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Abstract - Flood Frequency Analysis (FFA) uses both flood peak series, i.e. Annual Maximum Series 
(AMS) and Partial Duration Series (PDS). AMS analyses number of peaks equal to number of 
observation years using a single best fit probability distribution, while PDS analyses peaks over a 
threshold value adopting Poisson distribution (PD) and negative binomial (NB) distribution counting 
occurrences of peaks (μ) over threshold and exponential distribution (ED), generalized logistic 
distribution (GLD) or Pareto distribution (GP) for magnitude. Both ED and GLD method are used to 
analyze at-site extreme flood information in the PDS model at Champua gauging site under Baitarani 
Basin, Odisha (India). Performances of AMS/PD-ED, AMS/NB-ED, AMS/PD-GLD, AMS/NB-GLD are 
compared in terms of uncertainty of T-year event estimator. Results show AMS/PD-ED model yields 
lower variance of T-year estimate than AMS/NB-ED model, while AMS/NB-GLD gives less variance in 
comparison to AMS/PD-GLD. Results indicate that in case of ED, flood quintiles are acceptable for μ≤8 
and T≤500 within 95% confidence limit, while they are comparable for μ≤3 and T≤100 in case of GLD 
distribution. To summarize, NB distribution is preferred for number of flood peaks if coupled with GLD 
for flood exceedances and Poisson distribution in case of ED for flood exceedances values. 

Keywords -Annual Maximum Series, Partial Duration Series, Exponential Distribution, Generalized Logistic 

Distribution  

I. INTRODUCTION 
 

Design flood estimation corresponding to a specified risk of flood inundation or the stability of water 
resource structures is an important part of the engineering practice and flood frequency analysis (FFA) is an 
efficient tool to quantify the magnitude of the extreme hydrologic events. The relation between discharge and 
the return period is unique for every gauging station. There are two approaches commonly used for probabilistic 
analysis of extreme flood magnitudes, i.e., the Annual Maximum Series (AMS) and Partial Duration Series 
(PDS). The AMS model considers the annual maximum flood of each year in a series that has as many elements 
as there are years in the data record. In contrast, the PDS model considers all flood peaks above a certain 
threshold level. The AMS model results in loss of information as some peaks that are not annual maximum 
(AM) are still relatively high and are not considered in AMS analysis and very low discharge values can be part 
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of AMS. The AMS sample is usually rather small as compared to PDS sample where more than one flood per 
year may be included. PDS models are used for flood frequency analysis (FFA) where the flood record is short. 
If the threshold is increased to certain limit, recurrence interval of large events computed using AMS and PDS 
models tend to converge. Since the PDS sample is defined by all peaks that lie above a certain truncation level, 
assuring the independence of data series and choosing an appropriate threshold value is of prime importance. 

 The methods followed for formulating these models are quite different e.g. an AMS model uses a 
cumulative distribution function (cdf) to model the flood extremes, whereas the PDS model uses two 
probabilistic models: (a) one for the probability of occurrence of peaks above a threshold, and (b) the cdf, ˜˜ for 
modeling the flood exceedance. Generally more than one distribution may fit the data well and selecting the best 
model can be difficult (Salas et al.2012). Different countries have formulated guidelines regarding use of 
various distributions. Further the behavior of the method also depends on the estimation technique for 
distribution parameters which are estimated through different methods such as methods of moments (MOM), 
methods of  probability weighted moments(PWM)/L-moments and maximum likelihood estimation (MLE). The 
present study is focused on at-site flood analysis using the PDS model for quantile estimation using the L-
moment method with two probability distribution function, i.e. ED and GLD. The numbers of exceedances are 
modeled as a discrete distribution whereas the exceedances magnitudes are modeled as continuous distribution 
and their total probability leads to flood magnitude of desired return period (QT). Considering the number of 
flood peaks above the threshold (Q0) as random, Shane and Lynn (1964) assumed this number to follow a PD. 
Since the process following a PD assumes that events are independent and occur uniformly throughout the 
interval of observations, it necessitates that there is no clustering of events (Stark and Woods, 1986). Thus, the 
dependence of flood peaks in PDS may well have an effect on the ability of  PD to describe the number of peaks 
above threshold. Besides PD (Todorovic & Zelenhasic 1970[29], NERC 1975[21], Cunnane 1979[5], Lang et al. 
1997[16], ÖnÖz and Bayazit 2001 [23], Bhunya et al. 2012[2]), Negative Binomial (NB) ( Cunnane 1979[5], Lang et 
al. 1997[16], ÖnÖz and Bayazit 2001[23] , Bhunya et al. 2012[2]) and Binomial (Lang et al. 1997[16], ÖnÖz and 
Bayazit 2001[23]) can also be chosen. Studies by NERC (1975) [21,22] and Cunnane (1979) [5] on 26 streams in 
Great Britain indicated that the number of peaks occurring each year is not a Poisson variate since its variance 
was significantly greater than its mean, which violates the basic assumption of PD. As NB distribution has this 
property, it was used by Lang. (1999) [15] and ÖnÖz and Bayazit (2001) [23] in PDS modeling. 

