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Abstract - Submarines and Ships of this time are furnished with multi sensors (structure mounted 
array, towed array and so forth.,) making them contemporary in following multi focuses in submerged 
environment. This paper elucidates Data Fusion calculations, taking into account multi-sensor target 
information of stages in the arrangement adrift. Two-dimensional following is grasped utilizing Modified 
Gain Bearings just Extended Kalman Filter in each accessible channel. In this methodology, every sensor 
utilizes one estimator to remove a state vector and its related covariance grid from its separate sensor 
estimations. Every channel yield is transmitted over an information connection to combination focus, 
where track-to-track relationship and state vector combination are performed following composite target 
state vector. Sonar information Pre-handling diminishs the clamor adequacy, gets difference of the 
uproarious information, embeds missed heading with evaluated direction and gives assessed orientation if 
there should arise an occurrence of missed or erroneous bearing estimations. 

Keywords: Kalman Filter, Target Tracking, Data Fusion,sensor,simulation,estimation. 
I. INTRODUCTION 

A sensor device receives signals and does the processing which triggers the measurements that are 
functions of the signals. Sensors provide information for the controllability of the system. However, a single 
sensor is deficient in obtaining all the reliable information. Furthermore, as the complexity of a system 
increases, so does the number and variety of sensors required, providing complete description and effective 
control of the system. Multisensor systems institute the state of the art applications in areas such as robotics, 
defence, aerospace and so on. A multisensor system may different sensors which creates the need of data fusion. 

Both quantitative and qualitative sensor fusion methods have been advanced in the literature. Quantitative 
methods are based on probabilistic and statistical methods of modelling and combining information, including 
statistical decision theory, Bayesian analysis and filtering techniques [1]. 

This paper is confined to the study of fusioning the state estimates of  KF tracking the same target. The 
process noise is assumed to be dependent and the state estimates can be combined to improve accuracy by using 
conditional expectations of the target state, given the appropriate information. Mutambara [1] constructed the 
conditional expectations for the optimal fusion of estimates from several filters at any time, ‘n’. These exact 
formulae are complicated and not suitable for practical use. Further analysis shows that the expressions can be 
simplified for the limiting case as n tends to infinity. In particular the limiting formula [2] for combining two 
filters is identical to one introduced earlier by Bar-Shalom [3]. 

Bar-Shalom’s fusion technique is used for the underwater application as follows. Submarines/ ships ( also 
called as observers) use different types of sensors like hull mounted array (HMA), towed array (TA), etc., to 
find out target motion parameters. Modern observers  remain in passive mode of listening for most of the time. 
This work presumed that observer is using hull mounted array and towed array in passive mode to track target 
ships / submarines. Therefore, each sensor has its own set of targets in the track. The indecisiveness is how to 
decide whether two tracks from different systems represent the same target. If it is known two such tracks 
represent the same target and comes the problem of processing data fusion (also called as track fusion) [4]. 

We considered a situation of tracking a target moving at constant velocity in an ocean environment. For 
transparency, target is assumed to be at constant velocity but, this algorithm can be exploited for maneuvering 
targets also. The target is being tracked by HMA and TA operating from an observer. Two Kalman filters, as 
shown in Fig.1 process HMA and TA data in two different channels and two estimated target state vectors are 
available. First it is checked whether these estimates are related to single target and if it is so, then all these 
estimates are combined to get a better or more smoothed estimate. Data fusion is elaborately discussed in 
reference [3] and author tries to extend the theory for sea environment. Kalman filter requires the statistical 
characteristics like mean and variance of the noise in the bearing measurements. This filter also assumes the 
noise follows Gaussian distribution. In general, bearing measurements in underwater are highly corrupted with 
noise and Kalman filter fails with this noise. Hence pre-processing of the measurements is required to make the 
noise Gaussian, to find out the covariance of the noisy measurements and also to reduce the amplitude of the 
noise. 
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Added to the above, in underwater, sometimes, auto tracking of the target fails and the passive sonar tracks 
the target in manual mode and hence the measurements are not available continuously. It was also observed in 
underwater that the sonar measurement sometimes is spurious (the difference between the present and previous 
measurement being very high) and the same is treated as invalid. Pre-processing of the measurements estimate 
the bearings and replaces the bad or missed bearings. This on-line pre-processing continuously monitors the 
variance of the noise in the measurements and if any measurement is with more variance than predefined, this 
process replaces the same with the estimated bearing. 

