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Abstract:  Pseudo Linear Estimator (PLE) developed for active target tracking in underwater 
environments. The PLE in sequential mode is considered here for this application. The results of PLE are 
compared with that of EKF. The results of Monte-Carlo simulation are presented for two selected 
scenarios. In PLE, there is no need to initialize target state vector and its covariance matrix with prior 
(approximate) knowledge and hence its performance is found to be better than that of EKF. 
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I. INTRODUCTION 

 Active sonar of the own-ship generates corrupt target measurements. The own-ship processes these 
measurements and estimates target motion parameters - viz., range, course, bearing and speed. There are many 
methods available [1]-[6] to achieve this task. Lindgren and Gong [7], Aidala [8], Aidala & Nardone [9] and 
Nardone, Lindgren & Gong [10] developed Pseudo Linear Estimator (PLE) in batch processing. S. K. Rao [11] 
developed PLE in sequential processing mode. In this paper, this work is extended to active sonar applications. 
All covariance matrix elements are represented recursively in terms of the measurement equation. They are 
called Recursive Sums and are maintained throughout the algorithm. Computation is made simpler by 
computing only the incremental values for every new measurement. These incremental values are used to update 
the Recursive Sums in covariance matrix. Few Recursive Sums are to be updated with new bearing & range 
measurement and hence computational load does not increase with additional measurements. 

 In general, it is perceived that PLE is a classical estimator and so it is not useful for tracking a 
manoeuvring target. Hence EKF is used for tracking a manoeuvring target.  With little modification in the 
algorithm, PLE can also be extended to track a manoeuvring target as is presented in this paper. The latest 
measurements (of fixed number) in sliding window are used to track a manoeuvring target. The length of the 
measurements is decided by the accuracy of the results obtained in Monte-Carlo simulation. The performance of 
the algorithm is evaluated for several geometries in Monte-Carlo simulation. For the purpose of illustration, the 
results of two typical scenarios are presented. In simulation, the performance of PLE is found to be better when 
compared to EKF. 

II. MATHEMATICAL MODELLING OF PSEUDO LINEAR ESTIMATOR 

 Let the target state vector be  kX t , given by           Tttttt kykxkykxk X  where 

 kxt  and  kyt  are target velocity components, and  kxt  and  kyt  are target position components. For 

conceptualization, the target is assumed to be moving at constant velocity. The target state dynamic equation is 
given by 

     kXkkkX tt ,11           (1) 

where  kk ,1  is a transient matrix and is given by 
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where ts  is time interval between two successive measurements. Let  kB  and  kR  represent the actual 

bearing and range respectively. Let  kBm  and  kRm  be bearing and range measurements generated by active 

sonar. The bearing measurement is the angle from ownship position to the target position, referenced 
(clockwise-positive) to the y-axis and is given by [7-11] 

      kkBkBm            (3) 
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where 
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where  00 , yx  are the position components of the ownship.  k  is zero mean white Gaussian sequence with 

variance  kB
2  . 

The four dimensional state eqn. (1) and the nonlinear measurement of eqns. (3) and (4) define the bearings-only 
motion analysis problem. The nonlinear bearing measurement of eqns. (3) and (4) are manipulated to provide a 
pseudo bearing measurement that is ‘linearly’ related to the target state [10]. Eqn. (4) is rewritten as follows to 

obtain pseudo bearing measurement,  kz  
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Substituting eqn. (3) in the eqn. (5), straight forward formulation yields 

                   kBkykBkxkkrkBkykBkx mmsmtmt sincossincos 00       (6) 

where  krs  is given by 

               kBkykykBkxkxkr mtmts cossin 00          (7) 

It is assumed that the magnitude of the noise  k  is less than 2 deg. With this assumption  kcos  and 

 ksin  are equal to 1 and  k  respectively. Again by simple algebraic formulation of the eqn. (7), we get 

measurement equation 

       kkXkHkz t              (8)  

where the pseudo bearing measurement  kz is given by 

         kBk- ykBkxkz mm sincos 00           (9)  