Many commonly used distributions are approximately exponential with a stretched upper tail, for 
which ED was first used by Kirby (1969) [13] to fit the flood exceedances in a PDS model. Although alternate 
frequency distributions have been proposed in the past, e.g. the Gamma distribution (Zelenhasic 1970[30]), 
Weibull distribution (Ekanayake and Cruise 1993[7]), Generalized logistic model (Bhunya et al. 2012[2]) in PDS 
models, and the most popular is the generalized Pareto (GP) distribution which has the ED as a special case 
(Fitzgerald 1989[8]; Madsen et al. 1997[18]; Martins and Stedinger 2000[19], 2001[20]; Bhunya et al. 2013[3]). All 
these studies use GP distribution as the flood exceedance model with PD arrival rate for deriving the PDS 
model. Recently ÖnÖz and Bayazit (2001) [23]compared the advantages of NB and Poisson distributions in  PDS 
model when ED is used as the flood exceedances model. Bhunya et al. (2012[2], 2013[3]) found that the Poisson 
distribution is better than the NB distribution in cases where the mean and variance of the annual number of 
exceedances are small. However, their studies stressed the importance of threshold selection as main criteria for 
the performance of the PDS models rather than the choice of any particular distribution to model the arrival 
rates.  

With the above background, the present study compares the merits of PD and the NB distribution as 
models for the occurrences of peaks exceeding a threshold in PDS context, considering ED and GLD to model 
the flood exceedances. Estimation of the ED and GLD parameters by the method of L-moments (Greenwood et 
al. 1979[9]; Hosking 1986[10]; Hosking & Wallis 1997[11], Shabri & Jemain 2013[27])  is formulated for different 
thresholds. The performances of the AMS/PD-GLD and AMS/NB-GLD and also AMS/PD-ED and AMS/NB-
ED models are compared using the variances of T-year estimates on field data. These are also compared with 
the corresponding AMS analysis considering the maximum annual peak values matching to the period of data 
available. 

 
 

II. PROBABILITY DISTRIBUTIONS USED IN ANALYSIS 

 
A. Exponential Distribution 
 
The exponential distribution is a special case of the Gamma family of distributions (Rao & Hamed  2000[24]) and 
the probability distribution function is given by 
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ξ  is the lower bound and β is the scale parameter. 
 Eqn.1  in the inverse form is expressed as 
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The parameters ξ and β in terms of L-moments are given as 
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KT is the growth factor for exponential distribution. 
 
B. Generalized Logistic Distribution 
 
The probability distribution function of a three parameter generalized logistic distribution is defined by Hosking 
and Wallis (1997) as 
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k  , , αξ are the location, scale and shape parameters, respectively. 
The T year event QT is defined as  
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KT is the growth factor for GLD. The location parameter ξ is equated to the distribution median to the sample 
median  m ( ξ = m ).   
            (6) 
 
 
with m= λ 1 and α= λ 2 when expressed in L-moment estimators. 
 