The well known classical estimator, that is the Modified Gain Bearings only Extended Kalman filter 
(MGBEKF) [5] - [8] is a right candidate for this application.  Extensive simulation is carried out and the results 
of MGBEKF are compared with that of Unscented Kalman Filter (UKF) [9]-[11]. It is observed that the results 
are almost same in both the situations. As the computation is less with MGBEKF w. r. to UKF and convergence 
time is slightly faster in MGBEKF than that of UKF, in this paper MGBEKF is used to estimate the target 
motion parameters. Section 2 describes mathematical modelling of the algorithm including the fusion of state 
vectors. Section 3 is about pre-processing of the measurements. The simulation of the algorithm and results 
obtained are presented in section 4. The limitations of the algorithm are discussed in section 5. Finally the paper 
is concluded in section 6. 

II. MATHEMATICAL MODELLING 

It is proposed to do data fusion of hull-mounted array and towed array state vector outputs. These sensors 
generate bearings of the target.  The well known classical estimator, that is MGBEKF, is explored for this 
application.  Whenever the input data is available, the filter estimate is updated. The alternative derivation of the 
modified gain function [5], [6] of Song and Speyer’s extended Kalman filter is slightly modified. The 
mathematical modelling of input measurements, Kalman filter and the outputs is as follows. Let the target state 
vector be Xs (k) where 

( ) ( ) ( ) ( ) ( )[ ]T

yxS kRkRxykxkX =         (1) 

where  (k)y and (k)x   are target velocity components and, Rx (k) and Ry (k) are range components respectively. 
The target state dynamic equation is given by 
             Xs (k+1) =  φ Xs (k) + b (k+1) + ωΓ (k)       (2) 

where  φ and b are transition matrix and deterministic vector respectively. 

The transition matrix is given by 
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where 0x  and 0y  are observer position components. The plant noise, ( )kω  is assumed to be zero mean white 
Gaussian with ( ) ( )[ ] kjQjk δωω =′Ε . True North convention is followed for all angles to reduce mathematical 
complexity and for easy implementation. The bearing measurement, mB  is modelled as 
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where (k)ς  is error in the measurement and this error is assumed to be zero mean Gaussian with variance 2 σ .  
The measurement and plant noises are assumed to be uncorrelated to each other. Eqn. (4) is a non-linear 
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equation and is linearized by using the first term of the Taylor series for xR  and yR .  The measurement matrix 

is obtained as ( ) ( ) ( ) ( ) ( )[ ]kkRkkRkkRkkRkH yy 1ˆ1ˆ1ˆ1ˆ001 22 ++−++=+    (5) 

Since true values are not known, the estimated values of xR  and yR are used in the above equation. The 
covariance prediction is 

( ) ( ) ( ) ( ) ( ) TT kQkkkkPkkkkP Γ++Γ+++=+ 1111 φφ        (6) 

The Kalman gain is 

( ) ( ) ( ) ( ) ( ) ( )[ ] 12 111111 −++++∗++=+ kHkkPkHkHkkPkG TT σ    (7) 

The state and its covariance corrections are given by 

( ) ( ) ( ) ( ) ( )( )[ ]kkXkhkBkGkkXkkX m 1,111111 ++−+∗+++=++    (8) 

where ( ) ( )kkXkh 1,1 ++  is the bearing using predicted estimate at time index 1+k  
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where g (.) is modified gain function as defined in [6]. The value of g  is 

( )[ ( )]mymxmmymxm BRBRBBRBRBg cosˆsinˆsincosˆsinˆcos00 +−+=     (10) 

Since true bearing is not available in practice, it is replaced by the measured bearing to compute the function g 
(.). 

 
Fig.1 Block diagram of state vector fusion 

 
Fig. 2 (a). Blind zone for HMA 
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Fig. 2(b). Blind zone for TA 

 
Fig. 3 TMA with single observation platform in S-manoeuvre 

A. Fusion of State Vectors 

Two separate identical MGBEKF’s are used to process the HMA and TA data and at this stage it is 
assumed that the two estimates of target are available. Now it is to be checked, whether the HMA and TA are 
tracking different targets or same target. This process is called data fusion and is described as follows. Let 

( )kX iˆ  be the state of a target estimated by a HMA and let ( )kPi  be covariance of ( )kX iˆ . 