Measurement matrix for bearing measurement is given by 

      kBkBkH mm
' sincos00          (10) 

and      k rkk s . Let us define  knX t ,  as an estimate of target state vector, where n  is number of 

samples. To find out initial estimate,  ,kXt 0 ,  kz  is modified as  

         k,kXk,kHkz t  00         (11) 

where 
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Next we model the range measurement.  kRm , the measured range at time k, is given by 

     kkRkRm            (13) 

where 

           20
2

0
2 kykykxkxkR tt         (14) 

and  k  is a zero mean Gaussian sequence and is uncorrelated to the noise sequence in the bearing 

measurement. Eqn. (14) can be rewritten as follows to obtain pseudo range measurement,  kz   
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Substituting eqn. (3) and (13) in eqn. (15), we obtain 

       kkXkHkz t           (16) 

where the pseudo range measurement  kz   is given by 

           kRkBkykBkxkz mmm  cossin 00       (17) 

The measurement matrix for range measurement is given by 

      kBkBkH mm cossin00        (18) 

and 

                    kykykBkxkxkBkkk tmtm 00 sincos     (19) 

To find out initial estimate,  kXt ,0 ,  kz   is modified as 

         kkXkkHkz t  ,00,         (20) 

Consider the pseudo bearing and range measurements in matrix form as 

                  kzkzzzzzzzkZ  332211       (21) 

Let us use the familiar Least Square Estimator equation to find out the initial estimate of target state [11] 

          kZkAkAkAkX TT
t 0,0,0,,0ˆ 1

        (22) 

Calculation of    0,0, kAkAT  is given below.  0,kA  can be written as 

                  0,220,220,110,110,  HHHHkA     (23) 

Using eqn. (12) we can write that 
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and so on. Using eqn (10), we can write that 
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Similarly 

                2sin2cos2sin2cos0,22 2121 mmmm BBBtstsBtstsH    (25) 

It leads to 
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Then using eqn. (23),  0,kA  can be written as 
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   0,0, kAkAT  can be written as 
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where  

       



k

i
itststststststsp

1

22
321

2
21

2
1                     (29) 

and  

       



k

i
itststststststsq

1
321211                      (30) 

Let 

   0,0, kAkAPSI T            (31) 

then 





















kq

kq

qp

qp

PSI

00

00

00

00

          (32) 

 

 

e-ISSN : 0975-4024 K.Lakshmi Prasanna et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 794



Same procedure can be used to find out    kZkAT 0, . It is obtained by using eqn. (27) and eqn. (21) 
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Let  

   kZkAG T 0,            (34) 

Let us consider eqn. (22) again, 

          kZkAkAkAkX TT
t 0,0,0,,0ˆ 1

  

Using eqn. (31) and eqn. (34), eqn. (22) can be written as 

      GPSIkX t
1,0ˆ            (35) 

III. SEQUENTIAL IMPLEMENTATION OF PSI  AND G  MATRICES 

 So far the mathematical modelling describes batch processing. In this section, the equations are 
converted into sequential mode equations as follows. The effect of all the range and bearing measurements in 
each element of G matrix is maintained in the form of Recursive Sums.  Whenever new range and bearing 
measurements are available, only calculations pertaining to the newly arrived measurements are to be carried 
out and added to the Recursive Sums. Let T represent the total time elapsed from obtaining first measurement 
from sonar up to the availability of kth measurement and is given by 

ktstststsT  321           (36) 

 Let  kBm  and  kRm  be kth bearing and range measurements respectively. At the starting of the trial, 

the ownship is assumed to be at  0,0 , the origin of x-y coordinate system. Let  kx0  and  ky0  be x  and 

y  components of ownship's position at kth measurement. The elements of G  matrix shown in eqn. (34) are 

converted into Recursive Sums as follows.  Let the Recursive Sums be  1SUMS  to  8SUMS . After 

obtaining first measurement, these are given by 
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After obtaining kth measurement, these are 
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The G  matrix at kth measurement can be written as 
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         (39) 

 Once  kX t ,0  is calculated, the state vector corresponding to the current measurement can be found 

using transient matrix. The range, course, bearing and speed of the target are calculated using the current state 
vector. 

IV. TRACKING OF A MANOEUVRING TARGET 

 So far, it is assumed that target is not manoeuvring. In this section, this assumption is relaxed. Let us 
assume that the target moves at constant velocity with occasional manoeuvre as shown in Table 1. This problem 
can be easily solved by using fifteen to twenty measurements with sliding window technique. By sliding out the 
oldest sonar measurements, its corresponding own position, the array of SUMS are updated accordingly. This 
helps in maintaining the computations related to the latest ‘N’ sets of measurements where ‘N’ is the predefined 
window size of measurements. This is implemented by maintaining the record of all the necessary parameters in 
arrays data structure. The length of the measurements is decided by the accuracy of the results obtained in 
Monte-Carlo simulation. 