 
Ahmad et al. (1988) [1], Hosking and Wallis (1997) [11], Rao and Hamed (2000) [24] expressed the general form of 
the distribution to be used in flood exceedances model 
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and the flood quantile is expressed as ( )1TlnmQQ 0T −α++=      (8) 
 
C. Poisson Distribution 
 

In the PDS model, all peak events above a threshold level are considered and the number of these peaks 
in a given year is assumed to follow a Poisson distribution having the probability mass function: 

r!
N)( er)P(X

rμN μ==
−

            r = 0, 1, 2 …                     (9) 

where P(X= r) is the probability of r events in N years, μ is the average number of threshold exceedances. 
Eqn.(9) is true as long as the flood peaks are independent (Langbein 1949[17]). For n number of observed 
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exceedances in N years, μ is equal to n/N. For Poisson distribution, PWM estimations and the population 
estimate of μ is given by   

N
nμ̂ =                 (10) 

The mean and variance of r are defined as follows: 
2σVar(r)n/NμE(r) ====    ;   n ≥ 5        (11) 

For μ > 5 the distribution of r is symmetrical and it asymptotically approaches a normal distribution (Johnson 
and Kotz 1973[12]).  For no flood exceedances to occur in a given year, substituting r = 0 in Eq. (1), the 
following is obtained 

μ
0μ

e
0!

)(e0)P(r −
−

=== μ
         (12) 

which is the probability distribution function (pdf)  of an exponential distribution. The cumulative mass function 
of Eq. (9) for N years is given by 

( ) μNμe1XF −−=     ;  N > 0      (13) 
 
where X is a variate. Assume that a threshold level Q0 is chosen, corresponding to a mean annual number of 
exceedances of Poisson distribution μ ; then at any higher threshold Q > Q0, the number of exceedances r′  is 
Poisson distributed with the following parameter (Flood Studies Report 1975) 

[ ]F(Q)1μμ −=′           (14) 

Since F (Q) ≤ 1, it follows that μμ ≤′  i.e. the truncated mean of exceedances above the new threshold q 
decreases, which is quite obvious. 
 
D. Negative Binomial Distribution 
 

Binomial random variable is a count of number of successes in certain number of trials, whereas the 
negative binomial distributed variables are literally opposite to that; here the number of successes are 
predetermined and the number of trial are random. The NB distribution is the probability of having to wait X(= 
r+k-1) trials to obtain r-1 successes and the success in r+k trial. If X has a NB distribution with parameters p and 
r , the probability mass function is given by,  

( ) kr1kr
1-r p)(1pr)P(x −== −+

   ; r > 1 and 0 ≤ p ≤ 1   (15) 
 
In Eq.(15) p is the constant probability of a success in any independent trial . P(X=r) gives the probability that 
the variate X is equal to r. Because at least r trials are required to get a success, the range of  Eq.(7) is from r to 
∞. The probability that there is no flood exceedance in any given year is obtained by making r-1 = 0 in Eq. (15) 
as 

( ) kk1k
0 p)(1p)(10)1-P(r −=−== −          (16) 

Similarly, the probability of number of occurrences of exceedances less than r is given by 

( ) kr
r
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The value of p and r are given by (Spigel 1987) as 

( ) ( ) ( )
( )0

0
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p
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III. PDS BASED ANNUAL MAXIMUM FLOODS 

 
The annual maximum flood in the PDS model is determined from the total probability of average 

number of flood exceedances and the exceedances value above the threshold. The probability distribution 
function F(Q) is given by (Shane and Lynn 1964) 

( ) ( ) ( )( )
∞

=
μ=

0r

ryGrPQF  where y= Q-Qo      

 (19)  
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A. AMS/PD-ED Model 
 
When number of exceedances are poissonian and their magnitudes are exponential (AMS/PD-ED) (Zelenhasic 
1970[30]; ÖnÖz and Bayazit 2001[23]) 
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β is the single parameter of exponential distribution = E(y) = μ = Var(y)0.5 
Eq.(20) is  the Gumbel or EV1 distribution widely used in FFA. 

On simplification of Eq.(20) with ( )
T
11QF −=  , T being the return period, we get 
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where 













 −−−=

T
11lnlnYT  is the Gumbel reduced variate. 

Cunnane (1973) [4] obtained the following expression for the asymptotic sampling variance of the estimate QT 
computed from N-year long observations: 
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Rosberg (1985) introduced a small sample correction factor to the above formula which is of minor importance  
for μN> 10. 
 
