
Tool for Measuring Coupling in Object-
Oriented Java Software

Mr. V. S. Bidve#1, Dr. P. Sarasu#2
1Ph.D. Scholar, 2Director R & D

#Veltech Dr. RR & Dr. SR Technical University, Avadi, Chennai, India.
1vijay.bidve@gmail.com
2sarasujivat@gmail.com

Abstract-The importance of object-oriented software metrics is increasing day by day to evaluate and
predict the quality of software. Coupling is one of the object-oriented metrics. It is a dependency degree
to which one program module depends on one of the other modules. Coupling measures play a significant
role in the quality aspect of object-oriented software, from design up to maintenance. To correctly predict
the quality factors of object oriented software, the coupling should be accurately measured. In the related
literature, we find many techniques to measure coupling. But, No any author explained the
implementation of his technique(s) in details and made the tool available to know how exactly coupling
has been measured.

In this paper, we propose a tool for measurement of coupling among classes of Java software. Java source
code is taken as an input for the tool to measure coupling. The input Java code is parsed, and tokens are
extracted. These tokens along with the code are used to measure different types of Coupling in Java
software. Coupling of different sample Java codes is measured with the tool to observe values of each
coupling type.

Keywords-Coupling, object-oriented software, metrics, measurement, class.

I. INTRODUCTION

Coupling measurement is used to evaluate the quality of software from design phase up to the implementation
phase. This paper presents a tool that analyzes the Java source code to measure coupling amongst various
modules of Java software. The coupling can be obtained from design document before implementation or from
source after implementation [1]. The coupling measurement derived before implementation may be used in
project planning, and implementation. Coupling measurement obtained from implementation can be used to
reflect changes during implantation, and allowing the measurement to be more precise [1]. This research project
addresses post implementation coupling measurement.

The authors A. Kavitha et al. [2], Gurunadha Rao Goda et al. [3], Arisholm et al. [4] proposed techniques of
dynamic coupling measurement. Although, dynamic coupling measurement can capture some dependencies that
static coupling measurement overlooks. The dependencies they capture are not complete because those are
dependent on particular executions used [1], so we cannot rely on their tool completely. The author Jeff Offutt
[1] has developed a static analysis tool named JCAT in 2008 to measure coupling by Java source code analysis.
We contacted the author to Jeff Offutt [1] to know more about the working of the tool, but as per his reply, the
tool is no more available. We couldn’t find a tool in the literature which is comprehensive and reliable. Finally,
we decided to develop a tool for static analysis of Java source code. The tool presented in the article is purely
static; i.e. it analyzes the input Java source code without executing the same. This tool focuses on inter-class
coupling rather than intra-class coupling. The tool is named as Java Coupling Measurement Tool (JCMT).

The remainder of this paper is organized as follows. Section 2 describes the detailed review of related work
conducted on various available coupling measurement techniques (tools). Section 3 summarizes the number of
coupling measures (types) considered in the implementation. Section 4 provides the ways of analysis of Java
code to measure couplings. Section 5 describes the implementation and working details of an automated tool
developed for coupling measurement. Section 5 also presents the results obtained using JCMT tool with graphs
in the form of bar-charts. Section 6 concludes the paper and confers about future work.

II. RELATED WORK

Coupling measurement has been attempted by various authors and numbers of tools are proposed in the
literature. In this section, we are discussing the existing techniques (tools) of coupling measurement proposed by
various authors. Our focus is to study existing coupling measurement tools rather than the available coupling
metrics.

In 2002, Jarallah et al. [5] presented a tool for measuring inheritance coupling for object-oriented systems. The
tool supports object-oriented languages such as Java, C++, and Smalltalk. The tool parses object oriented
systems to collect inheritance coupling metrics data. The data is then abstracted in language independent format

e-ISSN : 0975-4024 Mr. V. S. Bidve et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 812

and stored in system’s database. Finally, query engines are applied on the database to calculate different
coupling metrics. The authors have developed Java parser for software implemented in Java. As per the authors,
other Object Oriented language parsers can be implemented without changes to the system. The main problem
with the systems is that it calculates only inheritance coupling.