V. SIMULATION AND RESULTS 

 The algorithm is realized using Matlab on a PC platform. The positions of target and ownship are 
updated every second. In general, the errors allowed in the estimated target motion parameters in an underwater 
environment for weapon control are 8% in range, 3° in course and 1 m/s in speed. These accuracies cannot be 
obtained with deterministic method using two sets of range and bearing measurements spread over time interval 
even 80 seconds (details are given in Appendix–A). Hence stochastic estimator like PLE is necessary to estimate 
the target motion parameters. The measurements with additive measurement noise, available to the PLE are 
according to range scales. The scenarios considered are shown in Table 1. In scenarios 1 and 2, target moves at 
constant velocity for a period of 240 seconds and then it manoeuvres in course at the rate of 3°/s. Let the noise 
in the bearing and range measurements are white Gaussian and their values are shown in Table 1. PLE is used to 
estimate target motion parameters. The simulated and estimated target paths for scenario 1 & 2 are shown in 
Fig. 1 & 2 respectively. For the purpose of comparison, the measurements are also applied to the Extended 
Kalman Filter. The results of scenarios in Monte-Carlo simulation with 100 runs are shown in Fig. 3 & 4. 

 In case of PLE, for scenario 1, it was observed that the required accuracies are obtained in estimated 
target course and speed after 5th and 3rd measurements respectively. Once the target manoeuvres, the estimated 
solution is disturbed. The target manoeuvre is completed around 270 seconds. Upon the target manoeuvre, the 
error in estimated course is increased and reduced to within limits from 35th measurement onwards. There is 
very small disturbance in estimated target speed during target manoeuvre. The error in estimated range is 
acceptable from the beginning of the trial. In case of scenario 2, the required accuracies in estimated course and 
speed are obtained from 3rd measurement onwards. Upon the target manoeuvre, the error in estimated course is 
increased and reduced to within limits from 27th measurement onwards. 
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 In case of EKF, for scenario 1, it was observed that the required accuracies are obtained in estimated 
target course and speed after 6th and 3rd measurements respectively. Once the target manoeuvres, the estimated 
solution is disturbed. The target manoeuvre is completed around 270 seconds. Upon the target manoeuvre, the 
error in estimated course is increased and reduced to within limits from 37th measurement onwards. There is 
very small disturbance in estimated target speed during target manoeuvre. The error in estimated range is 
acceptable from the beginning of the trial. In case of scenario 2, the required accuracies in estimated course and 
speed are obtained from 7th measurement onwards. Upon the target manoeuvre, the error in estimated course is 
increased and reduced to within limits from 33rd measurement onwards. The required accuracies are obtained 
faster in PLE than in EKF. 

Parameters Scenario 1 Scenario 2 

Initial Range (m) 5000 4500 

Initial Bearing (deg) 55 240 

Target Speed (m/s) 2.5 3 

Target Course (deg) 250 to 180 at 240 seconds 150 to 90 at 240 seconds 

Ownship Speed (m/s) 3 3 

Ownship Course (deg) 90 180 

Error in Range (rms) 10 10 

Error in Bearing (rms) 0.5 0.5 

Table 1: Scenarios chosen for evaluation of algorithm 

 
Fig. 1 Simulated and Estimated Target Paths of Scenario 1 
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Fig. 2 Simulated and Estimated Target Paths of Scenario 2 
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Fig. 3(a) Error in course estimate for scenario 1 
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Fig. 3(b) Error in speed estimate for scenario 1 
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Fig. 4(a) Error in course estimate for scenario 2 
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Fig. 4(b) Error in speed estimate for scenario 2 

VI. LIMITATIONS OF THE ALGORITHM 

 The only limitation of the algorithm is that it cannot give the validity of the solution i.e., how far the 
solution is accurate, as the statistical characteristics of the noise in the input measurements are not considered in 
PLE. It is assumed that all measurements are correct. Due to the reverberations, the active sonar measurements 
may contain a number of outliers which can completely distort the solution when using the proposed method. 
This problem can be resolved if the measurements are available along with its variance to PLE. Then the 
measurements are weighted against its variance in Recursive Sums. If reverberation is more, variance of the 
error in the measurement is more, thereby; the incremental value of the SUMS with that measurement will be 
less. The Recursive Sums shown in eqn. (36) and (37) are modified as follows. After obtaining first 
measurement, the Recursive Sums, SUMS [1] to SUMS [8] are given by 
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         (40) 

