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Abstract - Rolling element bearings play a vital role for maintaining the reliability metrics in all rotating 
machineries. The downtime due to these bearing failures are now in increasing trend. In general 
manufacturing environment most of the time the bearings are replaced only after  an indication or 
symptom due to the complexities of deployments for condition monitoring techniques. This paper 
emphasis on estimating the remaining useful life of bearing using Nested dichotomy classifier. Vibration 
signals were acquired for a bearing from day one of its operation till it fails naturally through a 
piezoelectric accelerometer and the features are extracted using the defined statistical features. The best 
contributing features are selected and classified using the Nested dichotomy, data near balanced nested 
dichotomy and class balanced nested dichotomy classifiers. The effectiveness of these classifiers was 
analyzed and compared. 

Keywords : Remaining Useful Life (RUL) ; Nested Dichotomy (ND), Statistical Features 

I. INTRODUCTION 

In a manufacturing industry a high amount of capital cost is incurred on improving the uptime of the 
machineries. Preventive maintenance is a common tool deployed across the industries to reduce the downtime 
and improve the health condition of the machines. However there are instances that the breakdowns occur due to 
variable unpredicted conditions. Bearing failures alone contributes to a reasonable sum in the total breakdowns. 
This failures shows up usually in the quality parameters. There are already number of conditional monitoring 
techniques for assessing the health condition of the bearings under study. However, these techniques have their 
own limitations to the real time applications. A bearing failure is associated with various reasons like mis-
alignment,temperature, load conditions,lubrications etc., however,the present study is focused on assessing the 
health condition of a bearing under real time conditions. 

Palmgren. A and G.Lundberg [1]-[3] have laid the basics in estimating the lifetime of the bearing. This has 
given way to establish the standard for predicting the lifetime of the bearings with respect to the loads and speed 
of the application [4]-[6].Zhigang Tian,Lorna Wong and NimaSafaei [7] has detailed the deployment of 
Artificial Neural Networks (ANN) for estimating the remaining useful life of a bearing with age and condition 
monitoring data as input and the remaining life as the resultant output. This model was built with the past failure 
histories. The main drawback of using ANN is the associated complexities in designing all the failure histories 
in the real time applications. Nathan Bolander,Haiqiu and Neil Eklund [8] summarizes a physics based 
remaining useful life predictions for a aircraft engine bearing. The model was built with spall propogation 
theories by which the remaining life is assessed based on the future operating conditions and the spall 
propogation. 

Francesco Di Maio, et.al., [9] used a Naïve baysian classifier for estimating the remaining useful life of 
bearings. This method is based on the bearing degradation patterns that are already stored in the database. The 
new acquired vibration signals are compared with reference to the similar degradation patterns and the 
remaining useful life is predicted. Paula J. Dempsey, et.al.,[10] presented the remaining life by correlating it 
with the condition  indicators. Spall propogation data was used to generate the condition indicators. A damage 
progression model was thus built with the said data. Data fusion analysis technique was used to map the 
condition indicator to the damage level and thus the current state of the transmission component is assessed. 

Sugumaran V. andRamachandran K. I [11]-[13] and V.Muralidharan and V. Sugumaran [14],[15] detailed the 
process of acquiring the vibration signals, feature extraction ,feature selection and feature classification through 
a machine learning approach. Statistical parameters like standard deviation, mean average, minimum and 
maximum values forms a set of features and the best contributing features are selected and further classified 
using various classifiers. Decision tree was used as one of the tool for selecting the best contrubting feature for 
the given data set. 
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     [ a, b, c, d]   Root Level 
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Fig. 4. Nested Dichotomy Tree 

B.  Class-balanced nested dichotomies 

In light of these observations considered two different sampling strategies inthis paper. The first method is based 
on balancing the number of classes ateach node. Instead of sampling from the space of all possible trees, sample 
from the space of all balanced trees, and build an ensemble of balanced trees.The advantage of this method is 
that the depth of the tree is guaranteed to belogarithmic in the number of classes. This is referred as an ensemble 
of class-balancednested dichotomies (ECBND).The number of possible class-balanced nested dichotomies is 
obviously smallerthan the total number of nested dichotomies. The following recurrence relationdefines the 
number of possible class-balanced trees: 

 
whereT (1) = 1 and T (2) = 1. 