In 2004, Arisholm et al. [4] proposed a tool for dynamic coupling measurement in object-oriented systems. The
authors have described two approaches for collecting coupling data. In the first approach, the coupling data is
collected by executing the source Java programs. The tool utilizes interfaces provided by the Java Virtual
Machine to collect message traces. The information such as caller method class, callee methods class, method
invocation between classes, etc. is collected by a tool. It means, the first approach suggested by the author
collect dynamic coupling only by message traces i.e. coupling other than method invocations and message
passing is not under consideration by the tool. The second approach suggests collecting dynamic coupling data
through analysis of dynamic UML models. But, as per author itself coupling obtained using UML interaction
diagrams will tend to be underestimated because distinct elements of a set of possible messages will not be
distinguishable with UML diagrams.

In between 2003 to 2007, Mitchell et al. [6], [7], [10], [20] described a technique for dynamic class level
coupling measurement for runtime evaluation of a Java programs. Authors used the Java Platform Debug
Architecture (JPDA) for implementation of coupling measurement tool. Using the tool each of the class is
executed, and dynamic profile of the program in the form of occurrences of object instantiations, method calls,
and instance variable accesses is collected to calculate coupling. As per the author itself, this tool is very time-
consuming to generate a profile for the large application, and it is difficult to conduct an object-level analysis
[7]. In the later implementation of the tool, the authors used Apache Byte Code Engineering Library (BCEL)
[7]. This time, authors used to give an index to each method and field of a class file. When the application is
executed, each probe records a “hit” in another class file. This run-time information is then utilized to calculate
coupling measures. These tools described by the authors are limited to the measurement of runtime CBO
coupling. Other couplings metrics are not considered for measurement by the authors.

In 2008, A. Kavita et al. [2] have proposed the technique of dynamic coupling measurement. As per the authors,
the source code is introspected; all the functions are added with some trace events. Then the source code is
compiled and allowed to run. During run time the actual function calls are extracted. Dynamic function calls
from the source code are filtered out using standard coupling technique to get the dynamic coupling. As per the
authors, the users have to add the functions to the trace events in the tool. Traces only capture the coupling of
the code which comes under the execution of a particular event. Also, to select functions for the trace is an
overhead to the users. In short, this tool is not fully automated, and multiple executions of the source code are
required to capture all dimensions of coupling.

In 2008, Jeff Offutt et al. [1] have described a static analysis tool to identify coupling amongst the classes of
Java source code. The tool is named as Java Code Analysis Tool (JCAT) by the authors. JCAT accepts the
absolute path name of Java source package as an input. ANTLR is used as a grammar generator, which is used
to generate Java parser. Abstract Syntax Trees (AST files) are generated by the Java parser. The information
about class definitions, variable definitions, variable uses, method definitions, parameters and parameter uses,
and method calls for each class is maintained by AST files. The JCAT tool extracts information from AST files
and stores in a database (Access Database). Finally, ASTs are processed, and coupling is calculated using SQL
queries. The idea of the tool and explanation given regarding the tool is highly significant. But, the use of AST
files, Access database, and ASCII file is an overhead in the tool. A regular data structure of Java can replace
AST files and Access Database. Also, coupling metrics are stored either in a spread sheet or ASCII text files;
both file formats could be if JTable of Java is used. JCAT is a significant tool to measure coupling amongst Java
classes, but authors have made the tool heavy by using many unnecessary components.

In 2009, S. Husein et al. [8] described a tool named CCMETRICS for calculating coupling and cohesion in
object-oriented software. The tool receives object-oriented software source code as an input. The tool uses
ANTLR to construct grammar files. The input is parsed according to the language. The parser is based on
grammar files. The keywords are extracted from parsed input and are used to calculate coupling. The tool
proposed by the author is a much-generalized tool; a lot of efforts will be required to construct language specific
grammar files. The changes required to switch from one language to other is not properly mentioned by the
authors. Coupling metrics calculations using keywords is needed to be explained in details.

In 2011, N. Kayarvizhy et al. [9] proposed a generic framework for computing coupling amongst object-
oriented software components using XML. The tool accepts object oriented source code as an input. The source
code is parsed and converted into intermediate generic XML format. XML generic format is extracted by
metrics calculator to compute required metrics. The tool is developed in Java and supports to Java and C#
languages. As per authors, they used XML as an intermediate generic format because XML is portable and
compatible with Java. But, XML converter takes a lot of efforts to convert parsed data into XML intermediate
generic format. Rather, this can be achieved using simple language data structures. Conversion of parsed data

e-ISSN : 0975-4024 Mr. V. S. Bidve et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 813

into intermediate generic XML format and again to extract data for computing from XML format is an overhead
in this proposed tool.