B. AMS/NB-ED Model 

 
When number of exceedances are negative binomial and their magnitudes are exponential (AMS/NB-ED) 
(ÖnÖz and Bayazit  2001[23]) 
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And the variance is given as  
 
 

(25) 
 
 
 
 
 
 
 
C. AMS/PD-GLD Model 

 
When number of exceedances are poissionian and their magnitudes are GLD distributed (AMS/PD-GLD) 
(Bhunya et al. 2012[2]) 
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( ) T0T YmlnQQ α++μα+=         (27) 
The variance is given by 
 
            (28) 
 
 
 
D. AMS/NB-GLD Model 

 
When number of exceedances are negative binomial and their magnitudes are GLD distributed (AMS/NB-GLD) 
(Bhunya et al. 2012[2]) 
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Eqn.(29) gives the flood of a given return period as follows 
 
            (30)
             
The variance is given by 
 
            (31) 
 
             
 
 
 

IV. STUDY AREA 
 
 The gauging station at Champua on River Baitarani (Fig.1) is selected for the present study. River 
Baitarani up to this gauging site records the river hourly gauge values and the discharges at 8.00 AM everyday 
and the records are available for the period 1991 to 2013 (23 years). The hourly discharges are computed from 
the Gauge Discharge curve prepared using the recorded daily gauge and discharge values during the monsoon 
period. For the PDS model, the maximum daily maximum discharge values are used for analysis, whereas the 
yearly maximum values are considered for AMS analysis. Table.1 provides the discharge statistic of River 
Baitarani at Champua. 
 

TABLE 1 

Flow parameters of the GD site 
Period Annual. Discharge (m3/s) Mean(μ)   (m3/s) SD(σ)  (m3/s) Skewness (ϒ) 

Maximum Minimum 

1991-2013 2756.38 156.79 919.90 612.04 1.19 
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Fig 1 Index map of Baitarani Basin (GD site at Champua) 

 
V. RESULTS AND DISCUSSION 

 
 The performance of exponential (ED) and generalized logistic distribution (GLD) are compared on the 
basis of their variance ratio defined as 

( )
( ) GLD/*T

ED/*T
i QVar

QVar
R =  i = 1 to 4 as defined in Table.6 (* is PD/NB)  

If the value of Ri for a given period is greater than one, it indicates that GLD yields less variance than the ED 
when used for fitting the flood exceedances in PDS and the value equal to one is the ideal. The results with 
respect to the data used for AMS/PD-ED, AMS/NB-ED, AMS/PD-GLD and AMS/NB-GLD analysis are given 
in Tables. 2-5.  
As indicated in Table.6, the variance ratio R1 indicates that AMS/PD-ED yields lesser variance than AMS/NB-
ED for all mean number of exceedances except for μ=2, σ2=4.727 for T=5 to 500. Earlier Cunnane (1979) [5] has 
found that there is no satisfactory improvement by employing binomial distribution instead of Poisson 
distribution to account for flood exceedances in PDS. In a similar study ÖnÖz and Bayazit (2001) [23] also 
concluded that flood estimates based on NB distribution is almost identical to those obtained using Poisson 
distribution. They used Var(QT) as an index to compare the AMS/PD-ED and AMS/NB-ED model. Similarly in 
case of GLD, AMS/PD-GLD gives more variance compared to AMS/NB-GLD except for μ=1.478, σ2=2.351. 
The R3 values further indicate that the variance of AMS/PD-ED model is smaller than AMS/PD-GLD model 
when the μ ≥4.The R4 values indicate the AMS/NB-ED always generates excess variance than AMS/NB-GLD 
model for μ≤6.  But since it is seen that when μ ≤ 3, the POT and AMS model agrees with each other to a 
greater extent. In the present at-site analysis, the findings are also in agreement with that of  Cunnane (1979) [5] 
and ÖnÖz and Bayazit (2001) [23]. When the value of number of exceedances (μ) is in between 1.478 to 3, the 
standard deviation (σ) is nearly equal to the value of μ which is the basic property of a Poisson distribution. The 
variance ratio justifies that AMS/PD-ED model performs better than the  AMS/PD-GLD model. In case GLD is 
to be used, AMS/NB-GLD is preferable to AMS/PD-GLD. In the entire analysis it is seen that PDS based AMS 
model results are more than the AMS model for μ=1.478, σ2=2.351. Figure 2-5 give a better visual match 
between the AMS/ ED versus AMS/PD-ED and AMS/GLD versus AMS/PD-GLD model up to T≈100 
respectively which are quite comparable. Plots of AMS and PDS models are given in Figure 2-5. It reveals that 
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in case of ED the flood quintiles are quite acceptable for μ≤8 and T≤500 within 95% confidence limit, while 
they are comparable for μ≤3 and T≤100 in case of GLD distribution. 
 