Dong, Frank &Krammer [20] has explicitly detailed the algorithm for building a system of class-balanced 
nested dichotomies as below. 

if|C| = 1 then return 

P = subset of C, randomly chosen from all subsets of size [|C|/2] 

N = C \ P 

Dp= all instances in D apart from those pertaining to classes in P  

buildClassBalancedNestedDichotomies(Dp, P) 

Dn= all instances in D apart from those pertaining to classes in N  

buildClassBalancedNestedDichotomies(Dn, N) 

D’ = a two-class version of D created based on N and P 

classifierForNode = buildClassifier(D’) 

C. Data-balanced nested dichotomies 

The most common  problem with the class-balanced approach is that some multi-class problems are very 
unbalanced and some are much more populated thanothers. In that case a class-balanced tree does not infer that 
it is also databalanced.This can negatively affect runtime if thebase learning algorithm has time complexity 
worse than linear in the number ofinstances. 

The data-balanced nested dichotomies randomly assignsthe classes to two subsets until the size of thetraining 
data in one of the subsets exceeds half the total amount of trainingdata at the node. One motivation for using this 
simple algorithm was that it isimportant to maintain a degree of randomness in the assignment of classes 
tosubsets in order to preserve diversity in the committee of randomly generatedsystems of nested dichotomies. 
Dong, Frank &Krammer [20] has explicitly detailed the algorithm for building a system of data-balanced nested 
dichotomies. Even with our simple algorithm diversitysuffers when the class distribution is very unbalanced. 
However, it is difficult toderive a general expression for the number of trees that can potentially generated by 
this method because this number depends on the class distribution in thedataset. 

if|C| = 1 then return 

C = random permutation of C 

Dp= ∅, Dn= ∅ 

do 

if(|C| >1) then 

add all instances from D pertaining to first class in C to Dp 
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add all instances from D pertaining to last class in C to Dn 

remove first and last class from C 

else 

add all instances from D pertaining to remaining class in C to Dp 

remove remaining class from C 

while(|Dp| <[|D|/2]) and (|Dn| <[|D|/2]) 

if((|Dp| ≥ [|D|/2]) then 

add instances from D pertaining to remaining classes in C to Dn 

else 

add instances from D pertaining to remaining classes in C to Dp 

P = all classes present in Dp,  

N = all classes present in Dn 

buildDataBalancedNestedDichotomies(Dp, P) 

buildDataBalancedNestedDichotomies(Dn, N) 

D’= a two-class version of D created based on N and P 

classifierForNode = classifier learned by base learner from D’ 

VI. RESULTS AND DISCUSSIONS 

The experiments were conducted on atest rig wherein the bearings were made to run under real time 
conditions till it fails naturally. The data thus collected from this experiments are discussed in the below 
sections. 

A. Effect of number of features on Clasification accuracy 

The vibration signals acquired at regular intervals are further extracted into 12 descriptive statistical features 
like standard deviation, mean, mode, median, kurtosis, skewness, sample variance, standard 
error,minimum,maximum, sum and range. Decision tree algorithm was used to select the best contributing 
features for the given data set. The effect of number of features on the classification accuracy is listed in the 
Table I. This data reveals that the classification model performs at its best with top 07 selected features. 

TABLE I.  Effect of number of features on Classification Accuracy 

No. of 
Features 

Classification Accuracy (%) 

ND¹ CBND² DNBNDͨ³ 
    

1 80.00 79.88 79.88 

2 89.94 90.26 90.30 

3 94.59 94.07 94.27 

4 94.71 94.79 94.87 

5 94.87 94.91 94.91 

6 95.07 94.99 94.75 

7 94.91 95.19 95.19 

8 94.55 94.59 94.83 

9 94.59 95.03 95.19 

10 95.11 94.87 94.55 

11 94.67 94.71 94.59 

12 94.79 94.83 94.27 

¹ND= Nested Dichotomy ; ²CBND= Class Balanced Nested Dichotomy ; 
³DNBND= Data Near Balanced Nested Dichotomy 
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B. Nested Dichotomy Algorithm 