In 2014, R. Geetika et al. [11] described an implementation for analysis of Java code using the architectural
diagram named methodology followed. The tool accepts Java sample code as an input, which is processed by
bytecode instrumentation module. Call logs are used for evaluation of Dynamic Metrics as per the tool. The
implementation details given by the authors about the tool are very diminutive; hence, it is very difficult to
comment on the same.

III. SELECTION OF COUPLING METRICS

Selection of coupling metrics is a tedious task because of multiple reasons. A lot of work has been done in the
field of coupling measures (metrics) of the object-oriented systems. As there is no standardization in the field,
every author has proposed a different set of coupling measures. This resulted in an overlapping amongst the
means (way of being coupled) of couplings. Also, different names are used by the various authors to describe
the same kind of coupling mechanisms. Hence, there is need to remove the overlapping amongst the measures.
To eliminate overlapping amongst the existing measures, we have classified them by type of interactions and
mechanisms used for the coupling. A detailed classification of existing coupling measures is provided in Table
1. Most frequently described measures of various authors are considered in the classification. We have
considered almost possible mechanisms of coupling as described in Table 1. The coupling names proposed in
the second column of Table 1 are used in the development of the tool described in section 5. These measures are
applicable to any object-oriented programming language, but the tool developed for this research is specific to
Java.

TABLE I Classification of Existing Measures on the Basis of Type Interactions and Coupling Mechanisms

Sr.
No.

Coupling
names used
in this
proposed
work

Type of
interactions

Coupling Mechanisms
Existing coupling measures
for the same mechanisms

1
Parameter
coupling

Method-
Method,

Method of one class invokes
method/passes parameter/passes
message to methods of another class or
to make a call to the constructor of
another class.

CBO [12], [13]

Interaction Coupling [14]

MM [15], [16]
IC_OM, IC_CM, EC_OM,
EC_CM [17]

Invocation Coupling [18]

MI [19]

2
Inheritance
coupling

Class-Class
One class is a superclass of another class
(Inheritance).

CBO, RFC [13]

Inheritance Coupling
[14],[18],[19]

3
Global
coupling

Method-
Attribute/
Class-Attribute
(Friend)

Method of one class can directly access
parts of the internal structure, of another
class method (friend). Also to access
common, shared, non-local variables of
another class.

Interaction Coupling [14]

Friend Coupling [15], [16]

AR[19]

4
Data
Abstraction
Coupling

Class-Method/
Class-Attribute

One class is used in the implementation
of methods of another class. One class is
the domain of the instance variable, the
local variable of another class.

Component Coupling [14]

CM,CA [16]

MP, MR, DA [19]

5
Import
Coupling

ALL
All type of coupling due to any import
mechanism.

Import Coupling [16], [19]

6
Export
Coupling

ALL
All type of coupling due to an export
mechanism.

Export Coupling [16], [19]

7
External/file
coupling

Sharing of
global devices.

Sharing an external device like the
printer, HDD, external file by the two
classes.

External Coupling [1], [14]

e-ISSN : 0975-4024 Mr. V. S. Bidve et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 814

IV. ANALYSIS OF JAVA SOURCE CODE TO FIND COUPLINGS

This section presents a thorough analysis of Java source code. After analysis, we will be able to measure various
types of couplings described in Table 1. The focus of analysis of source code is to cover all factors responsible
for coupling. This analysis is practical based and focusing on different mechanisms that constitute a coupling
amongst classes of Java source code. We are analyzing every component of a class to find the existence of
coupling and its type.

4.1 Occurrence of Parameter Coupling

The parameter coupling occurs when a method of one class invokes method(s) or calls constructor(s) of other
classes. In Java, there are two types of method calls, implicit and explicit. An implicit constructor call is made
when a variable of another class type is defined and instantiated in a class. Explicit calls are made through
object instances and static calls. All these calls with and without parameter passing are considered in parameter
coupling. Let X and Y are two classes m() is a method of class X, the following are types of method calls made
by a class Y which constitutes parameter coupling.