 
Fig 2  AMS/ED VS AMS/PD-ED 
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 Fig 3  AMS/ED VS AMS/NB-ED 
 
 
 

 
Fig 4  AMS/GLD VS AMS/PD-GLD 
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Fig 5 AMS/GLD VS AMS/NB-GLD 

 
 

VI. CONCLUSION 
 

 The analysis presented here focused on the choice between exponential distribution and the generalized 
logistic distribution both in the AMS and PDS model. In the AMS model the flood quantiles are computed using 
the annual maximum observed floods and in PDS model using the flood exceedances above a threshold coupled 
with Poisson and negative binomial distribution for mean number of flood exceedances. The variances of the 
flood quantile estimates are compared through R1 to R4 values in order to determine the superiority of the 
distributions employed in the study in the PDS format and also compared with the AMS model. The choice of 
the most efficient T-year event estimator model is not only dependent on whether it is AMS or PDS, but also the 
method of parameter estimation of the probability distributions used. Here in the present case only L-moment 
method of parameter estimation has been followed. It is seen that these ratios are not dependent on the years of 
data available but is a function of the mean and variance and the distribution parameters. The difference 
between the estimations under AMS and PDS model becomes prominent with increase in T years and with 
increase in value of μ. A good match between the quantile values in PDS has been noticed so long the value of μ 
is less than 3. The values of the ratio of  Var(QT) as given in Table.3 infers that AMS/NB-GLD gives less 
variance of the QT compared to AMS/NB-ED for the field data of Champua gauging site under Baitarani basin. 
This is in quite agreement to the finding of Bhunya et al. (2012) [2] who used data of a different region. Similarly 
in case of flood exceedances of exponential distribution, AMS/PD-ED model performs better than the 
AMS/NB-ED model for the present field data. The advantage of Poisson distribution over negative binomial 
distribution has been studied by ÖnÖz and Bayazit (2001) [23]. He has reported that the flood estimates and their 
corresponding variance based on negative binomial distribution when combined with ED for the flood 
exceedances are almost identical to those obtained using PD. The present finding is also in agreement with 
ÖnÖz and Bayazit (2001) [23], so also Kirby (1969) [13] and Cunnane (1979) [5]. To summarize the NB distribution 
should be preferred for number of flood peaks if to be coupled with GLD for flood exceedances and Poisson 
distribution in case of ED for flood exceedances values. 
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TABLE.2 

Design Discharge (QT) and Var (QT)  for AMS/PD-ED 
μ= 1.478   2.000   3.000   4.000   5.130   6.000   7.000   8.000 

var= 2.351   4.727   8.273   12.091   17.027   22.727   27.545   37.545 
Qo =  805.097   677.600   553.700   469.446   400.648   344.554   313.350 294.884 

T QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) 

5 1512.57 18842.90 1525.92 18897.25 1485.36 14442.68 1452.28 11760.09 1036.71 9708.87 1109.92 9355.58 1101.54 7767.75 1332.97 6313.78 
10 1793.38 32850.84 1816.20 31435.43 1754.42 22757.50 1707.82 17929.77 1280.79 14432.51 1357.77 13706.00 1335.43 11228.01 1550.61 9026.93 
20 2062.74 50647.00 2094.64 46904.83 2012.50 32704.92 1952.94 25181.80 1514.92 19912.45 1595.52 18715.61 1559.79 15185.74 1759.37 12113.24 
50 2411.40 80020.99 2455.05 71933.84 2346.56 48447.65 2270.23 36508.38 1817.97 28385.40 1903.26 26416.48 1850.19 21237.11 2029.59 16811.58 

100 2672.67 106720.45 2725.13 94391.35 2596.89 62364.78 2507.99 46430.48 2045.07 35755.06 2133.86 33086.80 2067.81 26458.43 2232.09 20852.57 
200 2932.99 137316.67 2994.22 119921.00 2846.31 78037.60 2744.88 57538.55 2271.33 43967.23 2363.63 40499.28 2284.63 32245.77 2433.84 25322.06 
500 3276.43 183782.28 3349.24 158419.26 3175.37 101473.64 3057.41 74059.99 2569.85 56129.35 2666.76 51449.21 2570.69 40774.55 2700.02 31895.63 

