ti, at transition Ti it
checks three conditions, whether transition ti follows th(i.e., ti→ th) because processes h and i are followed by
each other (i.e., (h||i)), else checks th follows t j (i.e., ti → tj) else checks tii follows tk (i.eti → tk), according to
case L condition (ti → tk) holds good, so token moves to transition Tk(end) and terminate the process. And we
obtain the process model as shown in the Fig. 7.
Output:

Fig. 7. Processed work flow with loops between two processes.

In Case 6
Let us consider the case L=(a,b,d,f,g,i,h,j,,k) and checks for the length of L and checks whether case starts with
trace ta and ends with trace tk. if this condition becomes true then token moves to transition ‘a’ (i.e., Ta(start))and
then checks whether ta follows tb or tc , since as we mentioned tb and tc are independent of each other (i.e., tb# tc)
ta should follow either tbor tc. According to the case L ta follows tb, so token moves to transition ‘b’ (i.e., Tb) and
checks whether tb follows td or tk (i.e.,(tb→td) or (tb→tk) XOR-Split), if there is insufficient information then
token moves to transition ‘k’ (i.e., Tk(end)) and terminates the process; but according to the case L tb follows td
(i.e.,(tb→td)), so token moves to transition ‘d’(i.e., Td). Currently token is at td and checks whether td follows
tf(i.e.,(td→tf)) and we need to notice is td must follow tf ,because this particular process follows a casualty rule
(i.e., (td→tf) and not (tf→ td)) and there is no other deviations it can attain; so token moves to transition
‘f’(i.e.,Tf). At transition Tf , it checks, whether transitions td and te is independent of each other (i.e., (td # te) they
does not follow each other) and tf is followed by td (i.e., tf← td) else checks tf is followed by te (i.e., tf ← te) if
any one of the above condition found to be true token stay at tf .And checks for one more condition whether tf
follows tg(i.e., (tf→tg)); according to the case L condition (tf→tg) becomes valid so token moves to transition Tg.
At transition Tg it checks three conditions, whether transition t g follows tk (i.e., tg→ tk) else checks tg follows th
(i.e., tg→th) else checks tg is followed by ti (i.e., tg →ti); according to case L condition (tg →ti) holds good, so
token move to transition Ti. At transition T i it checks whether transition ti follows th (i.e., ti→ th) because
(h||i),else checks th follows t j (i.e., ti → tj) else checks ti follows tk (i.e., ti → tk), according to case L condition
(ti→ th) holds good, so token moves transition Th. At transition Th it checks two conditions, whether transition th
follows ti (i.e., th→ ti) else checks th follows tj (i.e., th → tj), according to case L condition (t h→ tj) is true so

e-ISSN : 0975-4024 Ganesha K et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1194

token moves to transition Tj. At transition Tj it checks two conditions, whether transition tj follows ti (i.e., tj→ti)
because processes i and j are followed by each other (j||i),else checks tj follows tk (i.e., tj → t k), according to
case L condition (tj → tk) holds good, so token moves to transition Tk(end) and terminate the process. And we
obtain the process model as shown in the Fig. 8.
Output:

fig.8. Processed work flow using reimbursement step earlier than initiate payment process.

Case7, Case 8 and Case 9 –Invalid Cases
In Case 7

Let us consider the case L=(a,b,d,f) and checks the length of L and checks whether case starts with trace ta
and ends with trace tk, since case does not end with tk case will be considered as a invalid process.
In Case 8

Let us consider the case L=(b,d,f,k) and checks the length of L and checks whether case starts with ta ends
with trace tk, since case does not starts with t a case will be considered as a invalid process.
In Case9

Let us consider the case L=(b,d,f) and checks the length of L and checks whether case starts with ta ends
with trace tk, since case does not starts and end with t a and tk case will be considered as an invalid process. To
evaluate the effectiveness of the generated process model fitness formula is used (Equation 1) [24].
For example: Consider a case (a,b,k) which is replayed on the process model (Fig. 10.) obtained fitness value
equal to 1 using the Equation 1, where p=3, c=3, m=0 and r=0.