Let ( )kX jˆ  be the state of a target estimated by TA and let ( )kP j  be the covariance of ( )kX jˆ . Both are 
current estimates. It is useful to test the hypothesis that these estimates are for the same target or not. The 
difference in these estimates is given by [3]. 

( ) ( ) ( )kXkXk jiij ˆˆˆ −=Δ           (11) 

Similarly the difference in the true states is given by 
( ) ( ) ( )kXkXk jiij −=Δ           (12) 

Let  ( ) ( ) ( )kkk ijijij Δ−Δ=Δ ˆ~  

 ( ) ( )( ) ( ) ( )( )kX - kXkX - kX jjii ˆˆ −=  

( ) ( )( )kXkX ji ~~ −=                                                                                                                                 (13) 

The following hypothesis is used. 
If  ( ) 0:0 =Δ kH ij , then there is only one target and if ( ) 0:1 ≠Δ kH ij  then there are two different targets. As the 
plant noise is not independent 

( ) ( ) ( )[ ] ( ) ( )[ ]{ }T
jijiij kX-kXkX-kXEkT

~~~~=  

          ( ) ( ) ( ) ( )kPkP-kPkP ijijji ′−+=                                                                                          (14) 

where ijP  is the cross covariance. Assuming that the estimation errors are Gaussian, the test of 0H  vs 1H  is as 

follows: 0H  is accepted if ( ) ( )[ ] ( ) δ,kkTkd ij-1ijTij ≤ΔΔ= ˆˆ else 1H  is accepted.  The threshold is such that 
{ } α=> 0HδdP , where 05.0=α . The choice of this threshold is based on the fact that the above Gaussian 

assumption ‘ d ’ has a chi-square distribution with xn  degrees of freedom. If 0H  is accepted, then the two 

estimates ( )kX iˆ  and ( )kX jˆ  can be combined as follows. 
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The covariance associated with the fused estimate is given by 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ]kPkPkPkPkPkPkPkPk PM ji
1

ijijjiijiiij −∗



 ′−−+∗−+=

−

(16) 

III. Pre-processing of the measurements 

In underwater, noise in the bearing measurements is very high. The measurements available at every second 
are averaged over 20 seconds so that the variance of the noise is reduced by a factor of 20. The input to the 
MGBEKF is available at every 20th second and the target motion parameters are updated at 20 second interval. 
In under water, the speed of the vehicle is not much and so updating of the solution by 20 seconds will not 
hamper the weapon control process. If one or more measurements are not available during 20 seconds interval, 
the average will be done according to the no. of samples available. 

If all the measurements are not available during 20 seconds interval, then 20 second average measurement 
is replaced with a bearing measurement estimated by using bearing rate, which is calculated with the 
measurements available till then the mean or bias in the measurements is assumed to be zero. If it is not zero, 
then the target motion parameters contain bias. At the pre-processing stage, there is no way to find out mean of 
the noise. If bias is present and is known by some means, all the measurements are subtracted by this mean. The 
measurement is bad or good, is determined by its variance of the noise. If variance is high than the assumed 
one, then it is treated as bad or not available measurement. 
A. Variance of the Noise in the Measurement  

The variance of error in each bearing measurement is calculated as follows. Consider a simple linear 
regression model for the bearings given by ε++= taab 10  where 0a  and 1a  are regression coefficients, ε is 
distributed with zero mean and unknown variance 2σ , t  is time variable and b  is bearing. Here, 0a represents 
the intercept on bearing axis and 1a , the bearing rate. Let there be n  measurements in sample duration of 20 
seconds. From simple regression analysis [12] 
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where dt and db  are the changes in time and bearings respectively between two successive measurements, 
t and b  represent the average of time and bearings respectively in the 20-second time sample. The variance of 
the noise is given by 
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The measurement is bad or good, is determined by its variance of the noise. If variance is high than the 
assumed one, then it is treated as bad or not available measurement. 
B. Estimation of bearing 

In general, the state vector is with ( )kx & ( )ky  (target velocity components) and ( )kx  & y (k) (target 
position) components. By rotating the coordinate system such that y+  axis lies along the latest bearing entered, 
the state vector represents relative position and relative velocity at the time of entry of the latest bearing and it is 

given by ( ) ( )
( ) ( ) 








1kB

kR

kR
kB

 ,  

where the first and second elements represent bearing rate and range rates respectively. Br represents the 
estimated error of the given input bearing and  R represents the relative range of the target with reference to the 
observer. 

Similar target state vector was utilized by Aidala and Hammel [13] in modified polar coordinate based 
Kalman filter. The estimated bearing at any time is given by the present bearing plus Br. If the bearing is missed 