After obtaining kth measurement, 
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where 
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0 sincos     (42) 

and  kB
2  is variance of the error in kth  bearing measurement 

       kR
2  is variance of the error in kth range measurement  

 Many times, the variances of the errors in bearing & range measurements are not available. Hence the 
following method is adopted, though it is not 100% error free. The maximum relative velocity between the 
target and ownship is 13 m/s (with submarine speed of 3 m/s  and ownship speed of 10 m/s). If target is at 4000 
meters, the measurement interval between two measurements is not more than 6 seconds (8000 m / 1500 m/s).  
So, the range separation between the target and ownship within two measurements is 6*13 = 78 meters. Let at 
certain point of time, the range measurement be 3.2 km, the next range measurement should be within the 
magnitude of 3.2 78 m. If it is not, then it is to be considered as invalid measurement. As range and bearing 
come together if range measurement is invalid, then corresponding bearing measurement was also invalid. Thus, 
there is no requirement of separate bearing gate for false bearing measurements. In this way, outlier problem up 
to certain extent is reduced. 

 The algorithm is easily extended to multi target tracking also as follows. The sonar measurements for 
each target with a particular identification number are passed on to the processing system. Concurrently multiple 
instances of PLE module are run on data of separate target tracks. Standard software techniques are used to 
realize the same. 

VII. SUMMARY & CONCLUSION 

 In this paper, PLE algorithm developed by S. C Nardone, A.G. Lindgren and K. F. Gong [10] and S. K. 
Rao [11] is extended with sequential processing to reduce mathematical complexity and the memory 
requirements in tracking of a moving target. Here Recursive Sums are introduced and updated whenever a new 
bearing and range measurement is available. The algorithm works in a closed loop. The estimated target state 
vector at any instant is used to calculate the target motion parameters at that instant and updates the Recursive 
Sums for improved solution at next instant. The algorithm is evaluated against hundreds of scenarios in Monte-
Carlo simulation and observed that convergence is obtained within 10 samples when target is at constant 
velocity. The algorithm is extended for tracking manoeuvring targets also. The results are presented for two 
scenarios using measurements from active sonar and the performance of this algorithm is compared with that of 
EKF. It was noticed that PLE generates required accurate solution faster. The estimated target motion 
parameters are useful to find out weapon preset parameters to release weapon onto the target. It is well known 
that PLE generates bias in the estimated range, particularly at long range scenarios. The effect of the bias is 
negligible, as weapons are highly sophisticated with homing capabilities. Therefore it is concluded that this 
algorithm finds a place for underwater active target tracking applications. 
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APPENDIX-A 

 Using two sets of range and bearing measurements and the time difference between them, the target 
course,   is given by 

 QP1tan             (A.1) 

where 

       2sin11sin2sin0 BRBRtsVP             (A.2) 

and 

       2cos11cos2cos0 BRBRtsVQ             (A.3) 

where 0V  and   are ownship speed and target course respectively. Target speed is given by 

 22 QPVt              (A.4) 

 Let us consider scenario 1 in Table 1 without target manoeuvre. The positions of target and ownship 
are updated every second. The measurements with additive measurement are assumed to be available to the 
following deterministic method. Using two sets of range and bearing measurements spread over on time interval 
of 80 seconds, the target course and speed are calculated. The results obtained in Monte Carlo simulation are 
shown in Fig A. 
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Fig. A.1(a) Error in course 

e-ISSN : 0975-4024 K.Lakshmi Prasanna et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 802



0

10

20

30

40

50

0 40 80 120 160 200 240 280 320 360 400 440
Time in seconds

E
rr

or
 in

 S
pe

ed
 (

m
/s

)

 
Fig. A. 1(b) Error in speed 

From the results, it is clear that the required accuracies cannot be obtained with this deterministic process when 
the measurements are corrupted with the noise as shown in Table 1 and hence stochastic filtering is necessary to 
estimate target motion parameters. 
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