1. X x= new X(); // implicit constructor call

2. x.m(); // explicit call through object reference

3. X.m(); //explicit static call.

As coupling is an inter-class relationship, hence we are not considering the currents class’s method/constructor
calls in parameter coupling. If my(), is a method of class Y then following calls will not be considered for
parameter coupling of current class Y.

1. Y y=new Y() //constructor call for same class

2. this.my() // call to the method of same class

The above two types of calls come under intra-class coupling and are not considered under parameter coupling.
Intra-class coupling is out of the scope of this research.

4.2 Occurrence of Inheritance Coupling

 If one class inherits to another class there is inheritance type of coupling between two classes. The object
instance of an inherited class can access public members of the base class; hence, this is a strong type of
coupling between the classes. Java forms Inheritance relationship using the keywords extends and implements
with classes and interfaces respectively.

In this study, we are focusing on another angle of inheritance relationship. When one class A inherits another
class B, then class A is coupled with class B through inheritance coupling. Similarly, here we are considering
that; class B is also coupled to class A by the same coupling. We have decided to increase the coupling count of
both the classes A and B if they are coupled via inheritance coupling.

In this research, we are considering only direct inheritance coupling not the indirect. In the example shown in
figure 1, class A is directly coupled with classes B, C, and D and indirectly coupled with class E. Indirect
coupling happens due to multilevel coupling between the classes. Indirect inheritance coupling may create
unnecessary confusion and increases the complexity of the project. The direct-coupling analysis covers all
associations between the classes by collecting each component of a class which is responsible for coupling.
Hence, the indirect coupling is not required; so kept out of the scope of this project.

e-ISSN : 0975-4024 Mr. V. S. Bidve et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 815

Fig. 1 Class Hierarchy and Inheritance

4.3 Occurrence of Global Coupling

Global coupling occurs due to the variables defined in one class and used in another class. The variables are
particularly of the type public and protected. The public global variables are accessed using object instances,
and static variables are accessed by static calls. In C++ private members of other class can be accessed via
friend mechanism. As Java does not support friend mechanism hence references to private members are
considered in this project.

4.4 Occurrence of Data Abstraction Coupling

Data abstraction coupling takes place when another class is used as a domain (data type) in the definition of
current class. Another class can be used as a domain for the return type of method, in the definition of a method,
or in the definition of the current class itself.

4.5 Occurrence of Import and Export Coupling

Import coupling of a class constitutes a coupling due to all types of references and invocations made by a class
to the members of other classes. A class may import methods, global, static, or instance variables of another
class. Use of another class as a domain is also a type of import.

Export coupling takes place when the members of a current class are being used in the implementation of
another class. The methods, global, static, or instance variables of a current class may be exported. A class may
be exported to use as a domain by another class.

4.6 Occurrence of External Coupling

Two or more classes are coupled via external coupling if they are referencing to the shared common devices like
printer, HDD, or external file. An access to common shared devices by more than one class contributes to the
external coupling between those classes as shown in figure 2. Total reference of a class to the shared devices in
association with other classes leads to an external coupling.

Fig. 2 External Coupling

e-ISSN : 0975-4024 Mr. V. S. Bidve et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 816

An executable Java code is analyzed to verify the appearance of above coupling types. This analysis presents a
systematic way of coupling measurement between the classes of Java source code.

V. A TOOL FOR MEASURING COUPLING

We have developed a Java Coupling Measurement Tool (JCMT) to measure coupling amongst classes of object-
oriented Java software. The tool measures all types of couplings defined in Table 1 using the techniques
described in section 4.

JCMT is a static source code analysis tool developed in Java. The tool comprises of several software modules
including Java parser, method visitor, class visitor, coupling computation unit, etc. Figure 3 shows JCMT’s
architecture diagram, which tells the process flow of the tool.

The JCMT accepts .Java file as an input then uses JavaParser to verify the syntax of an input Java file and to
converts it into Compilation Unit. Compilation Unit is a properly formatted ordered Java code generated by a
JavaParser.