at any time, then the present bearing is the previous bearing plus bearing rate multiplied by time between the 
samples (assuming the measurements are available with fixed interval).  For obtaining this required state vector, 
covariance matrix of Pseudo Linear Estimator [14] is built up using Cartesian coordinate state vector and then 
converted to modified polar coordinate state vector in such a way that the y+  axis lies along the line of sight. 
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IV. Simulation and Results 

Here HMA and TA are generating the bearing measurements of the target. As TA operates at low 
frequencies, it can obtain the contact of the target from longer ranges (sayn 10 km). HMA can give data of 
targets with maximum range 7 km. As the submarine targets can be observed from a maximum distance of 5 
km, the range of the operation in simulation is limited to 5 km. The variance of the error in the bearing 
measurement is assumed to be uniform in case of HMA. In case of TA, it varies according to the look-angle. 
The blind zones in both cases are shown in Fig.2  and Fig.3. (Arrow in the figures indicate the direction of the 
observer.)  

In these zones, the target cannot be tracked by sensors and hence  the bearings will be estimated as 
explained in the pre-processing. It is assumed  that TA is towed behind the observer with a  cable and length of 
the cable is known ( say 400 meters). For the implementation of the algorithm, the initial estimate of target state 
vector is chosen as follows. As only bearing measurements are available, it is not possible to guess the velocity 
components of the target. So these components are each assumed as 5 m/sec, which are close to the realistic 
speeds of the vehicles in underwater. The range of the day is utilized in the calculation of initial position 
components of the target as follows 

( ) [ ]T

mm BBX cos5000sin50005500 =       (19) 

It is assumed that the initial estimate, ( )00X  is uniformly distributed Then the elements of initial 
covariance can be written as 

( ) ( )( )12400 2iXDiagonalP s∗=        (20) 

where i = 1,2,3 and 4. 

Table-1 

Parameter Scenario 1 Scenario 2 
Initial Range (m) 4000 4000 
Initial Bearing (deg) 0 0 
Target Speed (knts) 30 6 
Target Course (deg) 135 135 
Observer Speed (knts) 20 20 
Observer Course (deg) 90 90 

Error in the bearing (deg) (1σ) 1.0 2.0 

The observer is assumed to be doing 'S' maneuver on the line of sight at a constant speed with a turning rate 
of 3 deg. /sec. The observer moves initially at 90 degrees course for a period of two minutes and then it changes 
its course to 270 degrees. At 7th , 12th  and 17th  minutes, the observer changes its course from 270 to 90, 90 to 
270 and 270 to 90 degrees respectively, as shown in Fig. 3. It is assumed that the noise in the bearing 
measurements of HMA and TA is of additive zero mean Gaussian noise and the bearing measurements are 
generated continuously every half second. Pre-processing is carried out and the pre-processed bearing for every 
20 seconds is passed on to tracking algorithms. As fourty samples are smoothed, the noise in the smoothed 
bearing follows almost Gaussian. The selection of tracking algorithm is carried out as follows. Three algorithms 
– MGBEKF, UKF and Particle Filter (PF) are considered for this nonlinear tracking problem. In real situation, 
multitarget tracking is to be carried out and as PF requires considerable time (and this much time is not allowed) 
for generation of target motion parameters, the remaining two algorithms are realized. Number of scenarios are 
tested by changing the course of the target in steps of 1 degree in such a way that the angle between the target 
course and line of sight is always less than 55 degrees, as only closing targets are of interest to the observer. 

The initialization of target state vector and its covariance matrix, no. of Monte Carlo runs are chosen as 
same in the evaluation of MGBEKF and UKF for this application. For simplicity, the target is assumed to be 
moving at constant velocity. The results of these scenarios in Monte Carlo simulation are noted and it is found 
that the observability in the target motion parameters has taken place after the completion of the observer's first 
maneuver. In general, the error allowed in the estimated target motion parameters in underwater are eight 
percent in range, 0.2 degrees in bearing, three degrees in course and three meters/sec in velocity estimates. 
Around 80 % required solution is realized after observer’s second maneuver and 90 to 95 % required solution is 
realized after the third. The simulation is carried out for a period of thirty minutes. For the purpose of 
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presentation, the results of UKF and MGBEKF against scenarios 1&2 as shown in Table 1. are presented in Fig. 
4(a) to 4(c) and Fig. 5(a) to 5(c). 
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Fig. 4(a).  Error in range estimate 
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Fig. 4(b).  Error in course estimate 
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Fig. 4(c).  Error in speed estimate 