1 0 1 01 1
2 3 2 3

f
   = − + −   
   

 ∴ 1fitness =

e-ISSN : 0975-4024 Ganesha K et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1195

B. Organizational entity 1:

Fig. 9. Organizational entity (Sydney) Model 1
Table I. Fitness value for above traces in model 1

Traces Fitness
a,b,d,f,g,h,i,j,k 1
a,b,d,f,g,k 1
a,b,d,f,k 1
a,b,k 1
a,b,d,f,g,h,i,j,i,k 1
a,b,d,f,g,i,h,j,k 1

Fig.10. Organizational entity (Sydney) Model 2

e-ISSN : 0975-4024 Ganesha K et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1196

Table II. Fitness value for above traces in model 2

Traces Fitness
a,b,k 1

a,b,d,f ,k 1
a,b,d,f,g,k 1

a,b,d,f,g,h,i,j,k 1
a,b,d,f,g,h,i,j,i,k 0.875
a,b,d,f,g,i,h,j,k 0.875

For example: Consider a case (a,b,d,f,g,h,i,j,i,k) which is replayed on the process model (Fig. 10.) we obtain the
fitness value equal to 0.875, where p=8, c=8, m=1 and r=1.

∴ 0.875fitness =
C. Organizational entity 2:

Fig. 11. Organizational entity (Brisbane) Model 3
Table4. Fitness value for above traces in Model 3

Traces Fitness
a,c,e,f,g,h,i,j,k 1
a,c,e,f,g,k 1
a,c,e,f,k 1
a,c,k 1
a,c,e,f,g,h,i,j,i,k 1

a,c,e,f,g,i,h,j,k 1

1 1 1 11 1
2 8 2 8

f
   = − + −   
   

e-ISSN : 0975-4024 Ganesha K et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1197

Fig. 12. Organization entity (Brisbane) model4.

Table5. Fitness value of Model 4

Traces Fitness
a,c,k 1
a,c,e,f ,k 1
a,c,e,f,g,k 1
a,c,e,f,g,h,i,j,k 1
a,c,e,f,g,h,i,j,i,k 0.875
a,c,e,f,g,i,h,j,k 0.875

V. CONCLUSION

This research work deals with event logs of teleclaim, proposing unique models for different valid cases
present in teleclaim workflow log. The presented novel approach generates an effective process model by
replaying the traces on the process model. The event logs which do not fit into compliance will be considered as
invalid cases. The resultant process model is useful for any insurance organization to improve their business
process for their clients. Fitness for the proposed models can be used as a base of the insurance company to
decide whether the claim is valid or not. The Future work can be extended by constructing an Event Driven
Process Chains (EPC’s) and also check the conformance using footprints from event logs and generated EPC
model, to calculate the fitness, precision and generalization in a single metric.

REFERENCES
[1] van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L.,Schimm, G., Weijters, A.J.M.M, Workflow mining: A survey of

issues and approaches. Data & Knowledge Engineering, Volume-47(2), November 2003, pp. 237–267.
[2] van der Aalst, W.M.P., Weijters, A.J.M.M, Process mining: a research agenda. Computers in Industry, Volume-53(3), pp. 231–244,

2004.
[3] Bezerra, F., Wainer, J, Anomaly detection algorithms in logs of process computing awaresystems, In: SAC Proceedings of the 2008

ACM symposium on Applied New York, NY, USA, pp.951952, 2008.
[4] Bezerra, F., Wainer, J, Anomaly detection algorithms in business process logs, In: ICEIS 2008: Proceedings of the Tenth International

Conference on Enterprise Information Systems, Volume AIDSS., Barcelona, Spain, pp.11–18, 2008.
[5] van der Aalst, W.M.P., de Medeiros, A.K.A, Process mining and security: Detecting anomalous process executions and checking

process conformance, Electronic Notes in Theoretical Computer Science, pp.3–21, 2005.
[6] de Medeiros, A.K.A., van der Aalst, W.M.P.,Weijters, A, Workflow mining:Current status and future directions, In Meersman, R.,

Tari, Z.,
[7] Schmidt, D., eds.:On The Move to Meaningful Internet Systems,Volume 2888 of LNCS, 2003.
[8] Cook, J.E., Wolf, A.L.: “Discovering models of software processes from event-based data. ACM Trans”,Software Engineering

Methodology, Volume- 7(3) ,1998, pp. 215–249.
[9] van der Aalst, W.M.P., Weijters, T., Maruster, “Workflow mining:Discovering process models from eventlogs”. IEEE Transactions on