JCMT extracts information from compilation unit using ClassVisitor and MethodVisitor modules. The
ClassVisitor visits the class header, attributes, fields, methods, inner information, and end of each class of an
input Java source file. Similarly, the MethodVisitor visits the annotations, attributes, fields, local variables, and
end of methods. The extracted data from compilation unit is stored in ClassArrayList. Coupling Computation
Unit refers the data of ClassArrayList in association with class extraction module to compute coupling of each
type described in Table 1 using techniques given in section 4. The computed couplings values are initially
captured in the hash table and then displayed using the Java JTables.

As compared with the tools described in the literature this tool is lightweight and developed using a minimum
number of inbuilt Java components.

Fig. 3 Architecture Diagram of JCMT

5.1 JCMT user interface

Figure 4 shows JCMT’s dashboard. Browse button is provided showing three dashes as a caption to accept Java
input file. The path of selected Java file is shown in a text box. The View File button is used to opens an input
Java file if the user wants to see the contents. The Parse button parses the input Java file and displays output in
JTable by performing computations. If an input Java file contains any error; Parser displays an error message.
JTable displays the output in the form of rows and columns. The row headers are the name of classes belonging
to an input Java file, and the column headers are different coupling types whose value is calculated. Every row
of the JTable displays coupling values of each type for the respective class. A nonzero value indicates the total
number occurrences of a particular coupling type where the zero value is a nonexistence of that coupling type.
At the end of dashboard the buttons Average Graph, Coupling Graph, and Class Graph are provided to show
the coupling output in the form of bar charts as shown in figure 5. The dashboard can be closed directly using
close window button.

e-ISSN : 0975-4024 Mr. V. S. Bidve et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 817

Fig. 4 User interface of JCMT tool

5.2 JCMT software design and implementation

JCMT has two main packages, coupling and japa (Java Parser). The coupling package is responsible for metrics
calculations, GUI, and graphs, where the japa package is responsible for parsing the input Java file and to
convert it into a class array list.

JCMT calculates the coupling of each class with other classes by analyzing the class structure. The coupling
definitions are the base for identifying various kinds of couplings using JCMT. JCMT is tested for the examples
of different sizes, and the output is verified manually. Theoretically, there is no upper limit on the number of
classes handled by JCMT for an input Java source file.

5.3 Results

We used JCMT to measure coupling of a sample Java source file named GlobalExample and results are
displayed in the JTable shown in figure 4. GlobalExample is a sample Java file to test JCMT‘s results. Instead of
GlobalExample we can consider any executable java file as an input to JCMT. The graphs of the output obtained
from GlobalExample are shown in figure 5.

This paper only describes the implementation and the use of JCMT tool. In this paper, we are not commenting
anything on the results as it is a future scope of this project.

(a) Average Graph

e-ISSN : 0975-4024 Mr. V. S. Bidve et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 818

(b) Couplingwise Graph

(c) Classwise Graph

Fig. 5 Graphs of output

VI. CONCLUSION AND FUTURE WORK

This paper presents a tool for measuring coupling in object oriented Java software. We selected the coupling
measures which are unambiguous and cover all aspects of class associations for the implementation of this tool.
The techniques used in the coupling measurement of this tool are based on Java language features. The tool
developed is lightweight and uses a minimum number of inbuilt Java components.

In the future, we planned to use this tool for measuring the coupling of large size source codes and the results
will be used to find its impact on different quality parameters of object-oriented software.

REFERENCES
[1] Jeff Offutt, Aynur Abdurazik, and Steve Schach, “Quantitatively Measuring Object-Oriented Couplings”, Springer's Software Quality

Journal, 6(4):489-517, December 2008.
[2] A. Kavitha and Dr. A. Shanmugam, "Dynamic Coupling Measurement of Object-Oriented Software Using Trace Events", In proc. of

the 6th International Symposium on Applied Machine Intelligence and Informatics, 2008 (SAMI 2008), pp. 255-259, Jan. 2008.
[3] Gurunadha Rao Goda and Avula Damodaram, “Measurement of Dynamic Coupling in an Object Oriented System Based on Trace

Events”, American J. Scientific Research, ISSN 1450-223, 10(7): 43-55, 2011.
[4] Erik Arisholm, Lionel C. Briand, and Audun Føyen, “Dynamic Coupling Measurement for Object-Oriented Software”, IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004.
[5] AlGhamdi, J., Elish, M., and Ahemed , M. “A tool for measuring inheritance coupling in Object-Oriented Systems”, Special issue of

the Software Science Journal, October 2001.

e-ISSN : 0975-4024 Mr. V. S. Bidve et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 819

[6] A Mitchell, JF Power, “Runtime Coupling Metrics for the Analysis of Java Programs”, preliminary results from SPEC and Grand
suites 2003.