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Fig. 5 (a).  Error in range estimate 
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Fig. 5(b).  Error in course estimate 
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Fig. 5(c).  Error in speed estimate 

The errors in the range, course and speed estimates are shown in these figures. From the results, it is 
observed that almost same results are obtained with both the estimators. In case of HMA the range, course and 
speed are getting converged with required accuracies at 147, 207 and 194 seconds for scenario 1 and  at 194, 
403 and 268 seconds for scenario 2 respectively. In case of TA the range, course and speed are getting 
converged with required accuracies at 163, 227 and 238 seconds for scenario 1 and  at 197, 406 and 293 
seconds for scenario 2 respectively. Though almost same results are obtained with UKF and MGBEKF, as 
MGBEKF is able to generate the solution a little bit fast, it is chosen as the algorithm for passive target tracking 
with data fusion. Now it is assumed that both sensors are utilized for the same scenario, that is scenario No.1 in 
Table 1. So, there are two Kalman filters working in parallel. The bearing measurements are corrupted with 
different magnitudes of noise, but maintaining the same Gaussian distribution and variance. 

Data fusion process is carried out after obtaining convergence in the estimated solution. The parameter‘d’ 
(described in section 2) follows chi-square distribution and its theoretical value with four degrees of freedom is 
0.96. The confidence level, α , is assumed as 0.05. To take care of false alarms, the decision is taken only when 
the value of ‘d’ is more than the theoretical threshold value consequently two times. In Monte-Carlo simulation 
it is observed that the value of d is never more than the threshold value 0.96.  Hence it is decided that the two 
sensors are tracking the same target. So, the target state and its covariance are combined as per eqns. (15) & 
(16). 

The estimated and simulated paths of the target  are shown in Fig. 6. Now let us assume that HMA is 
tracking a ship target as described in the previous scenario and TA is tracking a submarine target, as described 
under scenario 2 in Table 1. It is observed that the value of d is obtained as 1.34, more than the threshold 0.96. 
Hence it is declared that the two sensors are tracking two targets. The observer path along with the estimated 
and simulated paths of the target  are shown in Fig. 7.  In figures 6 & 7, after around 300 seconds, estimated  
path of the target is almost  coinciding with that of simulated path. 
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Fig.6. Data fusion of HMA and TA for scenario 1 

 
Fig.7. Data fusion of HMA and TA for scenario 1 & 2 

5. Limitations of the Algorithm 

Angle on Target Bow (ATB) is the angle between the target course and line of sight. When ATB is more 
than 60 degrees, the distance between the target and observer increases as time increases and hence bearing rate 
decreases. The algorithm cannot provide good results when the measurement noise is more than 2° rms or when 
the target is going away from the observer (with ATB more than 60 degrees). In general, sonar can listen to a 
target when SNR is sufficiently high. When SNR becomes less, auto tracking of the target fails, the sonar tracks 
the target in manual mode and the measurements are not available continuously. 

The bearings available in manual mode are highly inconsistent and are not useful for good tracking of the 
target. In underwater it is also possible that sonar measurement sometimes is spurious (the difference between 
the present and previous measurement being very high) and the same is treated as invalid. Pre-processing of the 
measurement process estimates the bearings and replaces the bad, missed or invalid measurements with the 
estimated bearings. In this algorithm, it is assumed that good track continuity is maintained over at least first 
four minutes of the simulation period (Minimum four minutes time is required to obtain the convergence in 
bearing rate). This means that propagation conditions are satisfactory during this period as well as track 
continuity is maintained during ownship maneuvers. 

6. Conclusion 
The authors excercised MGBEKF for underwater bearings only passive target tracking with data fusion, in 

particular state vector fusion, to find out whether there are two targets or one target. The author has attempted to 
pre - process the passive sonar bearing measurements to reduce and find out the statistical characteristics of the 
noise in the measurements, etc., so that the data can be effectively used for tracking an under water target by 
MGBEKF effectively. Each sensor has its own set of targets in the track. Method is given to decide whether two 
tracks from different systems represent the same target or not. If it is decided two such tracks represent the same 
target, then fused estimate of that target is presented. 
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