Knowledge and Data Engineering, pp.1128–1142, 2004.
[10] Agrawal, R., Gunopulos, D., Leymann, F.: “Mining process models from workflow logs”. In: EDBT ’98:Proceedings of the 6th

International Conference on Extending Database Technology, London, UK, Springer-Verlag,1998, pp.469–483.
[11] Cook, J.E., Du, Z., Liu, C., Wolf, A.L.: “Discovering models of behaviour for Concurrent workflows”.Computers in Industry,

Volume-53(3) ,2004,pp. 297–319.

e-ISSN : 0975-4024 Ganesha K et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1198

[12] Pinter, S.S., Golani, M.: “Discovering workflow models from activities’ life spans”.Computers in Industry, Volume-53(3)
,2004,pp. 283–296.

[13] Herbst, J., Karagiannis, D.: “Workflow mining with in wolves”. Computers in Industry, Volume-53(3), 2004, pp. 245–264.
[14] de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: “Genetic process mining: A basic approach and its challenges”. In:

Business Process Management Workshops, Volume 3812 of Lecture Notes in Computer Science, Nancy, France, September 2006,
pp.203–215, ISBN 978-3-540-32595-6.

[15] Yang, W.S., Hwang, S.Y.: “A process-mining framework for the detection of healthcare fraud and abuse”. Expert Systems with
Applications, Volume 31(1), pp. 56–68, July 2006.

[16] Van Dongen B., de Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: “The prom framework: A new era in process mining
tool support”. In: Applications and Theory of Petri Nets. Volume 3536 of Lecture Notes in Computer Science, 2005.

[17] MadderiSivalingamSaravanan, Rama S ree .R.J, “Application of process mining in insurance: A Case study for UTI ”, International
Journal of Advanced Computer and Mathematical Sciences ISSN 2230-9624, Vol 2, Issue 3, 2011, pp.141-150

[18] P. V. Kumaraguru and Dr. S. P. Rajagopalan, “Model Discovery from Motor Claim Process Using Process Mining Technique”,
International Journal of Scientific and Research Publications, Volume 3, Issue 1, January 2013.

[19] H.M.W. Verbeek, W.M.P. van der Aalst. “Decomposed Process Mining: The ILP Case.” Business Process Management Workshops,
Volume 202, pp.264–76,(April 12, 2015).

[20] Leemans, M., & van der Aalst, W.M. (2015, September). Process mining in software systems: Discovering real-life business
transactions and process models from distributed systems. In Model Driven Engineering languages and Systems (MODELS), 2015
ACM/IEEE 18thInternational Conference on (pp. 44-53). IEEE

[21] Dixit, P. M., Buijs, J. C. A. M., van der Aalst, W. M. P., Hompes, B. F. A., &Buurman, J. Enhancing Process Mining Results using
Domain Knowledge.

[22] Calvanese, D., Montali, M., Syamsiyah, A., & van der Aalst, W. M. Ontology-Driven Extraction of Event Logs from Relational
Databases.

[23] Turner C J, Tiwari A, Olaiya R, XuY: “Business Process Mining: From Theory to Practice”. Business Process Management Journal,
Volume 18, Issue 3, pp.493-512, 2012.

[24] http://www.processmining.org

AUTHORS

Ganesha K: Received his MCA degree from ICFAI University, Tripura. He is
currently serving as Lecturer in Computer Science Department, Amrita Vishwa
Vidyapeetham University, Mysuru Campus, Mysuru. His area of research includes
Process Mining, Database Systems and Data Mining.

Gagana J: She is currently pursuing her MCA degree in Amrita Vishwa
Vidyapeetham University, Mysuru Campus, Mysuru. Her area of research includes
Process Mining and Data Mining.

Namratha A C: She is currently pursuing her MCA degree in Amrita Vishwa
Vidyapeetham University, Mysuru Campus, Mysuru. Her area of research includes
Process Mining and Data Mining.

e-ISSN : 0975-4024 Ganesha K et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 1199

	A NOVEL PROCESS MINING MODELFOR TELECLAIM INSURANCEPROCESS
	Abstract
	Keywords
	I. INTRODUCTION
	II. BACKGROUND
	III. PROPOSED METHOD
	IV. EXPERIMENTAL RESULTS
	V. CONCLUSION
	REFERENCES