 

 
TABLE. 3 

Design Discharge (QT) and Var (QT)  for AMS/NB-ED 

μ= 1.478   2.000   3.000   4.000   5.130   6.000   7.000   8.000   
var= 2.351   4.727   8.273   12.091   17.027   22.727   27.545   37.545   
Qo =  805.097   677.600   553.700   469.446   400.648   344.554   313.350   294.884   

T QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) 

5 1495.76 20582.42 1657.20 19854.12 1461.67 17056.87 1432.89 13895.38 1020.17 11507.86 1092.65 11291.73 1086.85 9348.89 1317.90 7835.28 
10 1785.48 34825.55 1961.04 29845.20 1743.29 25640.31 1698.71 20233.98 1273.02 16346.47 1349.65 15753.67 1328.52 12888.05 1543.53 10619.20 
20 2058.90 52796.07 2245.65 41612.66 2007.10 35749.85 1948.52 27588.54 1511.14 21896.13 1591.57 20829.69 1556.43 16893.09 1755.93 13746.85 
50 2409.89 82311.21 2609.60 60075.50 2344.43 51611.45 2268.49 38989.70 1816.49 30419.38 1901.70 28577.96 1848.87 22978.18 2028.24 18474.30 

100 2671.92 109070.88 2880.83 76330.78 2595.83 65576.53 2507.12 48941.58 2044.33 37808.97 2133.09 35266.93 2067.15 28212.73 2231.42 22526.61 
200 2932.61 139702.76 3150.49 94605.97 2845.78 81276.92 2744.45 60066.66 2270.97 46032.47 2363.24 42689.96 2284.30 34007.52 2433.51 27002.47 
500 3276.28 186193.53 3505.85 121907.56 3175.16 104731.98 3057.24 76599.76 2569.70 58202.29 2666.61 53647.06 2570.55 42541.36 2699.89 33580.34 
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TABLE.4 
Design Discharge (QT) and Var (QT)   for AMS/PD-GLD 

 
TABLE.5 

Design Discharge (QT) and Var (QT)  for  AMS/NB-GLD 
μ= 1.478   2.000   3.000   4.000   5.130   6.000   7.000   8.000   
var= 2.351   4.727   8.273   12.091   17.027   22.727   27.545   37.545   
Qo =  805.097   677.600   553.700   469.446   400.648   344.554   313.350   294.884   

T QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) 

5 1657.74 12246.48 1421.63 8048.19 1290.86 8980.19 1205.55 9312.80 1128.72 9258.81 1063.05 8685.10 1023.81 8807.80 955.23 7876.61 
10 1813.89 17622.85 1578.15 12336.36 1441.94 13238.75 1350.88 13520.75 1268.32 13334.45 1199.48 12532.47 1156.97 12635.41 1084.95 11364.66 
20 1961.25 24076.05 1724.22 17666.03 1583.47 18498.49 1487.46 18663.59 1399.80 18275.12 1327.90 17205.54 1282.56 17250.12 1207.07 15599.00 
50 2150.43 34325.24 1910.62 26359.19 1764.44 27022.02 1662.39 26933.90 1568.40 26174.36 1492.54 24687.33 1443.70 24599.90 1363.63 22375.96 

100 2291.66 43417.97 2049.42 34218.77 1899.30 34688.48 1792.85 34332.84 1694.20 33213.23 1615.37 31360.64 1563.97 31132.00 1480.44 28419.15 
200 2432.16 53687.30 2187.36 43206.82 2033.39 43424.33 1922.60 42734.38 1819.33 41185.26 1737.54 38923.36 1683.63 38517.52 1596.63 35266.73 
500 2617.39 69089.17 2369.11 56842.09 2210.09 56632.65 2093.61 55396.70 1984.28 53171.98 1898.59 50301.11 1841.36 49605.25 1749.78 45567.20 

 
 
 

 

μ= 1.478   2.000   3.000   4.000   5.130   6.000   7.000   8.000   
var= 2.351   4.727   8.273   12.091   17.027   22.727   27.545   37.545   
Qo =  805.097   677.600   553.700   469.446   400.648   344.554   313.350   294.884   

T QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) QT Var(QT) 