 The selected features were further taken-up for the classification using the Nested Dichotomy 
classifier. The results of the algorithm for the given experimental data sets are shown via confusion matrix on 
Table III and detailed accuracy by class on TableII. TP Rate and FP Rate are the important terms when detail the 
class by accuracy. ‘TP rate’ stands for true positive which measures the proposition of positives that are 
correctly identified and ‘FP rate’ stands for false positive rate which measures the proposition of positives that 
are incorrectly identified. True positive should be close to 1 and false positive rate should be close to 0 for better 
classification accuracy. In the present study, from Table II, the closeness of ‘TP rate’ to ‘1’ and ‘FP rate’ to ‘0’ 
describes the classification accuracy. Similarly Table III represents the results via confusion matrix. The 
diagonal elements in the confusion matrix are the correctly classified instances and the other elements in that 
row are the incorrectly classified instances. The overall classification accuracy for the given data set using the 
Nested dichotomy classifier is 94.91%. 

Total number of instances  2496 

Correctly classified instances  2369 (94.91%) 

Incorrectly classified instances  127 (5.08%) 

Kappa statistic   0.936 

Mean absolute error   0.028 

Root mean squared error  0.135 

TABLE II.  Detailed accuracy by class for Nested Dichotomy 

 
TP 

Rate 
FP 

Rate 
Precisio

n 
Recall F-

measure 
ROC 
Area 

Class 

        

 0.996 0 1 0.996 0.998 0.999 Stage-1 

 0.91 0.033 0.873 0.91 0.891 0.967 Stage-2 

 0.868 0.024 0.902 0.868 0.885 0.964 Stage-3 

 1 0.007 0.973 1 0.986 0.998 Stage-4 

 0.972 0 1 0.97 0.98 0.99 Stage-5 

Weighte
d 

Average 

0.949 0.013 0.95 0.949 0.949 0.984 
 

Stage-1:New ; Stage-2:1000 hrs ; Stage-3:1250 hrs ; Stage-4:1500 hrs ; Stage-5:1800 hrs 

TABLE III.  Confusion Matrix for Nested Dichotomy 

Category a b c d e  
       

a 494 0 2 0 0 a = Stage-1 

b 0 455 45 0 0 b = Stage-2 

c 0 66 434 0 0 c = Stage-3 

d 0 0 0 500 0 d = Stage-4 

e 0 0 0 14 486 e = Stage-5 

C. Class Balanced Nested Dichotomy Algorithm 

 Class balanced nested dichotomy algorithm yeilds best results with the top selected 07 features as 
shown in the Table I. The overall classification accuracy of this classifier for the given data set is 95.19%. 
Table IVand Table Vdetails the accuracy by class and confision matrix results for the class balanced nested 
dichotomy clasifier. The precision value indicates  the fraction of  retrieved instances that are relevant 
whereas the recall value indicates the fraction of relevant instances that are retrieved. The value of precision 
and recall is close to 1 which indicates the data is correctly classified. 
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Total number of instances  2496 

Correctly classified instances  2376 (95.19%) 

Incorrectly classified instances  120 (4.80%) 

Kappa statistic   0.939 

Mean absolute error   0.026 

Root mean squared error  0.129 

TABLE IV.  Detailed accuracy by class for Class Balanced Nested Dichotomy 

 TP Rate FP Rate Precision Recall 
F-

measure 
ROC 
Area 

Class 

        

 0.994 0 1 0.994 0.997 0.999 Stage-1 

 0.89 0.029 0.885 0.89 0.887 0.969 Stage-2 

 0.884 0.029 0.886 0.884 0.885 0.972 Stage-3 

 1 0.003 0.99 1 0.995 0.999 Stage-4 

 0.992 0 1 0.992 0.996 0.997 Stage-5 

Weighted 
Average 

0.952 0.012 0.952 0.952 0.952 0.987  

Stage-1:New ; Stage-2:1000 hrs ; Stage-3:1250 hrs ; Stage-4:1500 hrs ; Stage-5:1800 hrs 

TABLE V.  Confusion Matrix for Class Balanced Nested Dichotomy 

Category a b c d e  

       
a 493 0 2 1 0 a= Stage-1 

b 0 445 55 0 0 b= Stage-2 

c 0 58 442 0 0 c= Stage-3 

d 0 0 0 500 0 d= Stage-4 

e 0 0 0 4 496 e= Stage-5 

D. Data Near Balanced Nested Dichotomy Algorithm 

 Data near balanced nested dichotomy algorithm yeilds best results with the top selected 07 features as 
shown in the Table I. The overall classification accuracy of this classifier for the given data set is 95.19%. 
Table VI and Table VII details the accuracy by class and confusion matrix resuls for the data near  balanced 
nested dichotomy clasifier. F-measure is the balanced mean between precision and recall. The value of F-
measure closeness to 1 as per the below table 6 determines the accuracy of the classifier. 