[7] Mitchell Aine, James F. Power. "Using object-level run-time metrics to study coupling between objects", Proceedings of the 2005
ACM symposium on applied computing. ACM, 2005.

[8] Husein, Sukainah, Oxley Alan, “A Coupling and Cohesion Metrics Suite for Object-Oriented Software”, International Conference on
Computer Technology and Development, vol.1, no., pp.421-425, 13-15 Nov. 2009.

[9] N. Kayarvizhy, S. Kanamani, “An Automated Tool for Computing Object Oriented Metrics using XML”, Proceedings of International
Conference on Advances in Computing and Communication ACC2011, Springer, 2011, Vol. 191, pp. 69-79.

[10] Michael English, TonyCahill, JimBuckley, “Construct specific coupling measurement for C++ software”, Computer Languages,
Systems & Structures 38 (2012), 300–319.

[11] Rani Geetika, Paramvir Singh, “Empirical investigation into static and dynamic coupling metrics”, ACM SIGSOFT Software
Engineering Notes 39(1): 1-8 (2014).

[12] S.R. Chidamber, C.F. Kemerer, “Towards a Metrics Suite for Object Oriented design”, in A. Paepcke, (ed.) Proc. Conference on
Object-Oriented Programming: Systems, Languages and Applications (OOPSLA’91), October 1991. Published in SIGPLAN Notices,
26 (11), 197-211, 1991.

[13] S.R. Chidamber, C.F. Kemerer, “A Metrics Suite for Object Oriented Design”, IEEE Transactions on Software Engineering, 20 (6),
476-493, 1994.

[14] J. Eder, G. Kappel, M. Schrefl, “Coupling and Cohesion in Object-Oriented Systems”, Technical Report, University of Klagenfurt,
1994.

[15] L. Briand, P. Devanbu and W. Melo, “An Investigation into Coupling Measures for C++,” Proc. 19th Int’, l Conf. Software Eng., ICSE
‘, 97, Boston, pp. 412-421, May 1997.

[16] Briand, Lionel C., John W. Daly, and Jurgen K. Wust, “A unified framework for coupling measurement in object-oriented systems.”
Software Engineering, IEEE Transactions on 25.1 (1999): 91-121.

[17] Erik Arisholm, Lionel C. Briand, and Audun Føyen, “Dynamic Coupling Measurement for Object-Oriented Software”, IEEE
Transactions on Software Engineering, Vol. 30, NO. 8, August 2004.

[18] Huan Li, “A Novel Coupling Metric for Object –Oriented Software Systems”, IEEE International Symposium on International Journal
of Computer Applications (0975 – 8887) Volume 27– No.10, August 2011Knowledge Acquisition and Modeling Workshop, pp. 609-
612, 2008.

[19] Husein, Sukainah, Oxley Alan, “A Coupling and Cohesion Metrics Suite for Object-Oriented Software”, International Conference on
Computer Technology and Development, vol.1, no., pp.421-425, 13-15 Nov. 2009.

[20] A Mitchell, JF Power, “An empirical investigation into the dimensions of run-time coupling in Java programs”, In Third Conference
on the Principles and Practice of Programming in Java (pp. 9-14) 2004. Las Vegas, Nevada, USA.

AUTHOR PROFILE

Author1 Mr. V. S. Bidve Ph.D. scholar in Veltech Dr. RR & Dr. SR Technical University, Avadi, Chennai,
India. Also works as a professor. Completed M.Tech. in IT. Degree and having 14 years teaching experience.

Author1 Dr. P. Sarasu Working as a research dean in Veltech Dr. RR & Dr. SR Technical University, Avadi,
Chennai, India. Also working as a Ph.D. supervisor. Having 20+ years experience in teaching.

e-ISSN : 0975-4024 Mr. V. S. Bidve et al. / International Journal of Engineering and Technology (IJET)

p-ISSN : 2319-8613 Vol 8 No 2 Apr-May 2016 820