5 1560.61 10995.05 1498.22 11768.79 1412.04 13080.71 1347.30 13819.19 1288.91 14274.80 1251.97 14524.89 1216.82 14852.12 1181.74 14784.44 
10 1711.96 15269.43 1646.65 16429.04 1556.38 18182.80 1487.01 19061.59 1423.68 19525.10 1383.55 19752.66 1345.70 20078.83 1306.86 19883.49 
20 1857.14 20699.75 1789.04 22178.78 1694.83 24286.69 1621.02 25223.68 1552.95 25616.01 1509.76 25772.57 1469.32 26056.97 1426.89 25683.84 
50 2045.05 29662.92 1973.34 31481.69 1874.04 33946.66 1794.49 34847.95 1720.28 35033.62 1673.12 35026.47 1629.34 35197.54 1582.25 34513.83 

100 2185.87 37809.98 2111.45 39828.80 2008.34 42486.42 1924.47 43278.81 1845.67 43224.94 1795.54 43042.00 1749.25 43084.32 1698.67 42108.37 
200 2326.18 47146.10 2249.05 49317.78 2142.14 52103.49 2053.99 52717.40 1970.60 52352.71 1917.51 51949.37 1868.73 51826.08 1814.67 50508.25 
500 2511.28 61324.61 2430.59 63627.00 2318.67 66484.20 2224.85 66755.77 2135.43 65870.81 2078.43 65107.58 2026.35 64708.77 1967.70 62862.49 
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TABLE.6 
 Variance ratios (R ) of Design Discharges 

μ= 1.478 2.000 3.000 4.000 5.130 6.000 7.000 8.000 
var= 2.351 4.727 8.273 12.091 17.027 22.727 27.545 37.545 
Qo = 805.097 677.600 553.700 469.446 400.648 344.554 313.350 294.884 

 

 

5 0.915 0.952 0.847 0.846 0.844 0.829 0.831 0.806 
10 0.943 1.053 0.888 0.886 0.883 0.870 0.871 0.850 
20 0.959 1.127 0.915 0.913 0.909 0.899 0.899 0.881 
50 0.972 1.197 0.939 0.936 0.933 0.924 0.924 0.910 
100 0.978 1.237 0.951 0.949 0.946 0.938 0.938 0.926 
200 0.983 1.268 0.960 0.958 0.955 0.949 0.948 0.938 
500 0.987 1.300 0.969 0.967 0.964 0.959 0.958 0.950 

 

 

5 0.898 1.462 1.457 1.484 1.542 1.672 1.686 1.877 
10 0.866 1.332 1.373 1.410 1.464 1.576 1.589 1.750 
20 0.860 1.255 1.313 1.351 1.402 1.498 1.511 1.647 
50 0.864 1.194 1.256 1.294 1.338 1.419 1.431 1.542 
100 0.871 1.164 1.225 1.261 1.301 1.372 1.384 1.482 
200 0.878 1.141 1.200 1.234 1.271 1.335 1.346 1.432 
500 0.888 1.119 1.174 1.205 1.239 1.294 1.304 1.380 

 

 

5 1.714 1.606 1.104 0.851 0.680 0.644 0.523 0.427 
10 2.151 1.913 1.252 0.941 0.739 0.694 0.559 0.454 
20 2.447 2.115 1.347 0.998 0.777 0.726 0.583 0.472 
50 2.698 2.285 1.427 1.048 0.810 0.754 0.603 0.487 
100 2.823 2.370 1.468 1.073 0.827 0.769 0.614 0.495 
200 2.913 2.432 1.498 1.091 0.840 0.780 0.622 0.501 
500 2.997 2.490 1.526 1.109 0.852 0.790 0.630 0.507 

 

 

5 1.681 2.467 1.899 1.492 1.243 1.300 1.061 0.995 
10 1.976 2.419 1.937 1.497 1.226 1.257 1.020 0.934 
20 2.193 2.356 1.933 1.478 1.198 1.211 0.979 0.881 
50 2.398 2.279 1.910 1.448 1.162 1.158 0.934 0.826 
100 2.512 2.231 1.890 1.426 1.138 1.125 0.906 0.793 
200 2.602 2.190 1.872 1.406 1.118 1.097 0.883 0.766 
500 2.695 2.145 1.849 1.383 1.095 1.067 0.858 0.737 
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