Total number of instances  2496 

Correctly classified instances  2376 (95.19%) 

Incorrectly classified instances  120 (4.80%) 

Kappa statistic   0.939 

Mean absolute error   0.026 

Root mean squared error  0.128 
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TABLE VI.  Detailed accuracy by class for Data Near Balanced Nested Dichotomy 

 TP Rate FP Rate Precision Recall 
F-

measure 
ROC 
Area 

Class 

        

 0.996 0 1 0.996 0.998 0.999 Stage-1 

 0.88 0.027 0.891 0.88 0.885 0.969 Stage-2 

 0.892 0.031 0.878 0.892 0.885 0.974 Stage-3 

 1 0.003 0.992 1 0.996 0.999 Stage-4 

 0.992 0 1 0.992 0.996 0.997 Stage-5 

Weighted 
Average 

0.952 0.012 0.952 0.952 0.952 0.987  

Stage-1:New ; Stage-2:1000 hrs ; Stage-3:1250 hrs ; Stage-4:1500 hrs ; Stage-5:1800 hrs 

TABLE VII.  Confusion Matrix for Data Near Balanced Nested Dichotomy 

Category a b c d e  
       

A 494 0 2 0 0 a= Stage-1 

B 0 440 60 0 0 b= Stage-2 

C 0 54 446 0 0 c= Stage-3 

D 0 0 0 500 0 d= Stage-4 

E 0 0 0 4 496 e= Stage-5 

E. Comparitive Study  

 The classification accuracy of the nested dichotomy classifiers are listed in the Table VIII. Data near 
balanced nested dichotomy classifier performs best for the given data set with 95.19%. However the class 
balanced nested dichotomy classifier performed equally the same with respect to the DNBND. Table 1 
reflects the classification accuray of the classifiers against the number of features. The kappa statistic, mean 
absolute error and root mean squared error are the key performance metrics  for comparing the performance 
of the classifiers. The kappa statistic is a metric that compares anobserved accuracywith anexpected 
accuracy. The kappa statistic is used to evaluate classifiers amongst themselves. The above results shows 
that the kappa value for CBND and DNBND is higher that the ND classifier. Mean Absolute Errors (MAE) 
measure, the closeness value of predictions to the eventual outcomes. Root Mean Squared Error (RMSE) is 
the measure of difference between the predicted values and observed values.The MAE and RMSE  analyzes 
the variation in the errors in predictions. The RMSE will always be higher in value or equal to the MAE; 
the greater difference between them, the greater the variance in the individual errors in the sample. The 
MAE and RSME for CBND and DNBND is lower than the ND classifer for the given data set. 

TABLE VIII.  Comparion Study 

S. No. Name of the Classifier 
Classification 
Accuracy (%) 

1 Nested Dichotomy 94.91 

2 Class Balanced Nested Dichotomy 95.19 

3 Data Near Balanced Nested Dichotomy 95.19 
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VII. CONCLUSION 

 Estimating the life time of bearings and monitoring the health condition of the bearings are widely 
accepted by the industries and well received in the recent times. This paper presented a predictive method to 
estimate the remaining useful life of the bearings based on nested dichotomy clasifiers. This method is based on 
the machine learning principles.  The bearings are made to run at stated conditions that are similar to real time 
applications. The vibration signals are acquired at defined intervals till the bearing fails naturally.  Statistical 
features were extracted and top contributing features were selected using the decision tree algorithm. Thus 
selected features were used to construct the model based on the ND,CBND and DNBND classifiers. The 
predictive model built on the CBND and DNBNDyieldsbetter classification accuracycompared to the Nested 
Dichotomy Classifier. This model that was tested with the bearing life data can also be horizontally deployed for 
predicting the remaining life of all other critical components. 

NOMENCLATURE 

ND  Nested Dichotomy 

CBND  Class Balanced Nested Dichotomy 

DNBND  Data Near Balanced Nested Dichotomy 
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